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ABSTRACT 

Non-linear dynamic analysis and the damage index of Park-Ang have been often used to assess expected seismic 

damage to a structure. Depending on the size of the structure and the duration of the record, the computational effort 

in dynamic analyses is usually high. In this research, a new damage index is proposed based on nonlinear static 

analysis. The damage index is a linear combination of two energy functions: 1) the strain energy associated with 

the stiffness variation and the ductility of the structure, and 2) the dissipated energy associated with hysteretic 

cycles. These two energy functions are obtained from the capacity curve of the structure and from the energy 

balance with the spectral acceleration. To show the ability of the index to represent damage, low-rise steel buildings 

were studied under the seismic actions that are expected in Mexico City. The results obtained with the new method 

show good agreement with those calculated by means of dynamic analyses using the Park-Ang damage index. On 

average, the Park-Ang damage index is well-fitted by the combination of 62% of the strain energy and 38% of the 

energy dissipated by hysteresis. Moreover, the new damage index can link damage to certain characteristics of 

seismic actions, such as their intensity and duration. Therefore, the new approach results in a practical, powerful 

tool for estimating seismic damage in buildings, especially as probabilistic approaches require massive 

computations. 

Keywords: capacity curve, damage assessment, strain energy, energy dissipated by hysteresis, Monte Carlo 
simulations 

1 Introduction 
In assessments of the seismic performance of buildings, non-linear dynamic analysis (NLDA) has proved to be the 

most realistic, suitable, sophisticated, numerical tool to estimate the response of a structure as a function of time. 

When NLDA is used to assess the seismic response, the input is generally a group of accelerograms that can be 

recorded, synthetic or both. If NLDA is performed by increasing the ordinates of the selected accelerograms, it is 

known as incremental dynamic analysis (IDA) [1]. IDA can be used to obtain curves relating a measure of the 

seismic response of a structure (displacement at the roof, maximum inter-story drift, etc.) to a variable that describes 

seismic intensity, such as peak ground acceleration (PGA). The IDA has been used as the most appropriate tool for 

assessing damage in structures subjected to dynamic actions [1]. Several damage indices can be calculated from the 

dynamic response of a structure [2,3], and are related to a reduction in the capacity of buildings’ structural elements. 

Some studies have proposed damage indices for reinforced concrete and steel buildings, considering parameters 
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such as displacement ductility [4,5], strength and stiffness degradation [3], energy dissipation [6,7], cyclic fatigue 

[8], change in the natural period of the structure [9], or a combination of the above parameters [10–13]. Most of the 

damage indices proposed to date take values in the range of 0 to 1, where 0 indicates no damage and 1 collapse. 

Park and Ang [11] proposed one of the most frequently used seismic damage indices for reinforced concrete 

buildings, which considers both the maximum structural response and the cyclic load effect [14–16].  

 Considerable computational effort is required to calculate damage curves based on IDA. To avoid this effort, non-

linear static analysis (NLSA) offers an interesting alternative due to its simplicity [17,18], but the results must be 

in good agreement with those provided by IDA. Several researchers have employed NLSA to estimate parameters 

related to the dynamic response of structures [19–23] or in risk studies at urban level [24–27]. In the present article, 

a new damage index for steel buildings is proposed that can be obtained from the capacity curve. It fits well with the 

damage index of Park and Ang. The mathematical formulation of the new damage index is based on energy 

functions and on the idea proposed by Pujades et al. [22] of using a calibration parameter to determine the 

contribution to damage of two or more simple functions and, thus, to obtain good agreement with a relatively more 

complex damage index. Nevertheless, new functions that consider two types of energy from the capacity curve are 

used herein: 1) strain energy and 2) energy dissipated by hysteresis [28,29]. When both functions are combined, a 

new damage index is obtained that is compatible with that of Park and Ang. In order to consider the effect of the 

seismic hazard, the performance point is based on the concept of energy balance [30] and the application of the 

seismic evaluation is based on the study by Leelataviwat et al. [31]. A three-storey steel building under the seismic 

actions expected in Mexico City was used as the test bed. First, a deterministic case is presented to formulate the 

new damage index. A probabilistic approach based on the Monte Carlo method and on the Latin hypercube sampling 

(LHS) technique is also included. The cases studied in this article show that the new damage index for the type of 

steel structures analysed herein can be used to assess expected damage directly from the capacity curve, in a 

straightforward way, thus avoiding the considerable computational effort involved in dynamic simulations. 

2 Damage model based on energy  

2.1 Damage index of Park and Ang 

The damage index of Park and Ang [11] can be used to estimate the damage level of structures, starting from a post-

process of the nonlinear dynamic response. It is calculated as the sum of the maximum displacement, divided by 

the ultimate displacement with a term related to the dissipated energy. For a structural element, the damage index, 

DIePA (), is given by the following equation: 

DIe୔୅ሺδሻ ൌ
δ

δ୳
൅

β
Q୷δ୳

න dE
ஔ

଴
 (1) 

where δ/δu is the ductility defined as the ratio of the maximum displacement of the structural element subjected to 

a specific earthquake, δ, to the ultimate displacement under monotonic loading, δu. Qy is the strength at the yielding 
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point. If the strength, Qu, corresponding to the ultimate displacement, δu, is lower than Qy, then Qy is substituted 

by Qu. ׬ dE
ஔ

଴  represents the hysteretic energy absorbed by the element during the earthquake and β is a non-negative 

strength deteriorating parameter. The overall damage index of a structure is obtained by calculating the weighted 

damage index, DIPAw(). The following equation was proposed by Park and Ang [11] in order to calculate DIPAw(): 

