The final publication is available at ACM via http://dx.doi.org/10.1145/3341105.3373955

On the Reliability of Hardware Event Monitors
in MPSoCs for Critical Domains

Javier Barrera™, Leonidas Kosmidisf, Hamid Tabani', Enrico Mezzettif, Jaume Abella’,
Mikel Fernandez!, Guillem Bernat® and Francisco J. Cazorlaf
TBarcelona Supercomputing Center, Spain
*Universitat Politecnica de Catalunya, Spain
$Rapita Systems Ltd., UK

Abstract—Performance Monitoring Units (PMUs) are at the
heart of most-advanced timing analysis techniques to control and
bound the impact of contention in Commercial Off-The-Shelf
(COTS) SoCs with shared resources (e.g. GPUs and multicore
CPUs). In this paper, we report discrepancies on the values
obtained from the PMU event monitors and the number of events
expected based on PMU event description in the processor’s
official documentation. Discrepancies, which may be either due
to actual errors or inaccurate specifications, make PMU readings
unreliable. This is particularly problematic in consideration of
the critical role played by event monitors for timing analysis in
domains such as automotive and avionics. This paper proposes a
systematic procedure for event monitor validation. We apply it
to validate event monitors in the NVIDIA Xavier and TX2, and
the Zynq UltraScale+ MPSoC. We show that, while some event
monitors count as expected, this is not the case for others whose
discrepancies with expected values we analyze.

I. INTRODUCTION

Performance-improving features, until recently only used in
processors for the high-performance domain, are increasingly
used in processors in domains like automotive [14]. Those
features include multicores, multi-level caches, complex on-
chip networks, and accelerators, among which GPUs have a
dominant position [4], [35], [27]. This transition from simple
micro-controllers to complex micro-processors is driven by the
unprecedented performance requirements of complex critical
software to support functionalities like autonomous driving in
automotive and more autonomous missions in space [6], [37].

Commercial Off-The-Shelf (COTS) processors in critical
domains have limited hardware support for time predictability.
This includes automotive processors and SoCs such as the
NVIDIA DrivePX (Parker and Xavier SoCs), RENESAS R-
Car H3, QUALCOMM SnapDragon 820, and Intel Go. Sim-
ilar concerns also arise on SoCs such as the Xilinx Zynq
UltraScale+, increasingly considered for avionics and railway
applications among others [38]. Trying to achieve full isolation
by software resorting for example to page (memory) colouring
techniques' has been shown insufficient since interference still
exists in shared queues and buffers [32]. Promising software
solutions for multicores build on event quota budgeting, mon-
itoring, and enforcement [29], [40], [34], [11] to establish and

!Colouring is a well-known technique to segregate accesses to the different
blocks of memory-like resources [17], like banks of the shared last-level on-
chip cache, the banks and ranks in a DDR memory system [26], [24], [33],
or even combined cache-memory segregation [16].

enforce budgets on task (core) ‘maximum shared resources
utilization’. The latter is measured with event monitors, e.g.
last-level cache misses are used to capture the task’s memory
utilization. The system software monitors task’s activities via
the hardware event monitors offered by processors PMUs and
suspends or slows down task’s execution when their assigned
budget is about to be exhausted.

Problem Statement. Existing software approaches and
solutions for quota (event) monitoring and enforcement, as
well as software debugging processes, build on the naive
assumption that event monitors and their documentation are
always correct. In fact, the trustworthiness of event monitors
in COTS processors has not been questioned yet in the
real-time research community, despite their critical role as
functional and non-functional verification means. The validity
of all quota-based software solutions cannot be sustained
without providing evidence of a correct functioning of the
event monitors, according to the specification available in the
official documentation. The lack of such supportive evidence
ultimately jeopardizes the timing arguments and potentially
invalidates the evidence gathered to successfully undergo the
mandatory timing V&V process, in accordance with safety
regulations.

Contribution. In this paper we take an initial step towards
reconciling PMU verification (often disregarded) with its crit-
ical role for timing analysis. Our contributions are as follows:
(1) Analysis of Event Monitor Correctness. We analyse sev-
eral event monitors present i) in the GPU of the NVIDIA
AGX Xavier and TX2 development boards, and ii) in the
CPU of the Xilinx UltraScale+ SoC, and we assess them
against their technical specification. Our goal is not to cover
all event monitors supported by those architectures, which
comprise several hundreds [15]. We aim, instead, at illustrating
that some event monitors might not behave as expected.
For specific code snippets, we show that some discrepancies
occur between observed event counts and the values that a
performance analyst would expect based on the event monitors
specification provided in the corresponding product manuals.
Such evidence supports our claim that OEMs/TIER/timing
analysis companies cannot blindly trust event monitors without
a preliminary validation.

(2) Monitor Validation Process. We describe the steps in a
manual validation process that helps to validate the event mon-

itors of COTS SoCs. We apply this process to a small subset
of monitors in 1) the NVIDIA Jetson AGX Xavier and TX2;
and ii) the Zynq UltraScale+ MPSoC. Those event monitors,
for which discrepancies are detected w.r.t. the expected values,
are put under quarantine and investigated. For some of them,
and as a result of the application of the process, we show that
discrepancies can be explained, hence regaining trust on the
correctness of the monitor.

(3) Assessment of an automatic validation process. We discuss
the difficulties of developing a systematic and automatic
process for event monitor validation. In contrast with other
verification activities (e.g., unit testing), the PMU validation
process cannot be easily automated because event counters
are extremely target-specific and their operation may differ
depending on the processor vendor and the specific hardware/-
software configuration. However, manual procedures are fre-
quent in verification and certification processes. This includes
all safety-related software in an automotive system that needs
to undergo a manual inspection process to be certified.

The rest of this paper is organized as follows: Section II
motivates the need for correct event monitors for timing
analysis, while Section III presents a methodological approach
to validate event monitors against their specification and dis-
cusses the difficulties of making this process fully automated.
Sections IV, V, and VI report on the application of the
proposed validation process to a selection of event monitors in
the NVIDIA Jetson AGX Xavier, the Xilinx Zynq Ultrascale+,
and the NVIDIA Jetson TX2 respectively. Section VII covers
the main related works and Section VIII concludes the paper
presenting the main take away messages.

II. THE NEED FOR RELIABLE EVENT MONITORING FOR
FUNCTIONAL SAFETY

In critical embedded domains, timing requirements are clas-
sified as non-functional software safety requirements. Safety
standards require to allocate adequate time budgets to each
software unit, so as to determine feasible task schedules
for the overall system. For road vehicles, ISO-26262 [25]
safety standard requires providing evidence of freedom from
interference or controlled interference. For avionics, support
document CAST-32A [20] explicitly calls for the identification
and bounding of interference channels. Existing approaches
propose to meet safety standard requirements by deriving
the worst-impact that a resource access can cause on the
other tasks’ accesses, and subsequently limiting the number of
accesses each task can perform without compromising other
tasks’ schedulability [29].

PMUs are an effective means to derive additional (and
complementary) information on the contention delay tasks
can suffer [11], [29], [12]. While PMUs may vary depending
on the different architecture and family of processors and
platforms, they generally offer the capability to track a large
number of events, typically in the extent of few hundreds or
even thousands, related to multiple aspects of execution: from
cache-hierarchy statistics to accesses over the interconnects, as
well as instruction counts for the different instruction types.

Instruction counts are fundamental to assess that the program
has been executed correctly. At type level, memory operations
such as loads and stores are needed to derive cache miss rates.
Likewise, uncacheable loads and stores allow to assess the
memory accesses of the program.

