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Abstract: This paper proposes a new method for obtaining the 

total harmonic distortion (THD) using few math operations, a 

low pass filter (LPF) and a grid monitoring system able to 

provide the fundamental and harmonics components of the grid 

voltage. The method is particularly developed by using the 

SOGI error signal notch filter (NF) transfer function 

characteristics of a standard SOGI-FLL monitoring system. 

The method is accurate and has a small computational burden, 

so it is suitable for the online assessment of the grid voltage or 

current THD and can easily be implemented into a digital signal 

processor (DSP). The accuracy and transient response of the 

system has been analyzed, showing that they can easily be 

determined by the tuning of the SOGI filter and the LPF. The 

method also shows to be robust to grid perturbations such us 

voltage sags, or swells, and frequency step changes. Simulations 

and experimental results are provided to validate the proposed 

THD method. Moreover, comparison with a Fast Fourier 

Transform (FFT)-based THD is also presented, which shows 

that the proposed THD method results to be faster, more 

accurate and simpler than the FFT-based one. 

Index Terms- Total harmonic distortion, THD online 

measurement, digital signal processor (DSP), power quality. 

I. INTRODUCTION 

The THD is an important indicator to assess the quality in 

power systems. The THD measures the deviation of a given 

signal from an ideal sinusoidal pattern and can be applied to 

voltages and currents. In electrical systems, the supply 

voltage can be distorted by the interaction of consumer's 

nonlinear loads through the impedance of the network. The 

distortion can induce adverse problems such as heating of 

induction motors, distribution transformers and neutral 

conductors, the erratic operation of breakers and relays, 

torque pulsations in motors and generators, or the 

malfunction of sensitive electronic equipment. Moreover, 

this phenomenon can be amplified by resonance with the 

capacitors of power factor correction systems, which can 

push harmonic voltage distortion to unacceptable levels [1], 

[2]. To reduce these adverse effects, the IEEE standard 519-

1992 provides recommended values to limit the harmonic 

distortion [3]. This document sets limits on voltage 

harmonics in low-voltage networks to 5% THD and to a 3% 

THD in the case of a single harmonic. These limits in 

practice are not enforced, so in some systems the THD 

content could be found to be much higher. 

An online THD measurement of the grid voltage with low 

computational needs could be interesting in grid monitoring 

applications to give the ability of controlling online the 

distortion levels at different parts of the electrical network. It 

could also be used to monitor the quality of the currents 

absorbed by the consumer-side loads and for the detection of 

the use of nonlinear loads due to its specific high THD 

profile. For microgrids, it could be employed for the 

detection of nonlinear loads and to improve the quality in the 

grid-connected and island mode operations. Therefore, such 

possibility could help in improving the quality of the power 

system, reducing the distortion levels. 

There are few proposals in literature regarding the THD 

calculation, which can be grouped into frequency or time 

domains. In [4] a FFT and discrete Fourier transform (DFT) 

THD methods were proposed exploiting better the DSP 

accumulator capability for improving the THD calculation 

precision. In [5] two different THD definitions were 

examined in order to avoid possible ambiguity and 

misinterpretation in the measurement. In [6] an analytic THD 

calculation of non-sinusoidal signals with known Fourier 

coefficients filtered by band-pass filters (BPF) and using a 

Cauchy method of residues was proposed. In [7] a DFT 

variant under a non-synchronized sampling condition that 

approximates the fundamental frequency and improves the 

THD calculation is presented. In [8] a FFT and short-time 

Fourier transform (STFT) for calculating the THD were 

proposed. In [9] an analytic algebraic method for obtaining 

the THD in multilevel inverters considering higher order 

harmonics and formulating line-voltage with unequal dc-

sources is proposed. In [10] a THD method using a matrix 

method that maps the measured harmonics into a vector of 

pseudo-harmonics was proposed. In [11] a THD calculation 

based on analog operational amplifiers to implement Fliege-

BPF was proposed. This method took only into consideration 

the second and third harmonics and needed of manual 

adjustments due to mistuning of the electronic amplifiers. In 

[12] an analytical method for deriving the THD of the current 

of a single-phase multilevel inverter with an LCL filter in a 

grid-connected case was presented. In [13] an analytical 

expression for the standard THD valid for the case of using 

estimators with sine fitting was proposed. 

In general, these proposals required of the calculation of 

the harmonic components of the signal using spectral 

analysis, which supposes a considerable computational 

charge to perform an online measurement of the THD and 

for being implemented into a DSP [4], [6]-[8]. Other 

proposals, [9], [11]-[13], consist on analytical solutions that 

provide specific formulas for the THD calculation that can 

be used under certain conditions and for specific converter 

topologies. They give insights of the causes of distortions 

and help to mitigate them through the design of the 

converter, but cannot be used for an online THD 

determination of arbitrary signals. Moreover, these 

publications provide results in which the accuracy of the 

obtained THD is assessed, but they do not show its dynamic 

behavior nor how it changes temporally as the signal 

distortion evolves with time. 

This paper proposes a new and simple method for 

obtaining the THD from the fundamental and harmonic 

components provided by any existing adaptive notch filter 

(ANF) [14], adaptive BPF as those based on second order 

generalized integrator (SOGI) approaches [15]-[18], or PLL-



 

based proposals like the SOGI-PLL or EPLL [19]-[22]. The 

method provides the THD value but without requiring the 

calculation of any particular harmonic component, or 

performing any spectral analysis. Though the method could 

be applied, in general, to any grid monitoring scheme, in this 

work it is developed using the well-known SOGI-FLL 

proposal, for the sake of simplicity. The SOGI-FLL is in 

general a valuable tool employed to estimate the phase, 

frequency and amplitude of the grid voltage with low 

computational needs. Here, the notch filter (NF) transfer 

function of the SOGI error signal regarding the input signal 

is used for providing the grid harmonic components, while 

the fundamental component is obtained by means of the 

orthogonal outputs of the SOGI filter. 