DI୔୅୵ሺδሻ ൌ ෍ λ୧DIe୔୅ ሺδሻ୧

୒

୧ୀଵ

 (2) 

where DIePA()i is the damage index of structural element I as defined in Equation (1), N is the number of damaged 

elements, and λi is the ratio of the energy dissipated by hysteresis in element i to the total hysteretic energy dissipated 

in the entire structure. Values of the damage index above 1.0 indicate structural collapse. In this article, the Park 

and Ang damage index is used as a reference for the validation of the new damage index proposed herein. The new 

damage index is based on the concepts of ductility and energy dissipated by hysteretic cycles, which are similar to 

those considered in the Park and Ang index 

2.2  The proposed damage index 

Chopra [32] showed that the damping exhibited when the earthquake ground motion drives a structure into the 

inelastic range can be viewed as a combination of viscous damping, inherent to the structure, and hysteretic 

damping. Hysteretic damping is related to the area inside the loops defined by earthquake force–structural 

displacement diagrams. Hysteretic damping can be represented as equivalent viscous damping,eq, associated with 

a maximum displacement, and it can be estimated by means of the following equation [32]: 

ξୣ୯ ൌ
1

4π
Eୈ

Eୱ୭
 (3) 

where Eso is the maximum strain energy associated with a cycle of motion, that is, the area under the secant 

stiffness at the ultimate point (Dci, Fci) of the capacity curve, which can be calculated as: 

Eୱ୭ ൌ
ሺDci ∗ Fciሻ

2
 (4) 

ED is the energy dissipated by the structure in a single cycle of motion, that is, in a single hysteretic loop. A graphic 

representation of ED and Eso is shown in  

Figure 1. ED can be calculated starting from the bilinear representation of the capacity curve as the area enclosed 

within a single hysteretic loop, equivalent to the area of the large parallelogram shown in  

Figure 1.  

The bilinear representation is obtained as follows: i) the area under the bilinear curve must be equal to the area 

under the original capacity curve, Ac; ii) the initial slope, Ki, must be equal in both curves; and iii) the coordinates 
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of the ultimate capacity point (Dci, Fci and Dbi, Fbi) must match both curves. Based on the latter conditions, the 

following equations can be used to calculate the coordinates of the yield point (Dy, Fy): 

D୷ ൌ
2 Ac െ ሺFୡ୧ ∗ Dୡ୧ሻ

ሺK୧ ∗ Dୡ୧ሻ െ Fୡ୧
 (5) 

F୷ ൌ ሺK୧ ∗ D୷ሻ (6) 

Starting from the points defined by the bilinear curve, ED is calculated using the following equation [28,32]: 

Eୈ ൌ 4ሺF୷ ∗ Dୠ୧ െ D୷ ∗ Fୠ୧ሻ (7) 

 
 

Figure 1. Capacity curve, bilinear curve (force–deformation relation) and equivalent viscous damping due to hysteretic 
energy dissipation. 

Note that Eso and ED can be calculated from the capacity curve as a function of the displacement at the roof  in an 

incremental manner. Thus, two energy functions are defined as follows: 1) strain energy function, Eso() and 

2) energy dissipated by hysteretic function, ED(). Based on the mathematical development of Chopra [32] for Eso() 

and ED(), the former can be related to stiffness and ductility, and the latter to energy dissipation; both functions 

depend on the intensity of the earthquake. 
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Based on these functions, a damage index can be derived by adopting the two following criteria.: i) both functions 

are normalized to 1 for the value related to the ultimate displacement, u, of the capacity curve; ii) both functions 

will have a value equal to zero for ≤ Dy because, within the linear range of the structure, the expected damage 

should be zero. Thus, the normalized energy functions Eso()NN and ED()NN can be calculated by means of the 

following equations: 

Eୱ୭ሺδሻ୒୒ ൌ ቐ

0 0 ൑ δ ൑ δୈ౯

Eୱ୭ሺδሻ

Eୱ୭ሺδ୳ሻ
     δୈ౯

൏ δ ൑ δ୳
, 0 ൑ Eୱ୭ሺδሻ୒୒ ൑ 1 (8) 

Eୈሺδሻ୒୒ ൌ

⎩
⎪
⎨

⎪
⎧ 0 0 ൑ δ ൑ δୈ౯

෍ Eୈሺδሻ
୬

୨ୀ଴

቎෍ Eୈሺδሻ
୬

୨ୀ଴

቏

୫ୟ୶

൙ δୈ౯
൏ δ ൑ δ୳

, 0 ൑ Eୈሺδሻ୒୒ ൑ 1   (9) 

where j represents each increment in the displacement of the capacity curve, n represents the ultimate increment. 

Using equations 8 and 9, the following damage index, DIEC(), is then proposed: 

DI୉େሺδሻ=ηEୱ୭ሺδሻ୒୒൅ሺ1 - ηሻEୈሺδሻ୒୒≅DI୔୅୵ሺδሻ  (10) 

Observe that DIPAw() can be used to calibrate the value of parameter  Parameter is directly related to how much 

the strain energy function contributes to the damage (as a percentage), while its counterpart in Eq.10 corresponds 

to how much the energy dissipated due to the hysteretic function contributes to the damage. The two energy 

functions can be obtained from the capacity curve of the building. However, they can also be obtained from the 

bending moment M rotation curve of a structural element. DIePA() is used to calibrate the value of the parameter 

This new damage index is referred to hereinafter as the energy capacity damage index, DIEC. The calculation 

and implementation of DIEC are presented in the next section. 