The fine-grained information that can be obtained from
hardware event monitors can be used to improve the under-
standing of the timing behaviour of an application [11], [12],
to enforce usage thresholds for shared components [29], and
to define a more accurate timing model of contention-prone
hardware resources [12]. Ultimately, these aspects concur with
the sought-after properties of freedom from interference in
1S026262 (and interference channels identification in CAST-
32A) to guarantee timing faults cannot propagate across soft-
ware elements with different criticality levels.

However, the following question arises: whether the in-
formation derived from event monitors in PMUs can be
trusted for supporting timing evidence for certification pur-
poses [13]. The critical role of PMU information clashes with
their intended purpose, as PMUs were originally devised as
a means to support low-level hardware debugging and to
provide rough outlines about the average behaviour of the
software running on top of it. In fact, PMUs have been
traditionally developed at the lowest-integrity levels (if any),
under quite relaxed V&V criteria, and are, thus, more error
prone than components intended for higher integrity levels.
Moreover, PMUs are generally accompanied with scarce and
inaccurate documentation. Therefore, PMU information cannot
be straightforwardly used as a cornerstone for the provision of
solid certification arguments on the timing behaviour. Instead,
PMU must undergo a rigorous validation process to guarantee
the information they provide can be trusted for timing V&V.

III. EVENT MONITOR VALIDATION METHODOLOGY

A methodological approach for event monitor validation
is required to use Performance Monitoring Counters (PMCs)
with confidence as part of MPSoC timing verification [29],
[40], [34], [11]. The sheer number of available events, their
differences in terms of operation and characteristics across
processor vendors (and even across models for the same
vendor), and the dependence on hardware and system software
configurations, makes it difficult to define a generic toolkit
for validation. What can be pragmatically done, instead, is
defining an overall methodological process that can be tailored,
building upon engineers expertise, to the specific event monitor
and platform configuration.

In the following we first present the steps that need to
be performed in order to validate the event monitors. We
then elaborate on why, despite some steps may benefit from
tool support, automating the whole process is not feasible in
practice.

A. Event Monitor Validation Process

Validating event monitors is a test (experiment) driven
process, in which each monitor is exercised while running
specific programs. The value read from the monitor is then

compared to an expected value to assess whether it can be
deemed as a trusted monitor (match or gap within acceptable
threshold) or not. The proposed process comprises several
steps (see Figure 1). An expert analyst is required to perform
(and tailored) some of the activities as some informed tailoring
is typically necessary.

Event Selection. Following the trend of processors in the
high-performance domain, the number of event monitors in
the latest processors in domains such as automotive is in the
order of hundreds. As an example, the Xavier SoC offers 273
monitors accessible from the profiler and the debugger. Hence,
an exhaustive validation of all event monitors can be too costly
in general. Instead, the analyst can discard those event moni-
tors that do no affect the timing/safety argumentation based on
requirements coming from the upper timing V&V, and hence,
do not require any validation. Also, in some architectures, the
hardware allows multiple configurations (a.k.a. platform usage
domain or PUD), which impact the event monitors to validate.
For instance, if a given resource is partitioned (segregated) it
might not be needed to track per-core/task access counts to
it. Note that, strictly speaking, this step, represented as (0)
in Figure 1, is not part of the monitor validation process,
which only focuses on the validation of the events provided
as input. We have added this preliminary step to the diagram
for completeness.

Experiment and representative benchmark (rbe) design.
From the description of the events in the processor manuals
or programmers’ guidelines and the understanding of the
processor architecture, the analyst designs one or several
baseline representative benchmarks or rbe (1. Those rbe must
have two key characteristics. First, the rbe needs to exercise
the event monitor. Second, the analyst can derive the expected
value of the event monitor for that rbe, which means that
the rbe must be simple enough to allow the analyst to place
enough confidence on the expected values. For a certification
argument, the completeness of the used rbe to exercise the
event monitor under validation must be justified.

Validation campaign. Empirical evidence is collected on
the target. The rbe is executed in controlled scenarios (2)
configured by the analysis on the target platform to reduce as
much as possible external sources of variability, e.g. operating
system. In each run, the PMU is configured to read the event
monitor under validation.

Acceptance criteria. Next the analyst compares the ex-
pected results and those captured with event monitors (3). In
case a discrepancy is detected, this can be due to either an
imprecise technical documentation of the event monitor in the
users’ manual, or an actual misbehavior in the counter logic.
Either the case, the counter cannot be used as-is for timing
V&V purposes and further investigation is required to under-
stand, and possibly resolve, the cause of the inconsistency. If
no discrepancy is detected in the tests carried out, the counter
is deemed as trustable (4) based on the tests performed.

Formulate hypotheses. For those counters whose measured
values do not match expected ones, the analyst formulates hy-
potheses (5) on the causes for the observed misbehaviour. This

Event Selection @

Determine the
events monitors to

Timing Analysis
Requirements
PUD configuration

validate

Validation process @ Hypotheses

Formulate hypotheses for
the correction of the
monitor

No

Criteria
Satisfied
2

Experiment Design

Validation Campaign

Design validation
experiment and
microbenchmark

Carry out
validation and
analyse results

0] ©)

Yes [Trusted event
monitor

O]

Abort
Untrusted
®

Fig. 1: Proposed validation process.

relates to understand the experiment, the architecture and the
expected results. For instance, by determining the magnitude
of the discrepancy and the expected values for other related
events, the analyst can formulate further hypotheses to be
verified. The process continues, going back to step 1, in which
the same or new rbe are used to accept/reject the hypotheses. In
case it is accepted, then the discrepancy between the observed
and the expected values is understood and can be corrected.
Instead, if it is rejected, time/effort allowing, new hypotheses
are formulated and the whole process starts over. If no further
hypotheses can be formulated and/or tested, the event monitor
is regarded as untrusted (6).

B. Systematic and Automated Validation

The apparently simple assessment process is inherently
platform specific and requires deep technical knowledge on
both the nominal behavior of the target hardware components
and the manifold platform and PMU configurations. Hardware
and software development have benefited from some form
of automated functional verification based on relatively high-
level models of both hardware and software. However, no
abstraction model is available for the verification of PMUs.
PMUs touch the lowest levels of hardware design and their
black-box verification can only be performed building on the
understanding and expertise of a hardware expert. In particular,
expertise is required in order to select the subset of relevant
event monitors to be empirically validated. Further it is not
possible to automatically generate the platform configuration
and verification snippets necessary to validate a given monitor
because both vary across ISA, platforms, models, and versions.

Having an expert supervising a verification or certification
process, however, is consolidated practice. Several aspects in
testing are delegated to the expertise of testing engineers,
especially for the verification of system-wide properties. Sev-
eral objectives in CAST-32A rely on the guidance of an
external assessment as, for example, the identification of
interference channels, the verification of inter-core data and
control coupling, or the implementation (and coverage) of the
safety net [20]. In some of these cases, there is not even a

metric or criteria (such as MCDC or branch for structural
coverage) to determine when testing can be deemed sufficient.

For increasingly complex hardware it is infeasible to test all
possible scenarios of whether implementation adheres to spec-
ifications (pre-silicon verification) and whether manufactured
chips carry any type of fault (post-silicon validation) [28]. As
a result, both tests and the expected outputs are generally
produced by the testing engineers, which need to verify
them. Analogously, safety-related software needs to undergo a
manual inspection process to verify its correcteness, with no
automation possible. Instead, well-detailed procedures are sta-
blished within each company to perform such tedious but crit-
ical task. For instance, in the case of the automotive domain,
such process is imposed for all criticality levels (from ASIL-A,
the lowest, to ASIL-D, the highest) in ISO26262 [25], where
the integrity level determines the structure of the group of
experts in charge of the process, i.e. how many people are
needed and what degree of independence is needed among
them to guarantee a reliable code inspection.