The THD is calculated using few math operations: a square 

of the error signal, a LPF to obtain its average, a square root 

and a division. The accuracy of the obtained THD relies 

mainly on the SOGI NF ability, which is determined by its 

damping factor parameter. The proposed method is simple 

and can help to the existing grid monitoring approaches to 

incorporate the THD of the grid and monitor its temporal 

progression through time. The method might also be used to 

measure the current distortion drawn by the user-side loads 

and for the detection of nonlinear loads, which could help the 

network operators to visualize and manage the grid 

distortion, to develop new ways of limiting their adverse 

effects and increase the quality of the grid. 

Simulations and experimental results are provided to prove 

that the method is accurate and robust in face of grid voltage 

faults like voltage sags and phase jumps. Moreover, the 

method is experimentally compared with an alternative 

online FFT-based THD in a simple test for the detection of a 

5th harmonic distortion. The FFT is implemented into a 

Texas Instruments (TI) DSP using a FFT optimized software 

library provided by this manufacturer [24]. The results show 

that the proposed THD achieves faster and better results than 

the FFT-based one, and behaves better when the grid 

frequency deviates from the nominal 50Hz value. The results 

also show that the computational load is very small 

compared with the FFT. 

This paper is organized as follows. Section II exposes the 

proposed THD measurement method for being generally 

applied to any grid monitoring system. Section III develops 

the method by using the SOGI-FLL approach. A detailed 

analysis of the system accuracy, dynamic behavior and 

robustness in front of grid perturbations is provided in this 

section. Section IV provides experimental results for 

validating the proposal and compares it with an alternative 

FFT-based proposal. Section V exposes the conclusions of 

this paper. 
 

II. THD MEASUREMENT METHOD 

Fig 1. depicts the scheme of the proposed THD 

measurement method, composed by few blocks: a general 

grid monitoring system with NF ability, a LPF and few math 

operations. 

The method obtains the THD according the standard 

definition of [1] and [2] that uses the square root of the sum 

of the squared harmonic components of a given signal, 

divided by the fundamental component: 
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where h is the harmonic order and Ah is the amplitude of the 
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Fig. 1. Block diagram of the proposed THD measurement method. 

h-th harmonic component, with h≠1, and A1 is the amplitude 

of the fundamental component. The grid monitoring system 

should be able to provide an estimate of A1 and the rest of 

harmonic components contained in a given signal, named as 

e(t) in this case. A periodic single-phase input signal vin 

without dc-component and only containing the odd harmonic 

components usually present in the grid voltage is considered 

for sake of simplicity, i.e., h=3,5,7,… Therefore, vin can be 

described as 

  

h
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where ωi is frequency of the grid and φh is the phase angle of 

the h-th harmonic component, respectively. The harmonic 

components can be extracted by the NF capability that some 

grid monitoring approaches have. Then, the signal e(t) can 

be identified with the second term of (2), i.e. as 
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Therefore, the square operation generates the square of every 

harmonic in (2) plus a family of products between the 

harmonics. Using trigonometric identities, (4) can be 

expressed as 
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And, looking to (5), it can be seen that finally a dc-

component is generated that is equal to the sum of the square 

of the amplitude of all the harmonic components in (3) 

affected by a 1/2 gain, plus a series double frequency 

harmonic components and plus an additional series of 

sinusoidal components. The last ones are components that 

pulsate at frequencies equal to the sum (h+k) and to the 

difference (h-k), that result from the family of multiplications 

between harmonics in (4). 

In (5) it is important to see that the relevant part 

corresponds to the dc-component, which is directly the sum 

of the square of all the harmonic components and can be used 

to obtain the THD of (1) without the need of complex 

calculations. This dc-component can be easily extracted 

from (5) by applying a LPF with a suitable cutoff frequency 

that can be designed to remove, or mitigate, the harmonic 

components. The LPF achieves the average value of (5), 

which corresponds to the dc-component and can be 
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where < > represents the averaged value. The performance 

of the averaged value relies on the LPF cutoff frequency. 

Furthermore, the LPF can be of second-, third-, or nth-order 

for the better and accurate removal of the oscillating 

components. 

Finally, according to Fig. 1, the THD is obtained by 

multiplying (6) by 2 to cancel the 1/2 gain and by applying 

the square root, dividing by the fundamental amplitude A1 

and multiplying by 100 
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Notice that the multiplication by 100 is only necessary to 

give the value in a percentage scale. In Fig. 1 the obtained 

THD is denoted as 𝑣̂𝑇𝐻𝐷 and a saturation block is used to 

avoid a division by zero. The saturation is set to a small lower 

boundary that only has effect at the start-up transient. 

Fig. 1 depicts a general scheme that might be developed 

using any of the several reported methods to extract the grid 

information based either on PLL, on adaptive notch filters 

(ANF), or on adaptive band-pass filters as the SOGI-FLL. 

However, in this paper the method is developed by using the 

SOGI-FLL due to its simplicity and well-known 

characteristics. 
 

III. THD DEVELOPMENT USING THE SOGI-FLL 

In this section the proposed THD method is developed 

using the SOGI-FLL monitoring system [12]-[15], in order 

to check its dynamic and accuracy performance under 

normal and grid distorted conditions. After that, the THD 

accuracy regarding the NF capability of the SOGI and also 

the effect of the nonlinearity of the square root operator in 

the THD dynamic response are analyzed. 
 

A. Development using the SOGI-FLL grid monitoring system 

Fig. 2 depicts the block diagram of a SOGI-FLL grid 

monitoring system. In this figure, the SOGI consists in a 

frequency-adjustable resonator that is regulated with gain 2ξ 

for having the output vd in-phase with the input vin [12]. The 

resonator is formed by two integrators with the particularity 

of providing a second output vq in quadrature-phase with vin. 

The FLL is a simple gradient descent algorithm that 

adaptively tunes the system with the frequency of vin using 

the SOGI error e and output vq [13]-[15]. 
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Fig. 2. SOGI-FLL block diagram. 

From the input-to-output point of view, the SOGI error 

signal e(t) has a NF closed-loop transfer function 
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where ωo is the central frequency and ξ is the damping factor 

that determines the NF capability. The NF behavior of e(t) is 

 
Fig. 3. Bode plot of He(s) for ξ = 0.7 and ωo=2π50rad/s. 

used to provide the harmonic components of the grid voltage, 

as expressed in (3). The Bode plot of (8) is depicted in Fig. 