3 Example of implementation the new damage index 

3.1 Structural model 

A three-storey steel building with four spans is used to illustrate the computation of the proposed energy capacity 

damage index. This building has been studied extensively by Diaz et al. [33,34] to assess its performance and 

expected seismic damage under conditions in Mexico City. The main geometric characteristics and structural 

sections of the building are shown in Figure 2. The structural system of the building is a special moment frame 

(SMF), composed of beams and columns with W sections (American wide flange section) that are joined by means 

of prequalified connections [35] of a fully restrained (FR) type. This structure was designed as an office building, 

considering the provisions of NTC-DF [36] and ANSI/AISC 341-10 [37].  The design of the SMFs satisfies the 

criterion of strong column-weak beam. Both static and dynamic nonlinear structural analyses were performed using 
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Ruaumoko 2D software [2]. Beams and columns were modelled as FRAME type members, with plastic hinges at 

their ends. The plastic hinges follow the bi-linear hysteresis rule. The hardening and strength reduction were 

calculated, based on the ductility factor (see Appendix A - Ruaumoko 2D [2]). Due to limitations of the adopted 

model, which only reproduces the failure by bending moment, the interaction between the bending moment and the 

axial force has not been considered. Obviously, most of the damage of this type of building is expected to occur at 

the ends of the elements, mainly because the effects of the bending moment. The values of strength and ductility 

were calculated according to the modified Ibarra–Medina–Krawinkler (IMK) model [38–40]. The panel zones were 

modelled using the rotational stiffness in connections, according to the model of Krawinkler [41] included in FEMA 

355C [42]. For the damping, the Rayleigh model is assumed and a damping ratio of 2% [43,44]. The fundamental 

period, T1, of the building model is 0.63 s. 

 
Figure 2. Geometry and structural section of the archetype building. 

3.2 Seismic actions 

Damage curves must be obtained using the IDA method to calibrate the new damage index, DIEC. Acceleration 

records of Mexico City were used in this example. The design spectrum for the IIIa seismic area, according to NTC-

DF [36], was taken as a target spectrum. The selection method proposed by Vargas et al. [21] was applied to a 

database containing 2554 accelerograms recorded in the Mexico City area [45]. Four accelerograms were thus 

selected whose mean response spectra are compatible with the target spectrum. The main characteristics of these 

accelerograms are shown in Table 1. 

Table 1. Characteristic of the seed accelerograms used in seismic zone IIIa in Mexico City. 

Acc. Station Date 
Duration 
(seconds) 

Epicentre 
Magnitude 

(Mw) 
Component 

PGA 
(cm/s2) 

Epicentre 
distance 

(km) 

Azimut 
Sta-EpiLatitude Longitude 

Depth 
(Km) 

1 AL01 18/04/2014 165.77 17.18 N 101.19 W 10 7.2 S00E 28.86 330.89 221.04

2 HJ72 18/04/2014 167.47 17.18 N 101.19 W 10 7.2 N90W 32.19 331.06 221.39

3 MJSE 15/06/1999 144.01 18.18 N 97.51 W 69 7.0 N76W 13.76 222.31 128.79

4 TL55 30/09/1999 173.86 15.95 N 97.03 W 16 5.2 N90E 15.62 447.59 149.67
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Each one of the accelerograms in Table 1 was used as a seed within a probabilistic spectral matching technique 

[33,46] to obtain 5 new accelerograms whose response spectra show good agreement with the target spectra. Thus, 

a set of 20 matched accelerograms was obtained, which were considered suitable to deal with uncertainties in the 

seismic actions, to validate the proposed damage index in a probabilistic environment. Figure 3a shows the seed 

accelerogram 1 and one of the matched accelerograms that was used to perform the IDA analysis. Figure 3b shows 

the target spectrum, the response spectrum of seed accelerogram 1 and the response spectrum of the matched 

accelerogram. 

  

Figure 3. a) The seed accelerogram 1 and the matched accelerogram, and b) the target spectrum (IIIa) and the response 
spectra for seed accelerogram 1 and the matched accelerogram. 

3.3 Capacity curve 

The capacity curve was obtained by means of an adaptive pushover analysis (PA), implemented in Ruaumoko 

software [2]. This method is independent of the initial loading pattern, as it adapts the pattern at each step of the 

PA, according to the shape of the first vibration mode of the structure. The ultimate capacity is established when 

one of the following criteria is fulfilled: i) 2 is less than 10-6 2 at the first step, where  is the tangent fundamental 

natural frequency in the Modified Rayleigh Method; ii) the Newton Raphson iteration is not achieved within a 

maximum number of specified cycles; iii) the stiffness matrix becomes singular; and iv) a specified maximum 

structure displacement is reached. In the NLSAs of the studied models, many cycles of the Newton Raphson method 

were considered. Moreover, a large maximum limit for structure displacement was considered. Thus, the failure 

criteria are expected to be related to criteria i or iii. The conventional pushover analysis and the adaptive pushover 

analysis, Pad, for buildings with structural response dominated by their fundamental mode provide similar capacity 

curves; however, in this research, the Pad was preferred, because it includes predefined criteria to determine the 

ultimate capacity point. This aspect is useful in probabilistic assessments to define the collapse for each analysis. 

Moreover, these failure criteria, predefined in the capacity curve, allow improving compatibility with the ultimate 

capacity achieved in the IDA. However, conventional pushover can be also used if the ultimate capacity point is 

adequately defined. Figure 4a shows the plastic hinges corresponding to the ultimate capacity point of the building 
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and Figure 4b shows the respective inter-story drift. The level of plasticization of each plastic hinge is measured 

respect to its plastic rotation limit, when the building reaches its ultimate capacity. Finally, Figure 5a shows the 

capacity curve that was obtained. 

 

Figure 4 a) Plastic hinges formed when the building reaches its ultimate capacity and b) the corresponding inter-story drift. 

3.4 Incremental dynamic analysis  

Incremental dynamic analysis was performed for the building using the matched accelerogram shown in Figure 3a. 

The PGA of the record was increased until the collapse of the structure, established in terms of ultimate 

displacement u. In this case, the collapse displacement of the building corresponds to a PGA of 1 g. The DIPAw 

function of the roof displacement,  for the building is shown in Figure 5a. The capacity curve and the 

DIPAwwere used in subsequent sections to calibrate the new damage index.  