While automation is not possible, it is important to establish
well-defined procedures that allow performing the verification
processes exhaustively and reviewing them easily and avoiding
ambiguities and misunderstandings. In the particular case of
the reliability of event monitors, the focus of this work, we
propose a specific procedure that we apply in specific events
and platform examples. This procedure and its results, in the
form of evidence verifying what each event monitor counts
in practice, is the basis upon which OEMs/TIER/tool vendors
can build timing analysis methods and tools for complex SoCs
where timing guarantees build upon event quota budgeting,
monitoring, and enforcement [29], [40], [34], [11].

C. Automation Opportunities

Following the discussion in Section III-B, a question that
arises is whether some of the steps in the proposed method-
ological approach can benefit from some form of automation.

Regarding step (1), on experiment and rbe design, while
specific procedures can be set, we are not aware of any
technology that from the technical reference manual of a
processor and the event monitor to validate, can systematically
and automatically define a (set of) rbe(s) to validate it. Instead,
this task is to be done manually by a performance analyst,
i.e. following predefined procedures, as for design inspection
and walkthrough in functional safety verification processes.
Once rbe(s) are defined, tool support can be used to derive
the expected value for some of the event monitors for that
rbe. The analyst could also exploit a database of rbe(s) with
precomputed event monitor values, which can be obtained
through state-of-the-art simulators or assembly-code analyzers,
This of course implies that the used tools shall be qualified
to the appropriate criticality level according to the applicable
safety standards.

Step (@ is mostly procedural and can be in large part
automated building on an automated test framework.

In terms of acceptance criteria (3), similarly to step (D),
there is no systematic approach to determine which acceptance

criterion is correct to apply on each case. In fact, such criterion
is to be assessed by the expert analyst and properly described
and sustained in front of the certification authorities, building
upon repeatable protocols.

Likewise, in step (3 and once a deviation is detected
in the event counter, we are not aware of any solution to
automatically formulate hypotheses to explain the observed
behavior and design new experiments (and likely a rbe) to
assess them. Hence, it requires human intervention.

IV. NVIDIA JETSON AGX XAVIER

We assess our validation approach on a selection of event
monitors in the NVIDIA Jetson AGX Xavier. In particular we
focus on type-based instruction counts, a basic information
element used for several aspects of timing analysis. This
includes the following:

1) For quota monitoring, store counts is important when first
level data caches are write-through as each store causes
a transfer to the inter-core shared interconnection or the
next (second level) shared cache level.

2) Instruction counts for uncacheable loads and stores de-
termine how many times specific devices, subject to
contention, are used.

3) Instruction counts are also used for timing validation
as they allow assessing whether programs experience
preemption by comparing instruction counts between runs
on bare metal and on top of the analysed RTOS.

The first column in Table I describes the particular event
monitors to validate, while the second column provides
the description in the official GPU provider documenta-
tion. To obtain this information we used the NVPROF
tool [2] from CUDA 10.0 version toolkit as follows: nvprof
-—-query-events --query-metrics. As it can be
seen, each event monitor counts certain instruction types.
The particular operation codes under each instruction type
are provided in a different document [30]. Column three
lists the subset of opcodes under each instruction type on
which we focus (extending this to other opcodes is an en-
gineering work following the same EVMP approach). For
instance, inst_integer captures the following opcodes:
BMSK, BREV, FLO, IABS, IADD, IADD3, IADD32I, IDP,
IDP4A, IMAD, IMMA, IMNMX, IMUL, IMUL32I, ISCADD,
ISCADD32I, ISETP, LEA, LOP, LOP3, LOP321I, POPC,
SHF, SHL, SHR, VABSDIFF, VABSDIFF4. From those we
focus on those boldfaced as they are the only ones that appear
in our tests. Interestingly, there is not event counter to track
MOV and SHFL instructions.

A. Experiment and rbe Design

We build on a matrix copy program on which we can derive
the number of instructions expected of each type. Figure 2
(top) shows the C code with CUDA calls of the program, and
the corresponding GPU assembly (SASS) code produced for
this specific GPU, by using cuobjdump (bottom).

Instructions 1 and 2 in the SASS code comprise the kernel’s
prologue, performing the kernel initialization. Instructions 3 to

TABLE I: Instruction types used in this analysis for the NVIDIA Jetson AGX Xavier GPU.

Event [2] Official Description [2] Opcodes counted [30]
inst_integer Number of integer instructions executed by non-predicated threads IMAD, IADD3, SHF, LOP3,
ISETP
inst_fp_32 No. of single-precision fp instructions executed by non-predicated threads (arithmetic, FSETP, FMUL, FADD,
compare, etc.) FSEL
inst_compute_ld_st Number of compute load/store instructions executed by non-predicated threads LDS, LDG, STS, STG
inst_control Number of control-flow instructions executed by non-predicated threads (jump, branch, BRA, EXIT
etc.)
inst_bit_convert Number of bit-conversion instructions executed by non-predicated threads 12F
no event Instructions that move data across registers MOV, SHFL
inst_misc Number of miscellaneous instructions executed by non-predicated threads NOP, S2R, BAR
not_pred_off_thread_inst_exec Number of thread instructions executed that are not predicated off Total

3| void copy(int N,

#include <stdio.h>
__global

v (float xd_x, float *d_y){
if (d_x[0]1<0){
int x = blockDim.x*blockIdx.x + threadIdx.x;

int y = blockDim.yxblockldx.y + threadldx.y;

d_y[Nxy + x]=d_x[Nxy + x];
3}
int main(void){
int N = 1024;
float =x, =y, *d_x, *d_y;

x = (float=*)malloc (N*Nxsizeof (float));
y = (float=*)malloc (NxNxsizeof (float));
dim3 grid (32,32);
dim3 block (N/32,N/32);
cudaMalloc(&d_x, N«Nxsizeof (float));
cudaMalloc(&d_y, N«Nxsizeof (float));
for(int i=0; i<N«N; i++){

x[i1]=42.0f;

cudaMemcpy (d_x ,x ,N«Nxsizeof (float),cudaMemcpyHostToDevice)

copy<<<grid ,block>>>N,d_x ,d_y):
cudaMemcpy (y,d_y ,N«N=xsizeof (float),cudaMemcpyDeviceToHost)

cudaFree(d_x);
cudaFree(d_y);

free (x);
free(y);
}
/%0000«/ MOV R1, c[0x0][0x28];
/*0010«/ @!PT SHFL.IDX PT, RZ, RZ, RZ, RZ;
/%0020 %/ S2R RO, SR_CTAID.X;
/+%0030+/ S2R R2, SR_TID.X;
/%0040 «/ S2R R3, SR_CTAID.Y;
/%0050«/ S2R R4, SR_TID.Y;
/%0060 «/ MOV R5, 0x4;
/%0070 +/ IMAD RO, RO, c[0x0][0x0], R2;
/+%0080+/ IMAD R2, R3, c[0x0][0x4], R4;
/%0090 «/ IMAD RO, R2, c[0x0][0x160], RO;
/%0020 «/ IMAD.WIDE R2, RO,R5,c[0x0][0x16817;
2| /%00b0x/ LDG.E.SYS R2, [R2];
3| /%00c0*/ IMAD.WIDE R4, RO,R5,c[0x0][0x170];
/+%00d0+/ STG.E.SYS [R4], R2;
/%00e0 %/ EXIT;
/%x00f0 %/ BRA 0xf0;

Fig. 2: CUDA/SASS code of matrix copy.

