
Worksharing Tasks: an Efficient Way to Exploit
Irregular and Fine-Grained Loop Parallelism
1st Marcos Maroñas

Barcelona Supercomputing Center (BSC)
marcos.maronas@bsc.es

2nd Kevin Sala
Barcelona Supercomputing Center (BSC)

kevin.sala@bsc.es

3rd Sergi Mateo
Barcelona Supercomputing Center (BSC)

sergi.mateo@bsc.es

4th Eduard Ayguadé
Barcelona Supercomputing Center (BSC)

Universitat Politècnica de Catalunya (UPC)
eduard.ayguade@bsc.es

5th Vicenç Beltran
Barcelona Supercomputing Center (BSC)

vicenc.beltran@bsc.es

Abstract—Shared memory programming models usually pro-
vide worksharing and task constructs. The former relies on
the efficient fork-join execution model to exploit structured
parallelism; while the latter relies on fine-grained synchronization
among tasks and a flexible data-flow execution model to exploit
dynamic, irregular, and nested parallelism. On applications
that show both structured and unstructured parallelism, both
worksharing and task constructs can be combined. However,
it is difficult to mix both execution models without penalizing
the data-flow execution model. Hence, on many applications
structured parallelism is also exploited using tasks to leverage
the full benefits of a pure data-flow execution model. However,
task creation and management might introduce a non-negligible
overhead that prevents the efficient exploitation of fine-grained
structured parallelism, especially on many-core processors. In
this work, we propose worksharing tasks. These are tasks that
internally leverage worksharing techniques to exploit fine-grained
structured loop-based parallelism. The evaluation shows promis-
ing results on several benchmarks and platforms.

I. INTRODUCTION

The introduction of the first multiprocessor architectures led
to the development of shared memory programming models.
One of those is OpenMP, which became a de facto standard
for parallelization on shared memory environments.

OpenMP [1], with its highly optimized fork-join execution
model, is a good choice to exploit structured parallelism,
especially when the number of cores is small. Worksharing
constructs, like the well-known omp for construct, are good
examples of how OpenMP can efficiently exploit structured
parallelism. However, when the number of cores increase and
the work distribution is not perfectly balanced, the rigid fork-
join execution model can hinder performance.

The omp for construct accepts different scheduling poli-
cies that can mitigate load-balancing issues; and the nowait
clause avoids the implicit barrier at the end of an omp for.
Still, both techniques are only effective in a few specific
situations. Moreover, the fork-join execution model is not well-
suited for exploiting irregular, dynamic, or nested parallelism.

Task-based programming models were developed to over-
come some of the above-mentioned limitations. The first task-
ing models were based solely on the tasks and taskwaits prim-

itives, which naturally support irregular, dynamic, and nested
parallelism. However, these tasking models are still based on
the fork-join execution model. The big step forward came
with the introduction of data dependences. Thus, replacing the
rigid fork-join execution model by a more flexible data-flow
execution model that relies on fine-grained synchronizations
among tasks. Modern task-based programming models such as
as Cilk, OmpSs or OpenMP tasking model have evolved with
advanced features to exploit nested parallelism [2], hardware
accelerators [3][4][5], and seamless integration with message
passing APIs such as MPI [6].

The flexibility of the data-flow execution model relies on
the dynamic management of data-dependences among tasks.
However, dependences management might introduce a non-
negligible overhead depending on the granularity and number
of tasks. Hence, finding the adequate task granularity becomes
a key point to get good performance: too many fine-grained
tasks will increase task overheads, but too few coarse-grained
tasks will hinder the available parallelism. Yet, it is not always
possible to reach the optimal granularity that is coarse enough
to compensate for the overheads while opening sufficient par-
allelism. Moreover, the granularity is limited by the problem
size per core. Thus, if the problem size per core is too small,
the granularity might be suboptimal, hurting the performance.