 In order to prove that the new damage index could also be applied to a structural element, the following were 

extracted using the IDA results for the building: i) the relation between DIePA and the rotation , and ii) the 

bending moment M–rotation curve of one of the beams on the first floor in the building, which is referred to 

hereinafter as BEAM 1 and shown in Figure 5b.  

Figure 5. a) Capacity curve and the DIPAw(by IDA of the building; and b) the DIePA(and M- diagram of the BEAM 
1. 
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3.5 Proposed energy damage index for a structural element 

As a first step, the damage index was implemented for a structural element, so that it could be calibrated with 

DIePA. This was performed for the structural element, BEAM 1. Based on the M- curve, the two energy 

functions depending on the angular deformation, Eso()NN and ED()NN, were obtained (see Figure 6). Then, 

the energy capacity damage index for a structural element, DIEC, was calibrated by considering the DIePA. The 

parameter  was obtained by means of least squares fit of Eq 10. For the case discussed herein, the parameter  

was set to 0.78. The contribution to the damage index of the strain energy function, Eso()NN, was 78%, while the 

contribution of the energy dissipated by hysteretic, ED()NN, was 22%. Figure 6 shows the DIePAand DIEC for 

BEAM 1. DIEC was in excellent agreement with DIePA. The parameter  allowed a good fit of the new index, 

DIEC  to the expected damage in a structural element subjected to seismic actions.  

This example shows that the proposed functions and damage index can replicate the Park and Ang damage index 

in the structural elements. However, the proposed index is also a viable alternative to reduce the computational time 

in the probabilistic assessments if it is obtained directly from the capacity curve, as shown in the next section. 

 
Figure 6. New damage index of DIeEC  and DIPA  for BEAM 1. 

3.6 Energy capacity damage index for the entire building 

To calibrate the simplified energy capacity damage index DIEC, it was considered that the evolution of damage 

DIPAw is closely related to the roof displacement caused by the seismic action. These displacements are expected 

to differ for different seismic actions, because important properties such as the duration and frequency content of 

each seismic action may vary, causing a different structural response for equal PGA values.  

The IDA method provides the displacement pattern as a function of the PGA. Otherwise, in NLSA, the performance 

point for each PGA value must be calculated in order to define the roof displacements as a function of the increased 

PGA of seismic action, Sdpp(PGA). The performance point can be obtained by applying the capacity spectrum 
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method proposed by Freeman [47] and included in ATC-40 [28], FEMA-273 [48]. Chopra and Goel [29] and Fajfar 

[49,50] developed an improved version of the capacity spectrum method that uses the constant-ductility design 

spectrum as a demand diagram. In these studies, the concepts of equivalent ductility factors by the Ry-s-T 

equations introduced by Newmark and Hall [51] and Vidic et al. [52] are used, where Ry is the reduction factor due 

to ductility, sis the ductility factor defined as the ratio between the maximum displacement and the yield 

displacement, and T is the period of the demand spectrum. Another proposal for calculating the performance point 

is that of Mezzi et al. [53] and Leelataviwat et al. [31,54], which is based on the balance between the energy 

spectrum of the seismic action in the energy displacement response spectrum (EDRS) format and the energy 

obtained from the area beneath the capacity curve, named accumulated deformation energy (ADE). In the present 

research, the energy balance method was used to obtain displacement patterns due to seismic actions. In this method, 

the capacity curve obtained from the building, shown in Figure 5a, and the response spectrum of the acceleration 

shown in Figure 3b, were used. 

The first step for calculating the performance point consisted of obtaining the accumulated deformation energy, 

ADE, of the capacity curve, F(), using the following equation: 

ADEሺሻ ൌ න Fሺሻd


଴
                0 ൑  ൑ δ୳; 0 ൑ ADEሺሻ ൑ ADEሺδ୳ሻ (11) 

Figure 7 shows the capacity curve and the ADE() curve of the building. The yielding roof displacement, y, 

the yielding base shear, Vy, and the yielding energy Ey are also plotted in this figure. The second step consisted of 

obtaining the input energy spectrum in EDRS format (Sa୉ୈୖୗ) from the pseudo-velocity spectrum, Sv, using the 

following equation: 

Sa୉ୈୖୗ ൌ
1
2

γ୉M∗Svଶ ൌ
1
2

γ୉M∗Saଶ ൬
T

2π
൰

ଶ

 (12) 

γ୉ ൌ
μ୉

R୷
ଶ ; μ୉ ൌ 2μୱ െ 1  (13) 

where M* is the effective modal mass for the first mode of vibration of the building; T is the period of the 

demand spectrum; s is the ductility factor; E is the energy factor, in terms of energy ductility E; Ry is the yield 

strength reduction factor; and Sa is the pseudo-acceleration spectrum. The values of s and Ry can be easily obtained 

using Ry-s -T equations that are evaluable in the literature [29]. In this research, the equations proposed by Chopra 

[32] based on the elastic design spectrum of Newmark and Hall [51] were used:  



11 
 

Ry ൌ

⎩
⎪⎪
⎨

⎪⎪
⎧

 

    1 T ൏ Ta

൫2μs െ 1൯
β

2                       Ta ൑ T ൑ Tb

               ඥ2μs െ 1                 Tb ൑ T ൑ Tcඥ2μs െ 1/μ 

           ሺT Tc⁄ ሻμs Tcඥ2μs െ 1/μ ൑ T ൑ Tc

    μs T ൐ Tc

 (14) 

β ൌ ln ൬
T
Tୟ

൰ ln ൬
Tୟ

Tୠ
൰ (15) 

where Ta, Tb and Tc are limiting period values that depend on ground motion parameters. SaEDRS can be obtained 

based on the demand spectrum in the acceleration displacement response spectrum (ADRS) format and  using Eqs. 

(12) to (15). 

   
Figure 7. Capacity curve and ADE curve of the building. 