6 load to registers the thread and block identifiers which are
used in the right hand side of the CUDA source code in lines
5 and 6. Instructions 7 to 9 in the SASS code compute the
thread access positions stored in the variables in the left hand
side of source code lines 5 and 6. Instruction 10 calculates the
index within the brackets of source code line 7. Instructions
11 and 13 calculate the memory address for arrays d_x and
d_y respectively. Instruction 12 performs the load access from

TABLE II: Measured/Expected values for matrix copy

Event Expected Measured Discrepancy
(1) ‘DMOV’ 3,145,728 0 -3,145,728
(2) inst_misc 4,194,304 6,291,456 2,097,152
(3) inst_integer 5,242,880 5,242,880 0
(4) inst_compute_ld_st 2,097,152 2,097,152 0
(5) inst_control 2,097,152 1,048,576 -1,048,576
(6) Total 16,777,216 14,680,064 -2,097,152

d_x while instruction 14 carries out the store access to d_y.
Finally, instruction 15 terminates the kernel.

As shown in the kernel invocation in line 23 of the source
code, the kernel is launched with 1024x1024 threads. Each
instruction is executed by all threads, which allows us to
compute the number of expected instructions for each type
of instruction, in order to validate it with the measurements of
those instructions obtained with performance counters in the
next step. Therefore, we expect the SASS code on the right
to be executed 1,048,576 times, thus leading to 16,777,216
(16-229) instructions. Those instructions are broken down into
3220 data movement (MOV and SHFL), 4 - 22° miscellaneous
(S2R), 5 - 2?9 integer (IMAD), 2 - 220 load/store (LDG and
STG), and 1 - 220 control flow (EXIT and BRA). Note that
EXIT acts as a safeguard following the kernel termination.

B. First Validation Step

From the collected values we have detected several dis-
crepancies in comparison to the expected values, as shown
in Table II. For each instruction type we report the number of
instructions expected based on our analysis of the SASS code,
those counted with the event monitors, and the discrepancies.
Note that we exclude those types for which we both expect and
count zero instructions. We extract the following conclusions:
(1) Data movement instructions, as expected, are not counted
at all since there is no specific event to count them.

(2) Surprisingly, the number of miscellaneous instructions
measured is higher than that in the SASS code. In particular,
there are 4 S2R in the SASS code executed ~ 1 million times
each (1,048,576 threads), so we would expect ~ 4 million
MISC instructions counted. However, inst_misc reports
=~ 6 million MISC instructions, as if there were 2 additional
MISC instructions per thread in the SASS code.

(3), (4) Integer and loads/stores are counted properly.

(5) The total number of instructions measured matches the
addition of the individual types counted. However, this number
is different from the total number of expected instructions.

g /%0000 %/ MOV R1, c[0x0][0x28];
8 /*0010+/ @!PT SHFL.IDX PT, RZ, RZ, R%, RZ;
o — /*0020%/ FSETP.LT.AND PO, PT, RZ, c[0x0][0x160], PT;
& /+0030 4/ MOV RO, RZ;
/+0040+/,@! PO BRA 0x13
w /#0050 % IMAD.MOV.U32 R2, RZ, RZ, c¢[0x0][0x160];
29 /#0060 4/ MOV RO, RZ;
o g._ IMAD.MOV.U32 R3, RZ, RZ, R%Z;
/%008 */ FMUL R2, R2, ¢[0x0][0x160];
/#0040 + 4@ PT SHFL.IDX PT, RZ, RZ, RZ, RZ;
[+ 00 IADD3 R4, R3.reuse, 0Oxl, RZ;
> /*0fb FADD RO, RO, ¢[0x0][0x160];
B /+ 0 cOfs/ LOP3.LUT R3, R3, 0xl, RZ, Oxc0, !PT;
= «(odol , R4;
8 — 1 2.AND PO, PT, R3, Ox1, PT;
= *0Q £0
FSEL RO, RO, R2, PO;
*01 1N/ FSETP.GEU.AND P1, PT, R5, c[0x0][0x160], PT ;
/#0120 @!P1 BRA 0x90;
/#0130 4 S2R R6, SR_TID.X;
/+0140+/ S2R R3, SR_CTAID.X;
/*0150%/ MOV R7, 0x4;
/+0160+/ IMAD R6, R3, c[0x0][0x0], R6;
[+0170+/ IMAD.WIDE R4, R6.reuse, R7.reuse, c[0x0][0x170];
/*0180%/ IMAD.WIDE R2, R6. R7, c[0x0][0x168];
/#0190 %/ LDG.E.SYS R4, [R4];
/+01a0%/ LDG.E.SYS R2, [R2];
o /*01b0*/ IMAD.WIDE R6, R6, R7, c[0x0][0x178];
Q /*01cOx/ FADD R9, R4, R2;
2] /+01d0+/ FADD RO, RO, R9;
3 /*01e0x/ STG.E.SYS [R6]. RO;
o /*01f0%/ EXIT;
/#0200 / BRA 0x200;
/%0210%/ NOP;
/*0220 4/ NOP;
/*0230%/ NOP;
/%0240 %/ NOP;
/#0250 / NOP;
/#0260%/ NOP;
/*0270%/ NOP;
Fig. 3: SASS code of the combined example.
Hence, we need to further analyse the event
counters inst_misc, ‘DMOV’, and Total. On the
contrary, for inst_integer, inst_control and

inst_compute_1d_st, since the counts we observe for
both experiments in Figure 2 and Figures 3 — explained later
— are precise, we consider them reliable.

First set of Hypotheses. From these results, we formulate
the following hypotheses. The inst_misc monitor counts
two instructions beyond those appearing in the SASS code and
regarded as MISC according to NVIDIA’s documentation [30].
We hypothesize that other instructions are counted as MISC:

o Hypothesis la. Either those other instructions correspond
to a different category, but are counted as MISC.

o Hypothesis 1b. Or they are instructions not shown in the
SASS code. After reviewing the semantics of the program
in the SASS code, we verify that addresses are properly
computed, data read from the source matrix and written
in the destination matrix. Thus, we cannot attribute any
specific operation to the potentially hidden instructions
(e.g. they could be NOP instructions).

C. Second Validation Step

In order to test the hypotheses above, we have performed
a number of individual experiments. Each of them aims at
varying the instruction counts for the different instruction types
whose counters report discrepancies w.r.t. the expected values.
By doing so and comparing the expected number of instruc-
tions for those instruction types against actual event counts,
we expect to discern which of the formulated hypotheses is the
right one in each case and, if all of them are rejected, obtain
additional information to raise new informed hypotheses. For
simplicity and due to space constraints, we have merged all ex-
periments into a single one. The combined experiment contains
a loop within which we can vary the number of iterations and

E1S2R+NOP
BS2R+MOV

HEMeasured ES2R+NOP+MOV

N N
o

[

=
o

Events per Thread
=

0 1 2 1
Loop Iterations
Fig. 4: MISC inst. counted and expected (example in Fig. 3).

hence, the number of executed instructions of each type. The
SASS code of this example is shown in Figure 3. Hexadecimal
numbers on the left show the instruction address. Arrows
indicate the direction of the conditional branches, which in fact
are predicated unconditional branches. Predicates are shown
as @!PT, @!P0O and @!P1. The program starts by executing
instructions 10h-30h. When the loop is executed at least once,
BRA at 40h is not taken and the rest of the execution continues
until the BRA in 120h. That branch is taken for each additional
iteration, thus looping in instructions 90h-120h. Whenever
it is not taken, instructions from 130h until the end of the
program are executed. Therefore, instructions 10h-40h and
130h-1FOh are executed exactly once. Instructions 50h-80h
are executed exactly once as long as the loop iterates at least
once. Instructions 90h-120h are executed as many times as the
loop is intended to execute. Note that, in theory, instructions
200h-270h should not be executed since the EXIT instruction
at address 1FOh should terminate the kernel execution. Why
those instructions are part of the SASS code is not documented
by NVIDIA and, in any case, they should not have any
functional effect.