3 for ξ = 0.7 in order to see the NF behavior. 

The fundamental component of the grid voltage is 

estimated from the SOGI in-phase vd and quadrature-phase 

vq outputs as 

𝐴̂ = 𝐴 = √𝑣𝑑
2 + 𝑣𝑞

2,   (9) 

where the estimated fundamental, 𝐴̂, will be also denoted 

from now on as A. The outputs vd and vq have the following 

BPF and LPF transfer function relationship regarding the 

input 
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The FLL estimates the grid frequency from the product 

between e and vq and uses the division by the square of (9) 

to normalize the frequency from the grid amplitude voltage 

[13]-[15]. The FLL can be expressed as 
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where ̂  is the estimated frequency and λ is the FLL gain. 

Now, due to availability of the square of A2 in (9) and in Fig. 

2, in this case the THD of (7) is simplified to  
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where μ=e2/A2. And, the corresponding block diagram is 

shown in Fig. 4. 
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Fig. 4. THD simplified block diagram using the SOGI filter. 

 

B. THD transient behavior 

The system dynamic behavior for an input signal that 

suffers a sudden step-type THD change corresponds mainly 

to the dynamics of the LPF, since the harmonic perturbation 

goes almost unaffected to the SOGI error output and enters  



 

 
Fig. 5. THD system transient responses to a grid voltage with a 5th 

harmonic with 5% amplitude that appears at t0=1s. 

 
Fig. 6. THD system transient responses to a grid voltage with a 

combination of 5th, 7th and 11th harmonics with 5% amplitude each 

that appears at t0=1s. 

into the THD measurement method via the square operation, 

e2(t). Considering a single-phase grid voltage with a 5th 

harmonic step perturbation at t=t0 
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where |He(j5ωo)| is the SOGI NF gain at the 5th harmonic and 

ωo=ωi. 

Fig. 5 depicts the system time response to a harmonic with 

5% amplitude that appears at t0=1s. The SOGI and LPF 

parameters are ξ=0.7, ωo =ωi =2π50 rad/s, n=2 and fc=5Hz, 

where n is the LPF order and fc its cutoff frequency. Note in 

this figure how the harmonic is transformed from bipolar in 

e(t), to a unipolar signal, in e2(t), pulsating at high frequency, 

which for the LPF, in μ, resembles like a step-like type of 

input perturbation. Thus, μ is filtered by the LPF and as seen 

in the bottom subplot, the dynamic response is of exponential 

type, which corresponds to the LPF dynamics. 

Additionally, Fig. 6 illustrates the time response for a 

combination of 5th, 7th and 11th harmonics with 5% amplitude 

each, appearing all at t0=1s. Notice here that the harmonics 

can be seen in the μ subplot and that the THD response still 

has an exponential shape. The measured THD amplitudes are 

4.8% for Fig. 5 and 8.45% for Fig. 6, which implies a 4% 

and 2.43% measurement error, respectively. These errors are 

due to the SOGI NF impact to the harmonic amplitude 

voltages, which respectively are affected by the following 

gains: 0.96, 0.98 and 0.99. For Fig. 5 and Fig. 6, the 

measured THD settling times correspond to the LPF, i.e. 

ts(2%)=4/α, where α=2fc (rad/s). 

 
Fig. 7. THD transient response to a grid voltage with two type of 

harmonics with 5% amplitude each that appear at t=1s. Up: to a 

single 5th harmonic; Middle: Detail of the single 5th harmonic case. 

Bottom: to a combination of 5th, 7th and 11th harmonics. 

As seen in Fig. 5 and 6, the THD dynamic follows an 

exponential response, which mainly is due to the LPF. The 

LPF averages μ achieving the summation of the squares of 

the harmonic components, with each harmonic affected by 

the square of the SOGI NF gain. That is, at steady state, the 

LPF output can be expressed as 
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where )(  tjhHH ieeh
  is the SOGI NF magnitude gain at the h-

th harmonic, THDin is the THD input harmonic amplitude 

and Φ represents the error produced in the measurement due 

to the 
heH  NF factor. At steady state (16) goes through a 

multiplication by 2 followed by an sqrt( ) operator, so the 

estimated THD is 

 inTHD THDv̂       (17) 

And the dynamic behavior at 𝑣𝐿𝑃𝐹 for a THD step-type input 

perturbation could be described as 
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Note that in this case, the expression of the transfer function 

using directly the THD output THDv̂  has not been addressed 

in order to avoid difficulties in the Laplace transform 

definition due to the square root operator. Moreover, sqrt( ) 

has a nonlinear gain effect in a step perturbation that is not 

straightforward to determine and that is analyzed in detail in 

subsection C. Nevertheless, for assessing the dynamical 

behavior of THDv̂ , Fig. 7 shows the comparison between the 

THD of Fig. 5 and 6, plotted in blue, with that achieved using 

(18) and considering the square root operator, plotted in red, 

i.e. 100)(2)(ˆ  tvtv LPFTHD . A detail is also provided in the 

middle subplot that proves that (18) perfectly matches the 

obtained responses in Fig. 5 and 6. 
 

C. Accuracy of the system 

The measurement accuracy is determined by two factors: 

the SOGI NF capability for extracting harmonic components 

in e(t) and the distortion induced by harmonics through vd 

and vq BPF and LPF transfer functions, respectively, in the 

calculation of A, (9)-(11). The accuracy can be analyzed 

using the SOGI  e, vd and vq  magnitude gains regarding the  



 

 
Fig. 8. Plot of |He(jho)| versus ξ for harmonic orders h=3, 5, 7, 

and 11. 

input signal, that from (8), (10) and (11) are 
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h=ωi /ωo can be expressed as 
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where 222 )2()1(2 hhD   . 

Regarding e(t), the magnitude of (22) can be simplified to 

|He(jho)| 1  for h≥5, since h2 >>2ξh for h≥5. This means 

that the THD is quite accurate for h≥5 and that the THD 

method is appropriate then for three-phase systems. 