In order to assure the energy balance [31,53–55], the following steps should be carried out: i) convert the roof 

displacement of the ADE curve to spectral displacement, Sd, using the modal participation factor, PF1; ii) normalize 

the ADE curve and the spectrum of energy demand, SaEDRS, with the corresponding energy value at the yielding 

displacement, Ey; iii) obtain the SaEDRS for ductility, s and cross SaEDRS  and ADE curves to find the performance 

point SdPP; iv) determine the ductility PP of the relation SdPP with the yielding spectral displacement Sdy; if PP ≤ 

, then SdPP is the displacement of performance for the seismic action and the structure performs in the linear range; 

if PP   1, perform step iii) again for a higher s and determine a new SdPP and PPrepeat until s PP with a 

predefined error; then the new SdPP is the displacement of performance for the seismic action that is applied and the 

structure performs in the nonlinear range. Finally, convert SdPP to roof displacement , using the modal participation 



12 
 

factor, PF1. For the studied case, M*= 215.5 KN sec2/m, y=0.13 m; Ey=144.4 KN-m, PF1= 1.29, the Ry - s - T are 

taken from Eqs (14) and (15) where s=1, Ta=1/33 s, Tb=0.125 s and Tc=0.6 s defined by Chopra [32] and soil 

conditions in the Mexico City. The Sa matched acc1 for a PGA equal to 0.45g was used, as shown in Figure 8a. 

Figure 8b shows the respective Sa matched acc1 in EDRS format and normalized to Ey..  Ta, Tb and Tc used in the 

Ry-E-T equations (14) and (15), for the particular case studied, have provided adequate results. This is attributed 

to the fact that, Ry becomes constant in the Ry-E-T equations for structures with middle and long periods, while its 

variation affects structures with short fundamental periods. For the studied structure, that has a middle period (T1= 

0.63 s.), the variation of Ry does not have an important influence on the application of the energy balance. However, 

this may not be the case with other seismic actions and types of buildings. Therefore, it is recommended to calibrate 

these periods for each case. 

Figure 8. Sa matched acc1 for a PGA equal to 0.45 g in a) ADRS format and b) EDRS format. 

Figure 9a shows an example of the energy balance for the building using Samatched acc1(EDRS format) for a PGA=0.45 g 

and the ADE curve shown in Figure 7; both curves are normalized to Ey. For the considered values, Sdpp=0.17 m 

and s =1.64.  

Static roof displacements were then determined by assuring the energy balance, considering the PGA incrementally 

and converting the Sdpp(PGA) into roof displacements, PGA. Based on the IDA of the building, the relation 

between PGA and the maximum roof displacement,  is obtained. The values  of this relation define the dynamic 

displacement pattern. Figure 9b shows the comparison between static and dynamic displacement functions that have 

been obtained using the IDA and the energy balance respectively. In this case, both displacement functions show 

very good agreement. 

The energy functions Eso()NN and ED()NN are obtained based on the static roof displacement function (see Figure 

10a). The DIPAw() of the building is used to calibrate the energy capacity damage index to obtain =0.70. This 

means that the contribution to the damage index of the strain energy function, Eso()NN, is 70%, while the 
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contribution of the hysteretic dissipated energy, ED()NN, is 30%. These percentages would vary for different seismic 

actions. 

  

Figure 9. a) The energy balance of the building with the Samatched acc1 for PGA = 0.45 g; b) static and dynamic roof 
displacement functions. 

Figure 10a shows the energy capacity damage indices DIEC  and DIPAwfor the building. Both indices show 

very good agreement. Observe that the damage curves that were calculated can be also related to the PGA by 

considering the function shown in Figure 10b. Thus, the proposed energy capacity damage index can be directly 

related to an intensity measure of the earthquake. Figure 10b shows Eso(PGA)NN and ED(PGA)NN, DIPAw(PGA) and 

DIEC(PGA) functions. In the case studied here, the DIEC(PGA) also shows very good agreement with DIPAw(PGA). 

Figure 10. a) DIPAw and DIEC; and b) DIPAw(PGA) and DIEC(PGA) of the SFM 3 building. 



14 
 

4 Probabilistic approach 
The model of the studied building was then used to estimate the new damage index from a probabilistic perspective. 

It was proved that the proposed damage index fits well the results obtained with the IDA, even when several 

uncertainties were considered in the mechanical properties of the materials and the seismic action. For the 

probabilistic approach, the Monte Carlo method [56,57] and the Latin hypercube sampling (LHS) technique [58–

60] were used to optimize the number of samples. The strength and ductility of the beams and columns were 

considered random variables in the modified Ibarra–Medina–Krawinkler (IMK) model [38–40]. The backbone 

curve of the modified IMK model was defined by three strength parameters (My= effective yield moment; Mc= 

capping moment strength or post-yield strength ratio Mc/My and Mr= κꞏM, residual moment) and by four 

deformation parameters: θy= yield rotation; θp= pre-capping plastic rotation for monotonic loading (difference 

between yield rotation and rotation at the maximum moment); θpc= post-capping plastic rotation (difference between 

rotation at maximum moment and rotation at complete loss of strength); and θu= ultimate rotation capacity (see 

Figure 11a). The strength parameters can be determined for W sections according to Lignos and Krawinkler [39,40] 

and from the recommendations of PEER/ATC 72-1[44] using the following equations: 

M୷ൌ1.17∙Z∙fy (16) 

Mୡൌ1.11∙M୷ (17) 

M୰ൌ0.4∙M୷ (18) 

The deformation parameters can be determined for W sections by means of the following multi-variable empirical 

equations that were developed by Lignos and Krawinkler [39,40] and included in the PEER/ATC 72-1[44]. 