For those situations, it makes sense to combine both
strategies—tasking and worksharing—in a way that we can
palliate the drawbacks of each strategy while maximizing
their strengths. To do so, we propose an extension to tasks
especially adapted to avoid the fork-join execution model. We
introduce the for clause applied to the task construct in the
OmpSs-2 programming model [7].

Our evaluation shows promising results. The task for
construct enlarges the set of granularities where peak perfor-
mance is reached. Additionally, it enables users to increase
peak performance by up to 10x compared to pure task-based
implementation for small problem sizes with low parallelism.

To sum up, the contributions of this paper are (1) a pro-
posal and implementation of worksharing tasks, which is a
mechanism combining tasking and worksharing parallelization

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. DOI 10.1109/HiPC.2019.00053

strategies; and (2) an evaluation of such anto implementation
on several benchmarks and two different architectures.

The rest of this document is structured as follows: Sec-
tion II contains the motivations behind this work; Section III
reviews the most relevant related work; Section IV explains
the changes affecting the model; Section V details our imple-
mentation; Section VI consists of an evaluation and discussion
of the proposal; Section VII summarizes the work done
and provides concluding remarks; and, finally, Section VIII
presents future work proposals.

II. MOTIVATION

Fine-grained loop parallelism can be found in most HPC
applications. So, it is important to develop techniques that
perform well for this kind of parallelism. Harris et al. [8],
already explored the importance of properly supporting fine-
grained loop parallelism.

Nowadays, developers can use loop-based parallelism or
task-based parallelism for coding their applications containing
fine-grained loop parallelism. Loop-based parallelism is quite
simple to write, and it performs well in architectures with a low
number of cores and applications with a small load imbalance.
Despite this, it implies a rigid synchronization resulting in
performance drops when facing many-core architectures and
imbalanced applications. Task-based parallelism allows a data-
flow execution, which is more flexible than its loop-based
counterpart. Additionally, it provides several key benefits, pre-
viously mentioned in Section I. Thus, it usually performs well
in many-core architectures and load imbalanced applications.

Still, an inherent problem of task programming is granular-
ity choice. If task granularity is not adequately set, overhead
may penalize overall performance. The overhead of tasks is
caused by several different sources. The first one is the actual
task creation, which usually implies costly dynamic memory
allocations. Secondly, the computation of dependences be-
tween tasks, which involves the use of dynamic and irregular
data-structures. Finally, the scheduling of the tasks across
many cores can also become a bottleneck.

Task granularity and the number of created tasks are in-
versely proportional. Consequently, a given problem can be
solved either by using many fine-grained tasks or a few coarse-
grained ones. Thus, finding an adequate granularity is a key
point to optimally exploit resources when using tasks [9],
alleviating the aforementioned overheads, but still creating
enough parallelism to maximize resource utilization.

A typical granularity chart is shown in Figure 1. The x-
axis varies the granularity of tasks, while the y-axis represents
performance. The chart presents the results of the synthetic
benchmark shown in Code 1. There are three different series
representing different problem sizes. The chart also contains
coloured parts which represent different chart (not application)
phases. Note that from X=256 to X=1K, phases 1 and 3 are
merged. This is because it is Phase 1 for PS=16K, but Phase
3 for PS=128K and PS=1M.

When the problem size is 1M and 128K, there are three
well-differentiated phases. In the first phase, we can see how

16 32 64 12
8

25
6

51
2 1K 2K 4K 8K 16

K
32

K
64

K

12
8K

25
6K

51
2K 1M

Granularity

0

2K

4K

6K

8K

10K

P
e
rf

o
rm

a
n
c
e

Phase 1

Phase 2

Phase 3

Typical granularity chart
PS=16K
PS=128K
PS=1M

Fig. 1: Typical granularity chart.

the performance is low because there are too many very fine-
grained tasks and the overheads of creation and management of
that amount of small tasks are too costly. In the second phase,
performance grows until reaching peak performance. Finally,
in the third phase, performance decreases again because there
is not enough parallelism (i.e., not enough tasks are being
created to feed all the CPUs).