However, for h<5 the harmonics are significantly attenuated 

for increasing values of the SOGI damping factor ξ. This fact 

can be seen in Fig. 8 in which the relationship between 

|He(jho)| in (20) and ξ is plotted for h= 3, 5, 7, and 11. 

In Fig. 8 the highest |He| attenuations are obtained also for 

the highest ξ. So, for ξ=1, the 3rd, 5th, 7th and 11th harmonics 

will be affected by the attenuation factors 0.2, 0.08, 0.04 and 

0.0164, respectively. However, |He| can be adjusted to a 

desired level by simply reducing ξ. For instance, using Fig. 

8 or (22), for h=5 the attenuation can be limited to only 1% 

by choosing ξ=0.34. 

The accuracy can further be analyzed assuming a grid 

voltage with a single harmonic component 

hhin AAtv  sin  sin)( 1  ,  (25) 

where θ=ωit and θh =hωit+φh are the phases of the 

fundamental and harmonic components, respectively. 

Assuming that the SOGI is tuned to the input frequency 

(ωo=ωi), the outputs e, vd and vq are 
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θhe=hωit+ψe, θhd=hωit+ψd, ψe=He(jhωo) and ψd= 

Hd(jhωo). And, the square of A in (9) can be expressed as 
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Fig. 9. Plot of Δ versus ξ for harmonic orders h=3, 5, 7, and 11. 

which, considering that (24) can be simplified to 

hHH dq   and using trigonometric identities, leads to 
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And, knowing that the average of the oscillating components 

is zero, (30) can be simplified to 
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which can be put in the form 
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Consequently, the accuracy is affected by a term Δ that is 

determined by the relationship Ah /A1, |Hd| and h. This term 

has a small impact since the product (Ah /A1)2|Hd|2 << 1 and 

then it could be obviated in (32). However, Fig. 9 plots the 

relationship between Δ and ξ for h= 3, 5, 7, and 11 with 5% 

amplitude with the aim to see its real impact on (32).  

Fig. 9 shows that in the worst case Δ will impact the THD 

by an attenuation that is below 2.5·10-4, for h=3. Then, Δ can 

be neglected and it can be assumed that the accuracy is 

mainly determined by |He|, i.e. the NF capabilities of the 

SOGI filter, which can be adjusted by ξ. 

Finally, Fig. 10 shows the THD response for ξ= 0.34 (1% 

of error at a 5th harmonic, see Fig. 8) for a simulation in 

which a 5th harmonic appears at t=1s, a 7th harmonic appears 

later at t=1.5s and 11th harmonic at t=2s, which can be 

visually seen as a staircase perturbation. Each harmonic is of  



 

 
Fig. 10. THD transient response for a 5th, 7th and 11th harmonics of 

5% amplitude each. First a 5th harmonic appears at t=1s, then a 7th 

at t=1.5s and an 11th at t=2s. 

5% amplitude.   In Fig. 10,  the measured  THD  for  the  5th 

harmonic is 4.95% with an 1% error, as expected. The THD 

for the combination of the 5th and 7th harmonics is 7.02%, 

which supposes a 0.72% error. And for the 5th, 7th and 11th 

combination the THD is of 8.60%, which is an error of 

0.70%. 

 

D. Impact of the square root nonlinear operator in the 

dynamic response 

The square root Y=sqrt(X), is a nonlinear operator that is 

plotted in Fig. 11 for the interval 0≤ X ≤100. As can be seen 

in the enlargement subplot in the lower right corner of this 

figure, the square root function presents a high slope for the 

arguments closer to zero. Nevertheless, the slope 

progressively decreases as the arguments grow. Therefore, 

the square root dynamically modifies the gain of the THD 

measurement system at the event of an input step harmonic 

perturbation. As a result, the step-up and step-down THD 

transient responses are unequally affected by this gain. 

This fact can be seen in the lower subplot of Fig. 12 that 

depicts the THD transient response to a single 5th harmonic 

with 5% amplitude considering the square root operator 

(𝑣̂𝑇𝐻𝐷 signal, in blue line) and not considering it (𝑣̂𝑇𝐻𝐷𝑥 

signal, in red line). The last one has been scaled in gain and 

named 𝑣̂𝑇𝐻𝐷𝑥 in order to match the same steady state value 

of 𝑣̂𝑇𝐻𝐷 and allow their comparison. In this figure, at the 

step-up at t=1s, for the initial small values of THDin the 

calculated 𝑣̂𝑇𝐻𝐷 grows up faster than 𝑣̂𝑇𝐻𝐷𝑥 due to the square 

root high gain. Nevertheless, the gain slows down as THDin 

increases, resulting in similar settling times for both signals. 

On the other hand, at the step-down at t=1.5s, as THDin 

begins to decrease, the signal at 𝑣̂𝑇𝐻𝐷 reduces at a 

progressively slower rate, due to the square root operator 

high gain for low input values, leading to significant 

differences in their settling times. So, the square root 

produces a small advancing effect at the step-up and a strong 

delaying effect at the step-down transient response, which 

can be clearly seen in the lower subplot. However, this 

asymmetrical phenomenon disappears for step transients 

starting from THD levels that are away from zero, which can 

be seen in the upper subplot of Fig. 12. Note in this case that 

there is a permanent 5th harmonic with 5% amplitude and a 

transient to an 8.66%. The THD step perturbation happens at 

t=1.5s and disappears at t=2s. Notice that there is a small 

difference in this case between 𝑣̂𝑇𝐻𝐷 and 𝑣̂𝑇𝐻𝐷𝑥. And that the 

response at the step-up and step-down transients tend to be  

 
Fig. 11. Plot of the square root function, and enlargement for the 

arguments closer to zero, showing the initial high slopes. 

 
Fig. 12. Response to two different THD step changes: up) from 5% 

to 8.66% at t=1.5s and then back to 5% at t=2s; down) from 0% to 

5% at t=1s and then back to 0% at t=1.5s. In blue: THD output. In 

red: Scaled THD before square root operation. 

symmetrical and that 𝑣̂𝑇𝐻𝐷 is more close to 𝑣̂𝑇𝐻𝐷𝑥. Note in 

the lower subplot of this figure that the square root advances 

a little bit (0.025s) the step-up response and strongly delays 

(0.14s) the step-down one. 