θy= ሺMy koሻ/L⁄ = ሺMy 6∙E∙Iሻ/L⁄  (19) 
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  σIn=0.32 (20) 
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   σIn=0.25 (21) 

θu ൌ 1.5∙൫θy ൅ θp൯ (22) 

In these equations, ko is the initial elastic stiffness; I is the inertia moment; c1
unit and c2

unit are coefficients for units 

conversion; h/tw is the ratio between the web depth and the thickness; L/d is the ratio between the span and the depth 

of the beam; bf/(2ꞏtf ) is the width/thickness ratio of the beam flange; and σIn is the standard deviation, assuming a 

lognormal fit of experimental data.   
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In this research, the modified IMK model of the structural sections was defined by all the strength parameters based 

on the expected yield strength, fy; and the deformation parameters (ductility) based on p and pc. PEER/ATC 72-1 

[44] recommends that, when experimental results of cyclic degradation of stiffness in the structural elements are 

not available, as in this study, the parameters p and pc should be adapted as follows: 'p=0.7p and 'pc=pc. 

The behavior of structural elements is described by means of the modified IMK model; this model can be 

implemented in Ruaumoko [2] by using the bi-linear hysteresis rule with strength reduction based on the ductility, 

using the following equations: 

rൌ ቈ
Mc-My

θ'p
቉ koൗ (23) 

DUCT1ൌ
θy൅θ'p

θy
(24) 

DUCT2ൌ
θy൅θ'p൅ൣθ'pcሺMc-Mrሻ Mc⁄ ൧

θy
(25) 

DUCT3ൌ
θy൅θ'p൅θ'pc

θy
(26) 

where r is hardening factor as a fraction of the initial stiffness, ko. DUCT1 is the ductility at which degradation 

begins. DUCT2 is the ductility at which degradation ends. The strength reduction rule in Ruaumoko program 

indicates that, DUCT2 is based on the residual strength of the element by means of the constant, RDUCT. In this 

article, RDUCT was defined by means of the constant k = 0.4 of the modified IMK model. Finally, DUCT3 is the 

ductility at 0.01 of the initial strength [2]. Thus, using equations (16) to (26), the expected performance of the 

structural elements was modelled in Ruaumoko. Figure 11a shows the model used herein based on the parameters 

of the modified IMK model, and the bi-linear hysteresis rule with strength reduction based on the ductility as defined 

in Ruaumoko. 

For a better representation of physical randomness in the problem, for each structural element, a random sample of 

the three parameters (fy, θp and θpc) was generated. Then, the properties of strength and ductility of the plastic hinges 

of each element were estimated. It was assumed that the hinges at both ends of the elements were the same. Thus, 

the 3-storey model with 27 elements (15 columns and 12 beams) had 81 random variables. Table 2 shows the mean 

value μ, the standard deviation, the coefficient of variation (COV) and the assumed probability distributions of these 

3 parameters.  

Moreover, to avoid unrealistic samples in LHS simulations, the normal distribution of fy and lognormal distributions 

of θp and θpc were truncated at both ends. The lower and upper limits were determined by the mean value ± 2 

standard deviations (μ ± 2σ). The purpose of this truncation was to avoid under- or overestimates of the capabilities 

of the elements with samples without physical meaning.  
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In summary, for this research, a simplified probabilistic approach was proposed. The method used the modified 

IMK model for beams and columns, and uncertainties were concentrated on the variables fy, θp and θpc. Thus, it was 

assumed that these three variables have a major influence on the linear and nonlinear structural response of 

buildings. Besides, the use of these variables is recommended in the new codes for probabilistic seismic 

performance assessment of steel buildings [44,61].  

Another important sampling issue is the correlation among variables. Two types of correlations were considered in 

this research: intra- and inter-element. The intra-element correlation was given by the relation among the three 

parameters simulated for the same hinge; these correlations can be derived from Eqs. (20) and (21) [39,40] and are 

defined in Table 3. The inter-element was defined based on research conducted by Idota et al. [62] and Kazantzi et 

al. [63] on consistency in workmanship and material quality between different steel structural W sections. An inter-

element correlation of 0.65 was used herein for the same section type, and a null correlation was assumed for 

different sections. 

Table 2. Probabilistic property of strength and ductility random variables. 

Structural section Type Variable Mean (μ) 
Standard deviation (σ or 

σln) 
Function 

W14X68 

Strength fy 375.76 MPa* 26.68 MPa (COV=0.071*) Normal distribution 

Ductility p 0.054 rad♦ σln =0.32♦ Lognormal distribution

Ductility pc 0.188 rad♦ σln =0.25♦ Lognormal distribution

W16X89 

Strength fy 375.76 MPa* 26.68 MPa (COV=0.071*) Normal distribution 

Ductility p 0.047 rad♦ σln =0.32♦ Lognormal distribution

Ductility pc 0.210 rad♦ σln =0.25♦ Lognormal distribution

W18X97 

Strength fy 375.76 MPa* 26.68 MPa (COV=0.071*) Normal distribution 

Ductility p 0.044 rad♦ σln =0.32♦ Lognormal distribution

Ductility pc 0.183 rad♦ σln =0.25♦ Lognormal distribution

* Based on the report by Lignos & Krawinkler [39] for statistics of material yielding strength, obtained from flanges-webs tests 
for A572 grade steel. 
♦ For the steel, structural W sections were determined by means of the multi-variable empirical Equations (20) and (21). 
 

Table 3. Intra-element correlation for random variables of beams and columns. 
fy θp θpc 

fy 1 0 0 
θp 0 1 0.69 
θpc 0 0.69 1 

In order to assess the seismic behaviour of the building in a probabilistic environment, 200 NLSAs and 200 NLDAs 

were performed using the same structural models for both the static and dynamic analysis. Figure 11b shows an 

example of the modified IMK model used in the 12-beam W14x68 section of the probabilistic models. 
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Figure 11. (a) Modified IMK model: monotonic curve; (b) an example of the modified IMK model used in the structural 
section (W14x68) of the probabilistic models. 