Code 1: OMP F
1 f o r (s i z e t b l o c k = 0 ; b l o c k < NUM BLOCKS; b l o c k ++) {
2 s i z e t s t a r t = b l o c k∗TSIZE ;
3 s i z e t s i z e = s t a r t +TSIZE > N ? N−s t a r t : TSIZE ;
4 #pragma o s s task i n o u t (a [s t a r t ; s i z e]) p r i o r i t y (b l o c k)
5 f o r (s i z e t j 2 = s t a r t ; j 2 < s t a r t + s i z e ; j 2 ++) {
6 a [j 2] += b [j 2]∗ c [j 2] ;
7 }
8 }

Typically, a good granularity allows having, at least, one
work unit per core to occupy all the resources. Ideally, having
more than one work unit per core is better to prevent some
load balance problems. Additionally, it is important setting
a granularity coarse enough to alleviate task management
overheads. However, there is a crucial factor that can limit the
granularity choice: the problem size per core. The problem
size per core is the result of dividing the total problem size by
the number of available cores. In consequence, the problem
size per core only depends on the total problem size and the
number of cores available in our system.

In an ideal case, like the problem sizes of 1M and 128K in
Figure 1, the granularity can grow until the overhead is not a
problem. At that point, the problem size per core is big enough
to create sufficient tasks—of a granularity that is not affected
by the overhead—to feed all the resources. This happens in
the second phase when peak performance is reached.

In contrast, if the problem size per core is not big enough,
the developer must decide between a finer granularity that is
still affected by the overhead but creates sufficient parallelism,
or a coarser-granularity that is less affected by the overhead but
causes a lack of parallelism. When this happens, the second
phase of the typical granularity chart does not appear, being
unable to reach peak performance. This phenomenon occurs
in Figure 1 when the problem size is 16K.

Daily, developers are involved in situations where the prob-
lem size per core is not optimal, jeopardizing the use of tasks
in their applications.

1) Strong scaling in distributed environments: This is a
common scenario in HPC environments. Strong scaling starts

from a given problem size per core, and make it smaller either
by augmenting the number of resources or by decreasing the
total problem size. As we have seen, reducing the problem
size per core while maintaining the granularity of the tasks
can lead to insufficient work.

2) Many-core architectures: Increasingly, architectures
have more and more cores. This trend directly affects the prob-
lem size per core, which becomes reduced because the same
problem size is divided among more resources. Thus, setting
an adequate granularity becomes harder or even impossible,
leading us to either increased overhead or lack of parallelism.

3) Applications requiring different granularities: Many
applications rely on different kernels to perform a computa-
tion, and each of them may require a different task granularity
to achieve optimal performance. Finding an adequate granu-
larity that fits all the different algorithms may be impossible.
For this case, it is especially important to have a broad set of
granularities where peak, or at least acceptable, performance
is reached because if all the kernels have several granularities
that reach peak performance, it is easier to find a granularity
that performs well for all the kernels than it would be if there is
a single granularity getting peak performance for each kernel.

Additionally, it may happen that an application with differ-
ent kernels must share the same granularity. The reason is that
the data partitioning may implicitly set the task granularity.
When this happens, it is especially important having a wide
set of granularities performing well in all the kernels. This
way, it is easier to find a coincidence across all the sets.

Apart from this, granularity issues may prevent runtime
libraries from developing sophitiscated and smart policies.
Those policies may introduce few overhead per task but could
provide benefits in terms of programmability and performance.
However, if a program contains a huge number of tasks,
the aforementioned small overhead per task, rapidly becomes
unaffordable. A good example is the support for region depen-
dences. This kind of dependences enables users to annotate
their codes with the whole memory regions a task actually
access. Then, the runtime library computes the dependences
with all the partial overlappings, actually preventing any task
that shares even a single byte to execute until the current task
finishes. In Code 2, using region dependences, the second task
depends on the first task, while it does not when using discrete
dependences (e.g., OpenMP dependences) because those only
consider the start address. Region dependences are very useful
to simplify codes, but they come at a cost. The computation
of the dependences is more expensive compared to discrete
dependencies. In consequence, if the number of tasks is huge,
the overhead may become excessive.