 

E. Response to frequency step changes and voltage sags 

The perturbations of the grid like voltage sags and 

frequency step changes reach the THD through the relation 

μ=(e/A)2 in (13). This relationship can be addressed by 

viewing first the time derivative of the SOGI error, which 

from Fig. 2 can be defined as 

)2(ˆ qidi vevvve   , (33) 

where ̂  is the FLL estimated frequency. Hence, assuming 

steady state conditions and that there is a frequency step 

perturbation in the grid, i.e. ])sin[(1 tAv ii   , being 

  the frequency perturbation step size, (31) becomes  

)2(ˆ]) cos[()( 1 qii vetωAe   , (34) 

which determines the perturbation dynamics in e(t). 

Moreover, the dynamics of ̂  can be considered as is 

described in [23] as 
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where ωn=250rad/s. On the other hand, through the time 

derivative of (9) and denoting now A as the estimate of A1, 

the perturbation effect in A can be seen as 
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Fig. 13. Transient responses obtained for a frequency step 

perturbation from 50Hz to 55Hz at t=1s. The grid has a permanent 

5th harmonic with 5% amplitude. Up: SOGI-FLL estimated 

frequency. Middle: μ. Down: THD. 

 
Fig. 14. Transient responses obtained for an 80% depth voltage sag 

perturbation at t=1s. The grid has a permanent 5th harmonic with 

5% amplitude. Up: SOGI-FLL estimated amplitude voltage. 

Middle: μ. Down: THD. 

Table I. THD measured peak amplitude due to frequency step 

perturbations of different sizes. 

Frequency step size 2Hz 4Hz 6Hz 8Hz 10Hz 

THD perturbation 

amplitude (THD-5%) 

0.93 3.14 5.86 8.82 11.90 

 

Table II. THD measured peak amplitude due to voltage sags of 

different depths. 

Voltage sag depth size 20% 40% 60% 80% 

THD perturbation 

amplitude (THD-5%) 

2.01 7.18 14.81 26.82 

 

So, A will be also perturbed by ̂  and by e = vin - vd. 

Therefore, due to the combination of (34) and (37), μ is not 

straightforward to analyze, but the impact of the perturbation 

can be assessed using simulations. To this aim, Fig. 13 shows 

the response to a perturbation from 50Hz to 55Hz at t=1s for 

a grid with a permanent 5th harmonic of 5% amplitude. The 

SOGI-FLL and LPF parameters were: λ=55·2π50rad/s2, ξ 

=0.34, n =2 and fc=5Hz, respectively, which have been 

designed for achieving a 1% error at a 5th harmonic and a 

10% overshoot in the transient response. 

As can be seen, in μ the perturbation causes a burst of 

pulses that the LPF averages, generating an impulsive-like 

transient response in the THD. This burst is mainly produced 

by the quadratic operation over e that turns positive the 

negative cycles of the error signal. 

 
Fig. 15. THD transient responses for an 80% depth voltage sag 

perturbation at t=1s. The grid has a permanent 5th harmonic with 

5% amplitude. Up: SOGI-FLL estimated amplitude voltage. 

Middle: THD for different LPF orders, n=1, 2 and 3. Down: THD 

for and different cutoff frequencies, fc=7.5, 5 and 2.5Hz. 

Fig. 14 depicts the transient response to an 80% depth 

voltage sag at t=1s. Notice that the same behavior is achieved 

than in the previous figure, but with a higher THD peak. As 

a consequence, in both cases, the THD is perturbed 

transitorily with a transient dynamic that is due to the LPF. 

The peak size of these perturbations was measured for 

different frequency and voltage sags with different step sizes 

and depth levels regarding the 5% that is permanently being 

measured. Tables I and II summarize these data, which show 

that the impact of the perturbation in the THD increases 

naturally with the perturbation magnitude. It can be 

concluded that for the frequency case, the THD impact 

follows a quadratic input-to-output relationship as 

y=a2x2+a1x+a0, with a2=0.0035, a1=0.97 and a0=-1.2. And 

for the voltage sag, the THD impact can be approximated by 

a cubic law as y = b3x3+b2x2+b1x+b0, being b3=4·10-5, b2=-

0.0017, b1=0.25 and b0=-2.6. 

The THD impact can be generally mitigated by adjusting 

the LPF parameters. In the frequency case, it can also be 

reduced minimizing the frequency overshoot by reducing the 

FLL gain. Fig. 15 illustrates this fact by showing the THD 

response for the voltage sag case when different filter orders 

n, and cutoff frequencies fc, are used. 

As seen in Fig. 15, an increase in n or decrease in fc helps 

to reduce the THD perturbation. The most effective 

parameter is fc, which reduces more the impact on the THD, 

but producing a longer transient response. The increase in n 

helps to reduce the impact, but the reduction capacity is 

lower for n>3. 

 

IV. EXPERIMENTAL RESULTS 

Experimental results were first obtained using a Chroma 

61501 single-phase programmable AC power source, an 

analog sensing-board prototype wired to a Texas Instruments 

(TI) Concerto F28M35H52C1 DSP control board, and a 

personal computer with Code Composer Studio software 

environment from TI. The Concerto DSP is a dual core 

processor that has an ARM Cortex-M3 and a TMS320C28x 

inside the same chip. The ARM processor is devoted to 

communications purposes that are not used for this work. 



 

The TMS320C28x is a 32-bit floating point processor that 

runs at 150MHz clock speed and has 512kb Flash memory. 

Both processors have a shared RAM memory of 64kb. The 

sensing-board included a  4-channel and  12-bit  DAC7564  
 

  
Fig. 16. Experimental setup using two DSP boards and an analog 

sensing board. 