Seismic action was also considered in a probabilistic way using the set of 20 matched accelerograms developed in 

Section 3.2 and their corresponding response spectra shown in Figure 12. The mean of the 20 response spectra 

accurately represents the target spectrum of the study area (Mexico City). Figure 12 also shows the fundamental 

period variation of the probabilistic models, T1SFM3 prob. For each of the probabilistic IDA, one of the 20 available 

records was randomly selected, using a uniform probability distribution.  

Figure 12. Response spectra of the 20 matched accelerograms and the mean spectrum. The fundamental periods of the 
probabilistic models are also depicted. 

Figure 13a shows the probabilistic capacity curves obtained using the procedure explained in Section 3.3, and the 

curve representing the 50th percentile (median) of the curves. Figure 13b shows the corresponding ADE curves 

calculated from the capacity curves depicted in Figure 13a. Figure 14a shows the probabilistic DIPAw() and Figure 

14b the probabilistic DIPAw(PGA), both obtained with IDA analysis, in accordance with the procedure explained in 

Section 3.4. Their respective 50th percentiles (medians) are also depicted. 
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Figure 13. a) Probabilistic capacity curves and b) the respective ADE curves of the building. 

Figure 14. a) The DIPAw() probabilistic curve and b) the DIPAw(PGA) probabilistic curve. 

The static displacement function of each probabilistic model was determined based on the energy balance between 

its ADE curve and the response spectrum in EDRS format of the matched accelerogram that was used in the IDA 

in the same probabilistic model. 

Then, the energy capacity damage index, DIEC(), was calculated and calibrated with the corresponding DIPAw(). 

Figure 15a shows the curves that were obtained. In this figure, the DIPAw() curves calculated via IDA are shown 

together with the corresponding DIEC() curves. The median curves are also shown in Figure 15a. The median 

DIEC() curve shows a good fit with the median DIPAw() curve for parameter =0.62. Therefore, for probabilistic 

cases, the contribution to the DIEC() of the strain energy function, Eso()NN, is 62%, while the contribution of the 

energy dissipated by hysteretic cycles, ED()NN, is 38%. The DIEC() can be well fitted to the DIPAw(). Figure 15b 

shows the DIPAw(PGA) and the DIEC(PGA) probabilistic functions. Again, in all cases, the agreement was very good, 

especially in the median value. Therefore, the new damage index can also be used to establish the expected damage 

in function of the intensity of the seismic action.  
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Finally, parameter  is crucial in the energy damage index. Note that each DIPAw() curve is obtained for a specific 

seismic action. Different seismic actions can be expected to lead to different Park and Ang index values and, 

therefore, to different values of the parameter Thus, parameter  allows the new index, DIEC(δ), to fit the response 

and the expected damage properly when the building is subjected to different seismic actions.  

Figure 15. a) The DIPAw() and the DIEC() probabilistic curves, and b) the DIPAw(PGA) and the DIEC(PGA) probabilistic 
curves.

5 Discussion and conclusions  

5.1 Overview 

Based on the capacity curve obtained by nonlinear static analysis, a new damage index has been developed in this 

research, Two energy functions have been defined. The former is strain energy, Eso(), which is associated with 

stiffness variation and the ductility of the structure. The latter is the energy dissipated by damping, ED(), which is 

related to the energy dissipated by hysteretic cycles. Using a linear combination of these two energy functions by 

means of a parameter of contribution to damage , the new damage index, DIEC(), has been defined. Parameter  

has been calibrated using the well-known Park and Ang damage index, DIPAw(), which is obtained from IDA. Both 

damage indices show good agreement.  

5.2 Discussion 

The main objective of this research has been to implement a simplified damage index, DIEC(), applied to steel 

buildings. For this index, the energy balance method, which has been applied incrementally, has determined the 

static displacement pattern in the studied building under the applied seismic actions. DIEC() can be expressed in 
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terms of the increase of PGA, DIEC(PGA). The advantage of DIEC(PGA) is that it provides a scenario of expected 

damage, based on the characteristics of the seismic action to which the building is subjected. This result is similar 

to the damage scenario obtained with IDA.  

The distribution parameter, , depends on the characteristics of the seismic action. That is, different seismic actions 

would lead to different DIPAw() and, therefore, to different values of the parameter . For instance, longer duration 

of the earthquake would produce a larger contribution of the energy function linked to the hysteresis, which makes 

parameter  lower, when DIEC() is fitted. It would be interesting to evaluate the sensitivity of parameter  for 

seismic actions with different response spectra and different earthquake durations. The relation between the 

parameter  and the type of frame for different buildings may be also studied. 

It is clear that, if the new damage index needs to be calibrated for each new building and for each different seismic 

action, the advantages of this simplified damage index vanish. Ongoing research shows that values of parameter η 

are very stable. Values in the range 0.6-0.7 are obtained. Values in the low part of the range (around 0.6) are obtained 

for long duration seismic actions. On the contrary, high values (around 0.7) are obtained for impulsive near-fault 

short accelerograms. Moreover, similar values are obtained for reinforced concrete and for steel buildings. 

However, these are preliminary results and further research is needed to support them. Therefore, accurate 

calibrations of this parameter η, can lead to tabulated values for different seismic actions and building types. In this 

paper, the new simple damage index has been presented; more detailed work to obtain tabulated values for selected 

seismic actions and building types is beyond the purpose of this work. 

Because the new damage index is calibrated so that it is equivalent to the Park and Ang damage index, it does not 

improve the quantitative damage assessment but, if tabulated values of the parameter  are available, the new 

damage index can be used in a quick, straightforward and routine way. 

5.3 Conclusions 

Several relevant conclusions of this research are the following: 

 The new damage index, DIEC( based on two energy functions can be obtained directly from the capacity 

curves in a straightforward way, and provides adequate results for assessing expected damage in buildings, 

as a function of the characteristics of the applied seismic action, such as for instance, the frequency content 

and duration.  