Code 2: Region deps
1 / / a [0 ; 8] means from 0 (inc luded) to 8 (not inc luded)
2 #pragma o s s task i n o u t (a [0 ; 8])
3 t a s k b o d y () ;
4

5 / / a [2 ; 6] means from 2 (inc luded) to 6 (not inc luded)
6 #pragma o s s task i n o u t (a [2 ; 6])
7 t a s k b o d y () ;

To sum up, task-based parallelism offers several key benefits
that developers want to keep. Notwithstanding, there are
currently several difficulties or problems when programming
fine-grained loop parallelism with tasks. (1) Granularity is
critical: for that purpose, a thorough and time-costly analysis
must be done in order to choose it adequately; (2) adequate
granularity does not always exist: some scenarios may force
developers to choose either overhead or lack of parallelism;
and (3) runtime libraries cannot develop sophisticated tasking
management policies: those could jeopardize the performance
in programs with a very large task number.

III. RELATED WORK

Our proposal, based on the idea of hierarchical partitioning,
is broadly used in distributed environments to reduce over-
heads. Most applications firstly partition data using inter-node
parallelism, spreading such data among different nodes. Then,
the work is partitioned again using intra-node parallelism.
There are several works in the literature proposing several
techniques based on this idea, such as [10], [11], and [12].

As OpenMP is the standard for shared memory parallelism,
we performed a thorough review of the OpenMP environment
to search related work. This can be seen in Section III-A. In
addition, wider related work can be found in Section III-B.

A. OpenMP related work

On OpenMP, this hierarchical partition of data can be im-
plemented in several ways using a combination of worksharing
and tasking constructs.

One of those is using tasks to perform a first partition of
the work, and then, each task contains a nested parallel region
with a worksharing construct. The reason for using tasks in
the first level of partitioning is the flexibility given by the data
dependences. This implementation may increase the resource
utilisation in some scenarios, boosting performance. However,
we end up introducing a barrier inside each task, at the end
of the nested parallel region.

Barriers have been broadly treated in literature [13]. Cur-
rently, they are usually highly optimized so that they introduce
only a few overhead in some situations, though, if the work
is not perfectly balanced, the intrinsic rigidity of the fork-
join model may lead to undesired waiting times. OpenMP
introduced the nowait clause to palliate this issue. This
clause omits the barrier at the end of a worksharing region.
Nonetheless, this mechanism is not useful to avoid the barrier
at the end of a parallel region inside a task. This is because
the barrier is necessary to postpone the release of the task
dependences until the work is completed.

OpenMP also provides different scheduling policies for the
worksharing constructs, alleviating load imbalance problems.
Still, they are not enough for many cases, and the rigidity
of the fork-join model may lead to an underutilization of the
resources.

It is possible to implement a different solution using task
nesting. This is basically creating tasks inside tasks. So, a

first partitioning is done using coarse-grained tasks with data
dependences, which are then partitioned into fine-grained tasks
without data dependences. The second level of partitioning
reduces the overhead compared to a single level of partition-
ing where all the tasks have data dependences because the
nested tasks do not pay the dependence management costs. In
addition, using tasks improves load balance. However, tasking
introduces other overheads associated with tasks management,
such as dynamic allocations and task scheduling.