 

digital-to-analog (DAC) chip wired to the DSP control board 

using a Serial Peripheral Interface (SPI) communication 

protocol. The DAC allowed to display up to four DSP 

internal variables in real-time within a 0 to 3V output voltage 

window. An R-C analog LPF with a 1500Hz cutoff 

frequency is used in the sensing of the grid voltage to avoid 

to introduce in the measurement the high frequency 

switching noise of the AC power source. Moreover, a digital 

high-pass filter (HPF) and a LPF with 1Hz and 1500Hz 

cutoff frequencies, respectively, were also used in order to 

avoid the influence of subharmonics and of the DSP high 

sampling frequency. The experimental results obtained by 

using the Concerto board are showed in Figs. 17 to 24. 

The comparative experimental results were obtained by 

measuring the harmonic components using a FFT and by 

using a TI's TMS320F28377D 200Mhz 32-bit floating point 

second-DSP’s board. The TMS320F28377D has the same 

512kb Flash memory capability than the Concerto board. 

However, it has more Ram memory, till 172kb. This control 

board is necessary to run properly the FFT routine provided 

by TI’s software library [24], since this routine did not run in 

the Concerto board due to insufficient Ram memory 

capability. This board has a three-channel 12-bit DAC 

peripheral embedded inside the DSP processor. Fig. 16 

depicts a picture of all these boards together. Therefore, the 

comparison is made from the simultaneous results obtained 

by the first and second DSP boards. In the comparison, the 

proposed THD method was implemented in the first DSP, 

while the FFT-based one was implemented in the second 

DSP. The comparative results are depicted in Figs. 25 to 29. 

For both boards, the sampling frequency was 20kHz and the 

SOGI-FLL and the THD measurement diagram block were 

discretized and implemented using the Backward Euler 

method. 

 

A. Results of the proposed THD measurement method 

A periodic 5th harmonic perturbation of 5% amplitude was 

programmed in the AC power source with a 220V(rms)/50 

Hz fundamental voltage. Fig. 17 shows the AC power source 

voltage in channel 1, the obtained THD measurement in 

channel 2 and a step 5% THD artificial signal in channel 3 

generated to contrast with the measurement. The SOGI and 

LPF parameters were ξ=0.7, ωo=2π50rad/s, n=2 and fc=5Hz. 

The signals in channels 2 and 3 were amplified to fit them to 

the 3V DAC output window, so the vertical axis gains were 

200mV/div, which in this case corresponded to 1.66%/div. 

 

ts 

THDin=5%/(5th) 

20ms 

 
Fig. 17. THD experimental result for grid with a 5th harmonic and 

5% amplitude sudden step perturbation. Ch. 1: Grid voltage 

(300V/div). Ch. 2: THD (200mV/div or 1.66%/div). Ch. 3: 5% step 

reference signal (200mV/div or 1.66%/div). 
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Fig. 18. THD experimental result for grid with a combination of a 

5th, 7th and 11th harmonics (5% amplitude each) sudden step 

perturbation. Ch. 1: Grid voltage (300V/div). Ch. 2: THD 

(200mV/div or 1.66%/div). Ch. 3: 8.66% step reference signal 

(200mV/div or 1.66%/div). 

 

t2 , 7.07%/(5th+7th) 

t3 , 8.66%/(5th+7th+11th) 

t1 , 5%/(5th) 

50ms 

 
Fig. 19. THD experimental results for sequential perturbations of a 

5th, 7th and 11th harmonics that were consecutively activated after 

0.21s each. Ch. 1: Grid voltage (300V/div). Ch. 2: THD (200mV/div 

or 1.66%/div). Ch. 3: Step reference signals, 5% at t1, 7.07% at 

t2=7.07% and 8.66% at t3 (200mV/div or 1.66%/div). 

In the same manner, Fig. 18 shows the experimental result 

for a simultaneous 5th, 7th and 11th harmonics perturbation of 

5% amplitude each, which corresponds to an input THD step 

perturbation of 8.66%. Note in Fig. 17 and 18 that the THD 

is close to the expected 5% and 8.66% values. In fact, these 

THDs reach the steady state values of 4.8% and 8.45%, 

respectively, which correspond to the expected ones for the 



 

designed ξ parameter (see Fig. 5 and 6). The measured 

settling time in Fig. 18 considering a 2% error criterion 

regarding the THD steady-state is ts=130ms, which also 

corresponds to the expected dynamics. 

 

 

THDin =5%/(5th) 

ts1 

ts2 100ms 

 
Fig. 20. Experimental results of the THD measurement method for 

a periodic perturbation of a 5th harmonic of 5% amplitude. Ch. 1: 

Grid voltage (300V/div). Ch. 2: THD (200mV/div or 1.66%/div). 

Ch. 3: 5% step reference signal (200mV/div or 1.66%/div). 
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Fig. 21. THD experimental results for sequential THD 

perturbations using a 5th, 7th and 11th harmonics: from 0 to 5% at 

t1, from 5% to 8.66% at t2, back from 8.66 to 5% at t3 and back from 

5 to 0% at t4. Ch. 1: Grid voltage (300V/div). Ch. 2: THD 

(200mV/div or 1.66%/div). Ch. 3: Step reference signals, t1 & 

t3=5%, t2=8.77%, and t4=0% (200mV/div or 1.66%/div). 

 

The SOGI damping factor was reduced to ξ= 0.34 in order 

to increase the accuracy of the measurement to a 1% error 

for a 5th harmonic using the plots of Fig. 8. A sequence of 5th, 

7th and 11th harmonic perturbations of 5% amplitude each 

were programmed in the AC power source. The 5th harmonic 

happened first at t1, followed by a 7th harmonic after 0.21s, 

labeled as t2, and by a 11th harmonic after 0.42s, labeled as 

t3. Then, the grid had a THD sequence perturbation going to 

5%, 7.07% and 8.66%, respectively. Fig. 19 depicts the 

experimental result, which clearly shows that the THD is 

accurate. The measured THDs from the inner DSP variables 

were 4.95%, 7,02% and 8.60%, respectively, which coincide 

with Fig. 10. 