TABLE III: Instruction types in Figure 3.

Event Exp. Meas. Exp. Meas. Exp. Meas.
0 iter O iter 1 iter 1 iter 10 iter 10 iter
‘DMOV’ 4,096 0 6,144 0 15,360 0
inst_misc 9,216 5,120 9,216 7,168 9216 16,384
inst_integer 4,096 4,096 9,216 9,216 36,864 36,864
inst_fp_32 3,072 3,072 7,168 7,168 34,816 34,816
inst_compute_Id_st 3,072 3,072 3,072 3,072 3,072 3,072
inst_control 3,072 2,048 2,048 1,024 11,264 10,240
inst_bit_convert 0 0 1,024 1,024 10,240 10,240
Total 26,624 17,408 37,888 28,672 120,832 111,616
For runs with 0, 1, 2 and 10 iterations, table III
shows that inst_fp_32, inst_control,
inst_compute_1d_st, inst_integer and
inst_bit_convert event counters match exactly

the number of instructions executed. For instance, in the case
of 1 loop iteration, where all instructions in the SASS code
are executed exactly once, one would expect 9 INT, 7 FP32,
3 LDST and 1 CONV instructions (see Table I) for each of
the 1,024 threads, which matches exactly the corresponding
event counters. Also for inst_control, when the number
of iterations is 0, the BRA at 40h is taken, and then only the
EXIT instruction at the end is executed (the BRA at 200h is

never executed). When the number of iterations is N, N > 0, |
then the BRA at 40h is not taken, the BRA at 120h is taken >
N — 1 times and not-taken once, the EXIT and the BRA at
the end are executed also once. Overall, we expect N + 1
(BRA+EXIT) instructions.

Assessing hypotheses 1a and 1b. In order to determine °
the source of the unexpected MISC instructions, we build i
upon the example in Figure 3. In particular, consider the case
with 1 loop iteration for simplicity, so that all instructions are
executed exactly once. The event counter indicates that there is
are 7 MISC instructions per thread. In the SASS code, we can
identify 2 S2R and 7 NOP instructions. Thus, differently to the "°
previous example, where we were expecting more events than -,
the ones provided by the event monitor, this time the monitor is ’
undercounting. In order to have additional information, we also
include the result of executing the loop 10 times, where we still
would expect 9 MISC instructions per thread, since S2R and
NOP instructions are outside the loop, but the MISC counter *
then counts 16 instructions. Thus, by having 9 additional
iterations, the counter increases by 9. This behaviour also °

18

holds for other numbers of loop iterations. We conclude that: ¢

(1) Exactly one instruction in the loop (90h-120h) is counted
as MISC. If we discard all INT, FP32 and CONV instructions .
in the loop, which we regarded as precisely counted by their
corresponding event counters, we get only a MOV instruction.
Thus, we consider that MOV instructions are counted as MISC.

14

(2) We revisit the example of the matrix copy in Figure 2,
where we have exactly 4 S2R and 2 MOV instructions per
thread. If we analyse the MISC counter in that case, which
overcounted 2 instructions per thread, we realize it is fully
precise if we include MOV instructions. Therefore, we conclude
that both, S2R and MOV instructions are counted as MISC.

(3) We compare MISC measured against theoretical MISC
(S2R+NOP), MISC and MOV (S2R+NOP+MOV), and only
S2R+MOV, see Figure 4.

Overall, we conclude that although MOV instructions are
classified as data movement instructions in [30], they are effec-
tively counted as MISC instructions. Instead, NOP instructions,
classified as MISC, are not counted. However, all those NOP
instructions are exactly after the last BRA instruction, thus
not executed in practice. Hence, it remains unknown whether
MISC counts executed NOP instructions or it never counts
them.

Observation 1: inst_misc counts S2R and MOV and it re-
mains unknown whether it counts executed NOP instructions.

Second set of Hypotheses. We formulate two hypotheses,
as consequence of the investigation of hypotheses la and 1b;

e Hypothesis 2a. MISC does not count NOPs, which
matches the fact that, so far, those NOPs found in the
SASS code have not been counted in any experiment.

o Hypothesis 2b. MISC counts NOP instructions only if ef-
fectively executed, which would be in line with NVIDIA
documentation [30] for executed NOPs.

/%0000 +/ MOV RI, 1| /%0000%/ MOV R1,
c[0x0][0x281]; 2 c[0x0][0x28];
3| /x0010*/ @!PT SHFL.IDX PT, 3| /%0010%/ @!PT SHFL.IDX PT,
RZ, RZ, RZ, RZ; 4 RZ, RZ, RZ,RZ;
5/ /0020 %/ S2R R4,SR_CTAID.X; 5| /%0020=«/ S2R R4,SR_CTAID.X;
5| /%0030%/ S2R R2,SR_TID .X; 6| /%*0030%/ S2R R2,SR_TID .X;
/%0040 %/ MOV R5, 0x4; /%0040 %/ MOV R5, 0x4;
/%0050 %/ NOP; s| /%0050 %/ NOP;
/%0060 «/ IMAD R4, R4, 9| /%0060 «/ NOP;
c[0x0][0x0],R2; 10| /%0070 %/ NOP;
/%0070 «/ IMAD.WIDE R2, R4, 11| /«0080+/ IMAD R4, R4,
R5, c[0x0][0x168]; 12 c[0x0][0x0],R2;
/+0080x/ LDG.E.SYS R2, 13| /%0090 %/ IMAD.WIDE R2, R4,

[R21]; 14 R5, c[0x0][0x168];
5| /%0090«/ IMAD.WIDE R4, R4, 15| /+«00a0=/ LDG.E.SYS R2,
RS, c[0x0][0x170]; 16 [R2];
/+%00a0+/ STG.E.SYS [R4],R2; 17| /x00b0*/ IMAD.WIDE R4, R4,
/%00b0 %/ EXIT; 18 R5, c[0x0][0x170];
/%00c0=+/ BRA 0xc0; 19] /%00c0*/ STG.E.SYS [R4],R2;
/+00d0x/ NOP; 20| /%00d0*/ EXIT;
/%00e0*/ NOP; 21| /%x00e0%/ BRA 0xe0;
21 /%x00f0 «x/ NOP; 2| /%*00f0 *x/ NOP;

Fig. 5: SASS code of two examples with NOP instructions.

/%0000 */ MOV R1, c[0x0][0x28];
/%0010+/ @!PT SHFL.IDX PT, RZ, RZ, RZ, RZ;
/%0020 x/ S2R R6, SR_CTAID.X;
/%0030 x/ S2R RO, SR_TID.X;
/%0040 x/ MOV R7, 0x4;
/%0050 %/ IMAD R6, R6, c[0x0][0x0], RO;
/%0060 x/ IMAD.WIDE R2,R6.reuse ,R7.reuse ,c[0x0][0x168];
/%0070 %/ IMAD.WIDE R4, R6, R7, c[0x0][0x170];
/%0080 %/ LDG.E.SYS R2, [R2];
/%0090 x/ LDG.E.SYS R4, [R4];
/%00a0 x/ IMAD.WIDE R6, R6, R7, c[0x0][0x178];
/% 00b0 */ FADD RO, R2, R4;
/%00c0 =/ STG.E.SYS [R6], RO;
/+00d0 =/ EXIT;
/%00e0 x/ BRA 0xe0;
5| /%000 =/ NOP;

Fig. 6: SASS code for the vector addition in Global Mem.