The OpenMP tasking model also provides the taskloop
construct. Applied to a loop, it partitions the iteration space by
generating several tasks. There is the possibility of specifying a
grainsize guaranteeing that each of the tasks created executes
no less than grainsize iterations. With this mechanism, the
overhead may be reduced because allocations could be opti-
mized to be done as a whole, instead of one by one. However,
the number of tasks that will be created and scheduled is still
proportional to the problem size.

Task nesting could be done using the previously mentioned
taskloop. Concretely, it is possible to implement a code that is
firstly partitioned using tasks with dependences that contain
taskloops with no dependences—in fact, taskloop does not
support data dependences yet. Withal, this is very similar to the
previously described implementation using pure task nesting.

B. Non-OpenMP related work

There exist other works, such as StarPU Parallel tasks [14].
A parallel task is a task that can be run in parallel by a set of
CPUs, which might sound similar to our proposal of workshar-
ing tasks. Nonetheless, these tasks are like the combination of
an OpenMP task with a worksharing construct inside. Thus,
it contains an implicit barrier at the end. Moreover, in many
cases, only a single parallel task can run at a time. The reason
for this is that many environments and libraries they leverage
internally do not support concurrent calls to create several
parallel regions without nesting.

Intel Cilk presents the cilk_for [15], which is used to
parallelize loops. The body of the loop is converted into a
function that is called recursively using a divide and conquer
strategy for achieving better performance. However, there is a
cilk_sync at the end of each iteration. Therefore, synchro-
nization is quite rigid, similarly to OpenMP worksharings.

IV. WORKSHARING TASKS

In this section, we detail the semantics of our proposal, its
constraints and how it fits into the tasking model. Also, we
discuss its applicability and utility.

A. Syntax

We propose a new clause for the task construct. This is the
for clause for C/C++ and the do for Fortran.

A task for—or worksharing task—accepts all the
clauses accepted by a regular task except the final clause
because task for is always final. Note that being fi-
nal means that no tasks can be created inside the con-
text of a worksharing task. Additionally, it accepts the

TF A0
TF A0

TF A0

TF B0
TF B0

TF B0
TF C0

TF C0

TF C0
TF C0

TF A1
TF A1

TF A1

TF A1
TF B1

TF B1

TF B1

TF B1
TF C1
TF C1

TF C1
TF C1

F A0
F A0

F A0
F A0

F B0

F B0
F B0

F B0

F C0
F C0

F C0
F C0

F A1
F A1

F A1

F A1
F B1

F B1

F B1

F B1
F C1

F C1

F C1
F C1

T A0
T B0

T C0
T A1

T B1
T C1

release deps barrier TF → oss task for F → omp for T → omp/oss task

CPU 0
CPU 1
CPU 2
CPU 3

CPU 0
CPU 1
CPU 2
CPU 3

CPU 0
CPU 1
CPU 2
CPU 3

Time

Fig. 2: Illustration of similar execution using OmpSs-2 work-
sharing tasks and OpenMP worksharings.

chunksize(integer-expr) clause. The integer-expr
specified as a chunksize sets the minimum chunk of iterations
that each worker is going to execute when it requests work
to the worksharing task, except for the last chunk that
might contain fewer iterations. If not set, the default value is
Tasksize/NumberOfCollaborators, so that each collabo-
rator has at least one chunk to run.

The for clause can only be applied to a task that is
immediately succeeded by a loop statement. Codes 3 and 4
contain examples of code using the new clause.

Code 3: Code of Figure 2
1 f o r (i n t i = 0 ; i < 2 ; i ++) {
2 #pragma o s s tas k f o r [i n o u t (a)]
3 f o r (. . .) { . . . }
4 #pragma o s s tas k f o r [i n o u t (b)]
5 f o r (. . .) { . . . }
6 #pragma o s s tas k f o r [i n o u t (c)]
7 f o r (. . .) { . . . }
8 }