Next, Fig. 20 depicts the result for a periodic perturbation 

of a single 5th harmonic with 5% amplitude in order to see 

the impact of the square root nonlinear operator in the 

dynamic response. In Fig. 20 two settling times have been 

labeled: ts1 and ts2. Note how ts2, at the step-down transient, 

is much larger than ts1, which denotes the same behavior than 

explained in section III.C. Moreover, other sequential THD 

step perturbations were used starting first from 0% to 5% 

THD using a 5th harmonic at t1, then from 5% to 8.66% using 

additional 7th and 11th harmonics at t2, then back from 8.66% 

to 5% at t3 and finally back from 5% to 0% at t4. Fig. 21 

depicts the experimental response. As seen, the transient 

responses at t1 and t2 have a similar settling time (ts1 and ts2). 

However, the transient at t3 is a bit larger than the previous 

ones and the transient at t4 is visibly the longest one, as 

illustrated that happens in section III.C. 
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Fig. 22. THD experimental results to frequency step perturbation 

from 50Hz to 55Hz. The grid has a permanent 5th harmonic 

distortion with a 5% amplitude. Ch. 1: Grid voltage (300V/div). 

Ch. 2: THD (200mV/div or 2.5%/div). Ch. 3: Estimated frequency 

(500mV/div or 5Hz/div). 
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Fig. 23. THD experimental results to 80% depth voltage sag. The 

grid has a permanent 5th harmonic distortion with a 5% amplitude. 

Ch. 1: Grid voltage (300V/div). Ch. 2: THD (500mV/div or 

12.5%/div). Ch. 3: Estimated amplitude voltage (500mV/div or 

100V/div). 
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Fig. 24. THD experimental results to 80% depth voltage sag. The 

grid has a permanent 5th harmonic distortion with a 5% amplitude. 

Ch. 1: Estimated amplitude voltage (500mV/div or 100V/div). Ch. 

2, Ch3, Ch4: THD for fc=5Hz, 7.5Hz and 2.5Hz, respectively 

(200mV/div or 10%/div). 

 

Fig. 22 and 23 depict the response to a frequency step 

perturbation from 50Hz to 55Hz and to an 80% depth 

voltage, respectively. The SOGI-FLL and LPF parameters  

were ξ=0.7,  λ=55·250 rad/s2, ξ=0.34,  n=2 and fc= 5Hz. 

Notice in Fig. 22 that the THD peak amplitude regarding 5% 



 

is 3.6% and that the voltage sag in Fig. 23 induces a THD 

peak amplitude of 26.5%, which coincide with the results 

showed in Fig. 13 and 14, respectively. 

Finally, Fig. 24 shows the results using a LPF with 

different cutoff frequencies, fc=7.5Hz, 5Hz and 2.5Hz and 

grid with an 80% depth voltage sag. Note that the results 

coincide with the obtained in Fig. 15. 
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Fig. 25. Experimental results for FFT-based THD (N=64) and 

proposed THD methods for a periodic perturbation of a 5th 

harmonic of 5% amplitude. Ch. 1: Grid voltage (250V/div). Ch. 2: 

THD (200mV/div or 1.66%/div). Ch. 3: FFT-based THD 

(200mV/div or 1.66%/div). 

 

B. Comparison with the FFT-based THD 

An alternative online FFT-based THD measurement 

method was implemented on a second board with a TMS-

320F28377D 200MHz DSP with more Ram Capability 

(172kb). The FFT was computed using the subroutines of the 

optimized library provided by TI [24]. The FFT can be 

applied on a digitalized signal with N= 64, 128, 256, 512, or 

1024 samples per period, and requires of the following 

memory resources: a 2N-size input buffer for holding a 

minimum of two periods of the signal, two 2N-size buffers 

for intermediate variables, an N-size buffer for coefficients, 

and an (N/2+1)-size output buffer to provide the magnitude 

of the fundamental and harmonics components. The 

sampling time Ts is determined as Ts=1/(50N) s. 

The computational burden of the employed FFT routines 

was measured using a digital output pin of the DSP. The 

measurements were made considering a 50Hz grid voltage 

signal and are shown at Table III. The results indicate that 

the FFT routines can only be applied for N=64 and 128, since 

only in these cases the time needed to compute the FFT is 

lower than the required sampling time Ts. The time needed 

for N=256, 512 and 1024 is higher than Ts and, thus, the FFT 

cannot be processed at every sample by the DSP. Therefore, 

the comparison between the two THD measurement methods 

will only be made for N=64 and N=128. 

The THD is computed according to (1) in the following 

order: 1st) the FFT routines in [24] are applied once the input 

buffer is filled with samples of the grid voltage, 2nd) the sum 

of the squares of the harmonics provided at the output buffer 

is computed using a software loop, 3rd) the THD is calculated 

applying the square root operation and then dividing by the 

fundamental, 4rd) the content of the input buffer is displaced 

one position to leave space for holding the next sample at the 

next iteration of this process. 

The FFT library provides information about the number of 

processor cycles needed for executing the routines [24]. 

These data havebeen used here for estimating the  burden 

required to compute the FFT-based THD, which is given in 

Table IV. This table also shows the number of 32-bit floating 

point RAM variables required for the computation. In the 

same way, the computational burden of the proposed THD 

method following the schemes depicted in Fig. 2 and Fig. 4 

has been measured, using the Concerto DSP board and the 

tools of Code Composer Studio software [25]. The results are 

listed in Table V and show that the computational burden for  

the  proposed  THD  method  is 
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Fig. 26. Experimental results for FFT-based THD (N=128) and 

proposed THD methods for a periodic perturbation of a 5th 

harmonic of 5% amplitude. Ch. 1: Grid voltage (250V/div). Ch. 2: 

THD (200mV/div or 1.66%/div). Ch. 3: FFT-based THD 

(200mV/div or 1.66%/div). 

 
Table III. Sampling time Ts and measured computation time for 

the FFT-based THD, according to the number of samples N. 

N 64 128 256 512 1024 

Ts (μs) 312.5 156.25 78.12 39.06 19.53 

 Computation time 

(μs) 

25.2 50 102.2 214 454 

 

Table IV. Computational burden in processor cycles (c) for the 

FFT-based THD. 