D. Third Validation Step

Assessing hypotheses 2a and 2b. To assess whether
NOP instructions before the final BRA are counted under
inst_misc, we have performed several experiments but, for
the sake of space limitations, we present the simplest ones
solving the unknown. In particular, we manipulated the source
code of the example to enforce the use of NOP instructions,
which do not have any functional impact.

As shown in Figure 5, the SASS code of these programs
includes NOP instructions before and after the final BRA
instruction. According to the observations before, MISC must
be at least 4 per thread. In particular, MISC must count the
2 S2R and the 2 MOV instructions, and exclude the NOP(s)
after the final BRA. If NOP instructions before the final BRA
were not counted, we would obtain in both cases that MISC is
exactly 4. However, in the example in the left figure MISC is
5, whereas in the right figure MISC is 7, thus including those
1 and 3 NOPs before the final BRA respectively.

TABLE IV: Event counts for the vector addition benchmarks.

Event Gmem Smem VSmem Smem Smem
0 sync 0 sync 1sync 2 sync

inst_misc 4,096 4,096 4,096 5,120 6,144
inst_integer 4,096 5,120 5,120 5,120 5,120
inst_fp_32 1,024 1,024 1,024 1,024 1,024
inst_compute_ld_st 3,072 6,144 9,216 8,192 9,216
inst_control 1,024 1,024 1,024 1,024 1,024
Total 13,312 17,408 20,480 20,480 22,528

Observation 2: inst_misc also counts NOP instructions
if executed (thus excluding those after the final BRA).

E. Assessment on Complex Code

In order to further assess our findings, we have evaluated
several benchmarks, as well as kernels extracted from the
Rodinia benchmark suite [18], [19], a widely used benchmark
suite for GPUs. In this paper, we report the results we obtained
on benchmarks, which suffices for illustrative purposes. In
particular, we analyse a vector addition benchmark whose
SASS code has no loops and the only predicated instruction
is a DMOV instruction (hence not counted). In Figure 6 we
analyse the global memory (GMEM) incarnations of that same
benchmark, the other variants (shared memory (Smem) with
variable synchronization (sync) points) are not listed due to
space constraints.

Event counts are shown in Table IV, with each benchmark
executing 1,024 threads. Hence, instructions per thread can
be matched by dividing by 1,024 the values in the table.
For instance, MISC instructions count 2 MOV and 2 S2R
instructions in all cases, plus 1 and 2 BAR instructions in the
two last cases respectively.

In all experiments, the observations we made as part of the
application our process hold, hence, event monitor reads match
in all cases the (new) expected values:

(i) inst_misc includes MOV instructions as well as MISC
instructions (excluding NOPs after the final BRA);

(il) inst_integer, inst_control, inst_fp_32,
inst_bit_convert, and inst_compute_1ld_st,
count their expected instruction types precisely;

(iii) And total instructions match the addition of the other
counters.

Overall, the large set of tests conducted for the validation
of the event monitors of the Xavier, the most relevant subset
of which is presented in this paper, reveals that a methodology
like the one we propose is a prerequisite for a reliable use of
the even monitors of GPUs in the timing V&V process.

V. XILINX ZYNQ ULTRASCALE+

We also applied our approach to another architecture from
a different vendor, the Xilinx Zynq UltraScale+, and in par-
ticular to the CPUs in the Application Processor Unit cluster.
The ARM Cortex-A53 CPUs [1] contains more than 63 events
from which we focus on a subset, selecting again the number
of instructions executed, as well as the number of memory
related events. A notable difference between this platform
and the Xavier is the lack of event counters breaking down
the arithmetic instruction categories. Instead, there are only
PMCs about memory operations, branches and total instruc-
tions. On the other hand, more events are provided regarding
the microarchitectural events taking place. It is important to
note that according to the ARM Cortex-A53 CPU technical
reference manual [1] and the ARMv8-A architecture reference
manual [3], the event values are not expected to be completely
accurate, and that the microarchitectural implementation may
introduce small absolute variations in the actual number of

the events reported due to pipeline effects. For this reason, we
perform our validation in rough numbers, reporting only big
discrepancies whenever found.

A. Controlled Experiment

Table V lists the selected PMCs for validation. For the
validation experiment, we use a bare-metal configuration in
order to guarantee no interference from the operating system,
something that was not possible in the Xavier, since the use of
the GPU can only be supported by a driver within the operating
system. As rbe we selected the same application presented in
the previous section and used in the validation of the NVIDIA
platform, matrix copy, which we compile with the ARM gcc
compiler. For the PMC readings we directly read their values
from their memory mapped locations. We disable the hardware
prefetcher in to force a more predictable behaviour.

In Figure 7 we show the C code implementing the bench-
mark, followed by its assembly form. The memory instructions
which are of our interest are shown in bold, and load opera-
tions are shown in italics to ease load and store identification.
In the assembly code we notice again different code sections.
The main loop of the benchmark is between the lines 4-24.

Load instructions in lines 5, 11, 16 and 21, and the store
instruction in line 19 serve the purpose of loading or updating
the loop index, which is located in a fixed memory location
so the instructions will cause 5 cache hits (4 load hits, 1 store
hit) per iteration.

The load instruction in line 9 loads the data from the
source array (from|[]), which may cause cache misses when
crossing cache line boundaries, and the store instruction in
line 14 stores the value loaded from the source array into the
destination array (to[]), which may also cause cache misses
when crossing cache line boundaries.

Lines 20-24 perform the out of boundaries check to deter-
mine if more iterations are needed or the algorithm has ended.
Knowing the number of total iterations and the assembly
representation, we are able to tightly estimate the number
of expected instructions and events for each of the selected
PMCs.

B. Assessment

Table VI shows the obtained values from the PMCs, together
with their expected values. As a first validation step, we
validate the accuracy of the instructions that we know. We
perform 512K iterations in which we access 5 loads and 2 store
instructions. The number of load and stores are as expected
(rows C and D). Likewise the number of L1 cache accesses
and total memory operations match their expected value (rows
B and F). The number of total instructions within the loop is
21, resulting in a total of 10.5M instructions executed (row
E).

The total memory footprint of the application is 4MB, as
it copies a 2MB array into a new location. Since no data is
reused, every read and write accessing a new cache line of data
and L2 caches is expected to generate a cache miss, whereas
the remaining accesses to those cache lines are expected to

TABLE V: Instruction types used in the analysis for the Xilinx Ultrascale+ ARM Cortex-A53 CPUs [1].

Event Official Description Instruction Types counted [3]
L1D_CACHE_REFILL Level 1 data cache refill Loads and stores missing L1
L1D_CACHE Level 1 data cache access Loads and stores
LD_RETIRED Instruction architecturally executed, Condition code check pass, Loads

load
ST_RETIRED Instruction architecturally executed, Condition code check pass, Stores

store

INST_RETIRED Instruction architecturally executed

All instructions

MEM_ACCESSES Data memory access

Loads and stores

L2D_CACHE Level 2 data cache access Loads, stores and instructions missing L1 caches
L2D_CACHE_REFILL Level 2 data cache refill Loads, stores and instructions missing L2
BUS_ACCESS Bus access Bus acccesses from loads and stores missing the last level