 The energy balance method applied incrementally is a good technique to estimate the static displacement 

pattern and these displacements are used in such a way  that the DIEC( can be obtained also as a  function 

of the intensity of the applied seismic action, that is, DIEC(PGA) in this case. 

 The parameter η is crucial in the new damage index, as it separates the contribution of the strain energy, 

Eso(), from that of the energy dissipated by hysteretic cycles, ED(). 
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 Concerning the damage index for the buildings and the seismic actions studied in this research, on average, 

the Park and Ang damage index is well fitted by the combination of 62% of the Eso() function and 38% of 

the ED() function.  

The results of this research show that, the DIEC(or PGA) can be a useful tool to evaluate the seismic damage of 

buildings, especially in a probabilistic environment in which computational times can be significantly reduced. 

6 Notations 
The following symbols were used in this paper: 

Ac = Area under the capacity curve. 
acc = Accelerograms. 
ADE() = Accumulated deformation energy of the capacity curve. 
bf/(2ꞏtf ) = Width/thickness ratio of the beam flange of W section. 
COV = Coefficient of variation of the probabilistic variables. 
c1

unit and c2
unit = Coefficients for units conversion in the modified IMK model.  

Dbi, Fbi = Coordinates of the ultimate capacity point of the bilinear curve. 
Dci, Fci = Coordinates of the ultimate capacity point of the capacity curve. 
DIECDIEC or 
DIECPGA 

= 
Energy capacity damage index in function of the roof displacement, rotation and PGA, 
respectively.  

DIePA() or DIePA() = Park and Ang damage index of a structural element. 
DIPAw(), DIPAw() or 
DIPAw(PGA) 

= 
Park and Ang damage index of a building in function the roof displacement, rotation and 
PGA, respectively. 

׬ dE
δ

0
  = Hysteretic energy absorbed by the element during the earthquake. 

Dy, Fy = Coordinates of the yield point of the bilinear curve. 
E = Modulus of elasticity. 
EDRS = Energy Displacement Response Spectrum. 
ED = Energy dissipated by the structure in a single cycle of motion. 
ED() = Energy dissipated function. 
ED()NN,  ED()NN or 
ED(PGA)NN 

= 
Normalized energy dissipated in function of the roof displacement, rotation or PGA, 
respectively. 

Eso = Maximum strain energy associated to a cycle of motion. 
Eso() = Strain energy function. 
Eso()NN, Eso()NN or 
Eso(PGA)NN 

= 
Normalized strain energy in function of the roof displacement, rotation or PGA, 
respectively. 

Ey = Yielding energy. 
F() = Capacity curve. 
FR = Connections type Fully Restrained. 
fy = Expected yield strength. 
h/tw = Ratio between the web depth and the thickness of W section. 
i = Structural element i. 
I = Inertia moment of W section. 
IDA = Incremental dynamic analysis. 
IMK = Modified Ibarra–Medina–Krawinkler model. 
j = Each increment in the displacement of the capacity curve. 
k = Residual moment constant. 
Ki = Initial slope of the capacity curve. 
ko = Initial elastic stiffness. 
L/d = The ratio between the span and the depth of the beam or column. 
LHS = Latin Hypercube Sampling. 
M = Bending moment in the structural element. 
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Mc = Capping moment strength or post-yield strength ratio. 
Mr = Residual moment.
Mw = Moment magnitude scale. 
My = Effective yield moment. 
M* = Effective modal mass for the first mode of vibration of the building. 
N = Number of damaged structural elements in the building. 
n = Ultimate increment in the displacement of the capacity curve. 
NLDA = Nonlinear dynamic analysis. 
NLSA = Nonlinear static analysis. 
PA = Park and Ang damage index. 
Pad = Adaptive pushover analysis. 
PF1 = Modal participation factor. 
PGA = Peak ground acceleration. 
Qu = Strength corresponding to the ultimate displacement. 
Qy = Strength at the yielding point. 
Ry = Strength reduction factor. 
Sa = Acceleration spectrum. 
SaEDRS = Input energy spectrum. 
Samatched  = Acceleration spectrum of the matched accelerogram. 
Sd  Spectral displacement in the structure. 
Sdpp = Spectral displacement of the performance point. 
Sdy = Yielding spectral displacement. 
SMF = Special moment frame building. 
Sv = Velocity spectrum. 
T = Structural period. 
Ta, Tb and Tc = Limit periods used to define the Ry-s-T relationship. 
T1 = Fundamental period of the building. 
T1SFM3 prob = The fundamental period of the probabilistic models SMF 3. 
V = Base shear in the structure. 
Vy = Base shear in the yielding energy. 
Z = Plastic modulus.
 = Strength deteriorating parameter in the Park and Ang damage index. 
* = Parameter of the Ry in function of the Ta, Tb and Tc. 
E = Energy factor. 
 = Roof displacement in the structure. 
Dy = Displacement in the yielding point of the bilinear curve. 
δu = Ultimate roof displacement in the structure. 
y = Roof displacement in the yielding energy.  
 = Calibration parameter in the energy capacity damage index. 
 = Rotation in the structural element. 
θp = Pre-capping plastic rotation for monotonic loading. 
θpc = Post-capping plastic rotation. 
θu = Ultimate rotation capacity. 
θy = Yield rotation.  

λi = 
Ratio of the energy dissipated by hysteresis in the element i to the total hysteretic energy 
dissipated in the entire building. 

μ = Mean value of the probabilistic variables. 
E = Energy ductility. 
PP = Ductility of the performance point. 
s = Ductility factor. 
eq, = Equivalent viscous damping. 
 = Standard deviation of the probabilistic variables.  

σIn = 
Standard deviation, assuming a lognormal fit of experimental data in θp and θpc in the 
modified IMK model. 

 = Tangent fundamental natural frequency in the modified Rayleigh method. 
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