N 64 128 

FFT routines (c) 2780  5926  

Sum of squares of harmonics (c) 236  460  

Square root and division (c) 68  68  

Buffer displacement (c) 261  517  

Total (c) 3393  7019  
   

Number of 32-bit float RAM variables   

Input buffer 128 256 

Output buffer 64 128 

Coefficients buffer 64 128 

Magnitude buffer 33 65 

Other 4 4 

Total 293 581 

 

Table V. Computational burden in processor cycles (c) for the 

proposed THD method. 

Block description Cycles (c) 

SOGI 149 

A2 and saturation  24 

FLL 49 

e2, division and multiplication by 2  32 

Square root and multiplication by 100 35 

Second-order LPF 65 

Total 354 
  

Number of 32bit float RAM variables 29 

 

considerably lower than the FFT-based one and needs of 

fewer RAM memory resources. The time required for 

computing the proposed THD method has also been 

measured and amounts to 4.3µs. 



 

The comparison between the FFT-based THD and the 

proposed THD measurement method is made for the 

detection of a periodic 5th harmonic distortion. In the test, the 

cutoff frequency of the THD LPF is chosen as fc=20Hz. Fig. 

25 and Fig. 26 depict the results for N=64 and N=128, 

respectively. 

As can be seen in Fig. 25 and 26, the transient response of 

the FFT-based THD has a delay that is different in each case. 

In Fig. 25, for N= 64, the delay is 30ms and in Fig. 26, for 

N= 128,  the delay is  21ms. Therefore,  the proposed THD 
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Fig. 27. Detailed (10ms/div) experimental results for FFT-based 

THD (N=128) and proposed THD methods for a periodic 

perturbation of a 5th harmonic of 5% amplitude. Ch. 1: Grid voltage 

(250V/div). Ch. 2: THD (200mV/div or 1.66%/div). Ch. 3: FFT-

based THD (200mV/div or 1.66%/div). 

 

method shows to be faster and less sensitive to noise than the 

FFT-based one. Fig. 27 shows another scope capture as in 

Fig. 26 but with more detail (10ms/div). Moreover, the 

response can be accelerated by increasing the LPF cutoff 

frequency but at the expense of extra-noise at the THD 

measurement. Note also that the FFT for N=128 has less 

noise than for N=64, which is a general characteristic of the 

FFT routine, that achieves more accuracy with the increase 

in the number of signal samples. 

Furthermore, the computation of the FFT provides 

inaccurate results when Ts deviates from its specified value 

or when the grid frequency moves away from the nominal 

frequency. This situation has been programmed and tested in 

the experiments, showing problems only in the FFT-based 

THD method. Fig. 28 and 29 show the comparative results 

for the FFT-based THD for N=64 and 128, respectively, 

when the operating grid frequency is 51Hz. Notice in these 

last two figures that the FFT-based THD measurement 

method is always inaccurate and provides results with 

nonlinear oscillations and DC-offset errors. Moreover, the 

greater the frequency deviation, the more the inaccuracy in 

the THD measurement increases. Note that for the proposed 

THD method this problem does not exist. 

In summary, the proposed THD method is more accurate, 

requires few computational resources, achieves faster results 

and has less problems than the FFT-based THD. This points 

out to its viability for measuring the THD and for being 

implemented in standard and low cost DSP processors in the 

different kind of applications suggested at the introduction 

section of this paper. However, it is important to remark that 

the method needs of the use of LPF filters to stablish clear 

lower (subharmonic) and higher (maximum harmonic to be 

considered) boundaries to the input signal. Theses filters are 

important to avoid the effect of subharmonics and of extra 

switching noise in the measurement. 

 

V. CONCLUSIONS 

This paper proposes a simple method for obtaining the 

THD of the grid with a small computational burden requiring 

of few math operations, a LPF and a square root that can be 

easily implemented into some standard and low cost DSP 

processors. The THD is computed using the SOGI-FLL 

approach that provides the fundamental and harmonic 

components, but can also be implemented with other grid 

monitoring solutions like PLL or ANF. The fundamental 

component amplitude is obtained in this case from the SOGI 
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Fig. 28. Experimental results for FFT-based THD (N=64) and 

proposed THD methods for 51Hz grid frequency and a periodic 

perturbation of a 5th harmonic of 5% amplitude. Ch. 1: Grid voltage 

(250V/div). Ch. 2: THD (200mV/div or 1.66%/div). Ch. 3: FFT-

based THD (200mV/div or 1.66%/div). 
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Fig. 29. Experimental results for FFT-based THD (N=128) and 

proposed THD methods for a 51Hz grid frequency and a periodic 

perturbation of a 5th harmonic of 5% amplitude. Ch. 1: Grid voltage 

(250V/div). Ch. 2: THD (200mV/div or 1.66%/div). Ch. 3: FFT-

based THD (200mV/div or 1.66%/div). 

 

orthogonal outputs and the harmonic components through 

the NF transfer function behavior of the SOGI error signal. 

The accuracy of the system was analyzed and it was 

concluded that it relies mainly on the NF capability of the 

SOGI filter, which is determined by the SOGI damping 

factor parameter. The THD dynamic response corresponds 

predominantly to that of the LPF and is determined by its 

cutoff frequency fc. However, the dynamic is affected by the 

nonlinearity of the square root operator in the THD, which 

impact the dynamic response with asymmetric effects in the 

step-up and step-down transient responses. The worst case 

effects happen at the step-down transient response, when the 

THD is small and close to zero. The behavior of the method 

in front of grid perturbations, such as frequency steps and 

voltage sag perturbations, was also analyzed. These 

perturbations induce a burst of impulses at the THD input 

that is filtered out by the LPF, and generate an impulse-like 

perturbation. This impulsive perturbation disappears after a 

short time determined by the magnitude of the perturbation 



 

and by the LPF design parameters. Simulations and 

experimental results were provided that corroborate the 

performance of the system in terms of accuracy, dynamic 

response and robustness in front of grid perturbations. 

Moreover, an experimental comparison with a FFT-based 

THD is made, showing that the proposed method is faster 

and has a very small computational burden regarding the 

FFT one. Additionally, the proposed THD method provides 

a measurement with less noise and is robust in front of grid 

frequency variations from nominal frequency. 
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