cache

#define SIZE 2%1024%1024/sizeof (int) /% 512K/
int from[SIZE], to[SIZE];
for (int i = 0; i < SIZE; i++) {
to[i] = from[i];
/%3358 %/ add x0, x29, #0x400, 1sl #12
2| /%335¢*/ str wzr, [x0,#24]
3| /%3360 %/ b 33a4 <main+0xd4>
/%3364 %/ add x0, x29, #0x400, 1sl
/%3368 %/ ldrsw x0, [x0,#24]
/%336¢ % Isl x0, x0, #2
/%3370 4/ add x1, x29, #0x200, 1sl
/% 3374f«/ add x1, x1, #0x18
/% 337§ =/ ldr w2, [x1,x0]
/% 337c x/ add x0, x29, #0x400, Isl
/%33 ldrsw x0, [x0,#24]
/%33 Isl x0, x0, #2
/%33 add x1, x29, #0x18
/%33 str w2, [x1,x0]
/%33 add x0, x29, #0x400, 1sl #12
/%33 ldr w0, [x0,#24]
/%33 add w0, w0, #0x1
/%339% x/ add x1, x29, #0x400, 1sl #12
/%33 a0\«/ str w0, [x1,#24]
/*33a4 X/ add x0, x29, #0x400, 1sl #12
/x33a8 x ldr wl, [x0,#24]
/+33ac*/ mov w0, #O0x7ffff //#524287
/%33b0 =/ cmp wl, w0
/*%33b4 x/ b.ls 3364 <main+0x94>
/%33b8 %/ adrp x0, 1e000 <__exidx_end>
/%33bc*/ add x0, x0, #0x3c0
/%33¢0x/ ldr w2, [x0]
/%33cd*/ adrp x0, 14000 <zeroes.5791+0x1c0>
/%33c8 %/ add x0, x0, #0x450
/*33cc*/ ldr x0, [x0]
/%33d0 =/ mov xl, x0
/%33d4 =/ mov w0, w2

Fig. 7: C/ARM Assembly code of matrix copy in the Zyngq.

TABLE VI: Measured/Expected values for matrix copy

Event Expected Measured Discrepancy
(A) L1D_CACHE_REFILL 64K 65566 0
(B) L1D_CACHE 35M 3670319 0
(C) LD_RETIRED 25M 2621612 0
(D) ST_RETIRED IM 1048626 0
(E) INST_RETIRED 10.5M 11010313 0
(F) MEM_ACCESSES 35M 3670057 0
(G) L2D_CACHE 64K 130772 64K
(H) L2D_CACHE_REFILL 64K 65559 0
(I) BUS_ACCESS 352K 360309 0

hit due to spatial locality. Given that our application has a
sequential access pattern, that the cache line size is 64B in
both the data and L2 caches, and that the data type used by

the application is 4B, we expect that both, source loads and
destination store instructions produce 1 miss followed by 15
hits for each cache line. Therefore, we expect 32K read misses
and 32K write misses out of a total of 512K accesses of each
type. Note that only a load and a store instruction may miss the
caches each iteration, as explained in section V-A. Note that
the code is small enough to fit in the instruction cache after the
first loop iteration. Thus, instructions should cause few (below
10) L2 cache misses, so L2 misses roughly correspond to data
misses only. The measured misses in each cache are 64K as
expected (rows A and H).

The bus access counter (row I) counts the number of bus
transactions issued, which are caused by L2 load misses, 1.2
store misses, or L2 dirty evictions. A total of 32K load misses
and 32K store misses are expected, while only 24K dirty
evictions are expected, as 512KB -a fourth- of the data stored
will still remain in the L2 when the execution finishes. The
total amount of lines issued by the L2 to the bus is 88K,
however the bus width is 16B [1], so each line is split in 4
transactions, causing a total of 352K bus accesses. As shown
in row I this counter is precise.

Finally, L2 accesses (row G) should be either counting the
32K load misses and 32K store misses (so 64K accesses), or
include also the almost 32K dirty evictions (so 96K accesses).
However, it counts 128K accesses. According to the ARM
Cortex-A53 CPU technical reference manual [1], L1 load
misses sent to L2 are served through a 16B bus, whereas write
operations use a 32B bus. We have leveraged this information
to guess whether they influenced the number of L2 accesses
counted, but no reasonable combination led to 128K accesses.
In fact, we have conducted additional experiments (e.g. only
read misses) and in all cases the number of L2 accesses has
doubled the number of L1 data cache misses. However, we
could not formulate any reasonable hypothesis to justify this
behavior. In fact, our past work on ARM-based platforms
already revealed mismatches between event counters obtained
and values expected [21].

Observation 3: In the absence of any evidence on the
existence of additional L2 cache access activity, we regard
L2D_CACHE as unreliable for timing validation purposes.

TABLE VII: Instruction types for TX2.

Event Expected Measured Discrepancy
DMOV 1,048,576 0 -1,048,576
MISC 4,194,304 5,242,880 1,048,576
INT 15,728,640 15,728,640 0
LDST 2,097,152 2,097,152 0
CTRL 2,097,152 1,048,576 -1,048,576
Total 25,165,824 24,117,248 -1,048,576

VI. NVIDIA JETSON TX2

For the Jetson TX2 GPU, we build our study incrementally
over the one for Xavier using the same control experiments and
event counts, since both GPUs are instantiations of the very
similar NVIDIA’s Pascal and Volta GPU families respectively,
which however differ in their SASS representation since they
implement different GPU ISAs. Whereas the Pascal family
included the XMAD integer instruction (integer short multiply
and add) and the IMAD integer instruction (integer multiply
and add), and so TX2 may use these instructions, Volta family,
instead, only includes the IMAD instruction.

The code of the vector addition with global/shared memory
and varying number of synchronization barriers is not shown
for the TX2 for space constraints.

In the Pascal architecture used by the TX2, the kernel
prologue is only one instruction. Similar to the Volta case,
the next four instructions obtain the thread identifiers, but the
actual index computation is completely different and longer.
Then, the indexed array load performed in the lines 17-19
and store in the 20-22 look very similar. The kernel epilogue
also contains an EXIT followed by a safeguard branch as we
discovered in the previous section.

Table VII shows the expected counter results without taking
into account the findings from our experiments with the Xavier
SoC. We can see that there is also a discrepancy between
the measurements and the expected values. However, if we
apply our observations from Xavier these discrepancies can
be explained. In particular, MOV instructions are also counted
as MISC instructions in the TX2, and the final BRA instruction
following the EXIT is not executed.

VII. RELATED WORK

In the CPU domain, we can find a handful of prior works
that build on performance counters for software timing es-
timation. Paulisch et al. [29] build on performance counter
events to create an analysis and runtime monitoring solution
for limiting task contention in multicore CPU architectures.
In [12] an ILP-based contention model is proposed for the
AURIX automotive microcontroller building on the perfor-
mance counters available on that platform. In [23] authors
use performance counters in the CPU of multicore sys-
tems for WCET estimation using probabilistic measurement-
based timing analysis. [22] also used performance counters
for WCET estimation of CPU tasks on multicore systems
proposing a method to select the performance counter with
highest contribution and a forecast model to predict execution
time under unseen configurations. Authors in [41], [36] study
the variability caused due to non-deterministic performance
counter implementations in CPUs, without analyzing whether

10

values are as expected, which is instead the target of our work.
Nevertheless, in these works, authors observe non-null but
relatively low variability across measurements.

Several works [5], [31] have focused on automotive plat-
forms featuring GPUs such as NVIDIA’s TX1 and TX2.
Some of them have discovered undocumented features of those
hardware platforms like the scheduling policy [5] or exposed
mismatches in the software documentation regarding blocking
or asynchronous behaviour of CUDA API calls [39]. However,
none of these works studies event monitors, whose behaviour
and documentation mismatches we expose in this work. To our
knowledge, there is no other work in the real-time literature
which considers GPU performance counters.

In addition, [31], [10] present benchmarking and platform
characterization studies of automotive platforms. Regarding
timing modelling of GPUs, in the literature we can find the
seminal works [9], [7], [8]. The first two papers build on a
simulated GPU for WCET estimation, while our work uses a
real GPU for event monitor validation. On the other hand, [8]
relies on end-to-end measurements on a real-GPU platform
for WCET estimation and timing analysis, not validation of
performance counters.

VIII. CONCLUSIONS

The increasing need for the adoption of high-performance
hardware to execute performance-demanding critical real-time
software poses stringent V&V constraints on those systems.
In particular, a number of activities, such as quota monitoring
and software debugging, need to build upon event monitors
for efficiency reasons. Trustworthiness of event monitors is a
precondition for the reliability of the critical V&V processes
built atop. Following the proposed methodology to validate the
event monitors via the analysis of GPUs for the automotive
domain (NVIDIA Xavier and TX2) and multicores for the
railway and avionics domains (Xilinx Zynq UltraScale+), we
show that even some of the most basic event counters may
fail to match specifications. Our methodology allows, in many
cases, discern what they count, which is the basis to build reli-
able processes for critical real-time systems atop. In particular,
by performing specific empirical tests, we are able to accept or
reject plausible hypotheses and collect evidence supporting our
conclusions. We show how some instructions are misclassified,
some others are counted in non-obvious ways, and some
events may fully mismatch expectations. However, once this
information is obtained and verified empirically, validated
event counters in complex hardware can be used for the V&V
of critical real-time systems.

ACKNOWLEDGEMENT

This work has been partially supported by the Spanish Min-
istry of Economy and Competitiveness (MINECO) under grant
TIN2015-65316-P, the SELENE European Union’s Horizon
2020 (H2020) research and innovation programme under grant
agreement No 871467, the SuPerCom European Research
Council (ERC) project under the European Union’s Hori-
zon 2020 research and innovation programme (grant agree-

ment No. 772773) and the HIPEAC Network of Excellence.
MINECO partially supported Jaume Abella under Ramon
y Cajal postdoctoral fellowship (RYC-2013-14717), Enrico
Mezzetti under Juan de la-Cierva-Incorporacion postdoctoral
fellowship (IJCI-2016-27396), and Leonidas Kosmidis under
Juan de la Cierva-Formacién postdoctoral fellowship (FICI-
2017-34095).

[1]
[2]
[3]
[4]

[5]
[6]

[7]
[8]

[10]

(11]

(12]

[13]

[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

[27]

[28]

REFERENCES

ARM Cortex-A53 MPCore Processor, 2014.

CUDA Binary Utilities, 2018.

ARMVvVS8 Reference Manual v8.5 EAC, 2019.

Sergi Alcaide, Leonidas Kosmidis, Hamid Tabani, Carles Hernandez,
Jaume Abella, and Francisco J Cazorla. Safety-related challenges and
opportunities for gpus in the automotive domain. /IEEE Micro, 38(6):46—
55, 2018.

T. Amert et al. GPU Scheduling on the NVIDIA TX2: Hidden Details
Revealed. In RTSS, 2017.

ARM. ARM Expects Vehicle Compute Performance to Increase
100x in Next Decade, 2015. https://www.arm.com/about/newsroom/

. . . [
arm-expects- vehicle-compute-performance-to-increase- 100x-in-next-decade.

php.

K. Berezovskyi et al. Makespan computation for GPU threads running
on a single streaming multiprocessor. In ECRTS, 2012.

K. Berezovskyi et al. Measurement-based probabilistic timing analysis
for graphics processor units. In ARCS, 2016.

A. Betts and A.F. Donaldson. Estimating the WCET of GPU-Accelerated
Applications Using Hybrid Analysis. In ECRTS, 2013.

N. Capodieci et al. Deadline-based scheduling for GPU with preemption
support. In RTSS, 2018.

D. Dasari et al. Response time analysis of cots-based multicores
considering the contention on the shared memory bus. In IEEE
TrustCom, 2011.

E. Diaz et al. Modelling multicore contention on the aurix tc27x. In
DAC, 2018.

Enrico Mezzetti et al. High-integrity performance monitoring units in
automotive chips for reliable timing v&v. IEEE Micro, 38(1):56-65,
2018.

F. J. Cazorla et al. Reconciling time predictability and performance in
future computing systems. IEEE Design & Test, 35(2):48-56, 2018.

J. Jalle et al. Contention-aware performance monitoring counter support
for real-time mpsocs. In SIES, 2016.

Noriaki Suzuki et al. Coordinated bank and cache coloring for temporal
protection of memory accesses. In CSE. IEEE Computer Society, 2013.
Renato Mancuso et al. Real-time cache management framework for
multi-core architectures. In RTAS. IEEE Computer Society, 2013.

S. Che et al. Rodinia: A benchmark suite for heterogeneous computing.
In IISWC, 2009.

S. Che et al. A characterization of the Rodinia benchmark suite with
comparison to contemporary CMP workloads. IISWC, 2010.

Federal Aviation Administration, Certification Authorities Software
Team (CAST). CAST-32A Multi-core Processors, 2016.

G. Fernandez et al. Consumer electronics processors for critical real-
time systems: a (failed) practical experience. In ERTS?, 2018.

D. Griffin et al. Forecast-based interference: Modelling multicore
interference from observable factors. In RTNS, 2017.

F. Guet et al. Probabilistic analysis of cache memories and cache
memories impacts on multi-core embedded systems. In SIES, 2016.

H. Yun et al. PALLOC: DRAM bank-aware memory allocator for
performance isolation on multicore platforms. In RTAS, pages 155-166.
IEEE Computer Society, 2014.

International Organization for Standardization. ISO/DIS 26262. Road
Vehicles — Functional Safety, 2009.

L. Liu et al. A software memory partition approach for eliminating
bank-level interference in multicore systems. In PACT, pages 367-376.
ACM, 2012.

F. Mazzocchetti et al. Performance analysis and optimization of
automotive gpus. In SBAC-PAD, 2019.

H. T. Nagle et al. Microprocessor testability. [EEE Transactions on
Industrial Electronics, 36(2):151-163, May 1989.

11

[29]

[30]
(31]

(32]
[33]
[34]

(35]

[36]
[37]

[38]

[39]
40]
[41]

J. Nowotsch et al. Multi-core interference-sensitive wcet analysis
leveraging runtime resource capacity enforcement. In ECRTS, 2014.
NVIDIA. CUDA toolkit documentation. volta instruction set, 2019.

N. Otterness et al. An evaluation of the nvidia tx1 for supporting real-
time computer-vision workloads. In RTAS, 2017.

P. K. Valsan et al. Taming non-blocking caches to improve isolation in
multicore real-time systems. In RTAS, pages 161-172, 2016.

Xing Pan and Frank Mueller. Controller-aware memory coloring for
multicore real-time systems. In SAC, pages 584-592. ACM, 2018.

R. Pellizzoni et al. Worst case delay analysis for memory interference
in multicore systems. In DATE, 2010.

H. Tabani et al. Assessing the adherence of an industrial autonomous
driving framework to iso 26262 software guidelines. In DAC, page 9,
2019.

V. Weaver et al. Non-determinism and overcount on modern hardware
performance counter implementations. In ISPASS, pages 215-224, 2013.
Adam West. NASA Study on Flight Software Complexity. Final Report.
Technical report, NASA, 2009.

Xilinx. Rockwell Collins Uses Zynq UltraScale+ RFSoC Devices in
Revolutionizing How Arrays are Produced and Fielded: Powered by
Xilinx, 2019.

Ming Yang et al. Avoiding Pitfalls when Using NVIDIA GPUs for
Real-Time Tasks in Autonomous Systems. In ECRTS, 2018.

H. Yun et al. Memguard: Memory bandwidth reservation system for
efficient performance isolation in multi-core platforms. In RTAS, 2013.
D. Zaparanuks et al. Accuracy of performance counter measurements.
In ISPASS, pages 23-32, 2009.