Code 4: Fortran ex-
ample

1 ! $ o s s ta sk do
2 do i =0 , N
3 c a l l do work () ;
4 end do

B. Semantics

A worksharing task behaves like a regular task in almost
everything. The main difference is illustrated in Figure 2
whose code is shown in Code 3. Regular tasks are executed
entirely by a single worker concurrently, while a task for
may be executed collaboratively by several workers, as a
worksharing construct. Nevertheless, one can see in Figure 2
that it does not imply any synchronization or barrier at all. A
worksharing task is like a regular task in this sense, and the
synchronization is done through data dependences or explicit
synchronization points. Note that the data dependences of the
worksharing tasks are released when the last chunk is finished
by the thread that runs that last chunk. This can be seen in
Figure 2, represented by the small yellow piece at the end of
the last chunk of each worksharing task.

As a worksharing construct, the iteration space of the for-
loop is partitioned in chunks of chunksize size. The key
point is that these chunks do not have the usual overheads
associated with a task—such as memory allocation and depen-
dences management. To run a chunk, a thread only needs the
boundaries of that chunk and the data environment, much like
worksharing constructs. So, in summary, a worksharing task
can be run in parallel by multiple threads, better amortizing
the task management overheads.

Usually, programmers use coarse granularities to overcome
tasking overheads. Using tasks, coarse granularities may limit

parallelism, causing some resources to be idle as in the bottom
part of Figure 2. In contrast, using coarse-grained worksharing
tasks, the work is split again into several fine-grained chunks
that can be run concurrently by several workers. Thus, prevent-
ing resources from becoming idle and maximizing resource
utilization, as shown in the top part of Figure 2.

Regarding chunk distribution, a worksharing task is highly
flexible. The only guarantee is that work is partitioned in
chunks of chunksize size and it is executed at most by N
collaborators of the same team.

A worksharing task creates a worksharing region that is
executed by a team of workers. One important property of
worksharing regions is illustrated in Figure 2: up to N threads
may collaborate on the completion of the work, but they are
not forced to do so. This behavior happens with TF A0 and
TF B0 which are run only by three threads while their team
contains four threads. This happens because all the work has
been assigned prior to the arrival of the last thread, so the last
thread just goes ahead and gets more work.

A further key feature can be observed in Figure 2. CPUs
can leave the worksharing region before the actual completion
of the whole worksharing task. CPU0 finishes its TF A0 chunk
while CPU1 and CPU3 are still completing their chunks.
However, instead of waiting as a regular worksharing does
in the middle part of the figure, it moves forward to TF B0.
In other words, worksharing regions do not contain implicit
barriers at the end. This behavior is equivalent to set a nowait
clause in OpenMP worksharing constructs.

This feature is especially important because it permits the
pipelining of different worksharing regions. This behavior can
be observed in Figure 2. For instance, when CPU1 finishes its
TF A0 chunk, there is no remaining work in TF A0. Hence,
it leaves that worksharing region and joins TF B0. However,
TF A0 was still in execution by CPU3.

In summary, worksharing tasks implicitly alleviate the ef-
fects of a possible load imbalance through the ability of
collaborators to leave a worksharing region when there is no
remaining work. Thus, threads can just go forward and get
more work instead of becoming idle waiting at a barrier. Work-
sharing tasks also palliate the granularity issues by allowing
the use of coarse granularities that are partitioned anew at an
additional level of parallelism. So, task management overheads
are minimized, and resource utilization is maximized.

C. Integration in OmpSs-2
The concept of worksharing task is completely integrated

into the model since at all levels it is like a task, except that
it may be executed by several workers instead of by a single
one. For that reason, it can interact with regular tasks without
further problem using regular mechanisms: data dependences
and explicit synchronization points regarding synchronization;
and data-sharings for managing how the data is shared across
different pieces of work.

D. Applicability
Worksharing tasks applicability is as wide as OpenMP

worksharings. If the iterations in a loop are independent,

16K 32K 64K 128K 256K 512K 1M 2M 4M
BS (Elements)

0

5K

10K

15K

20K

P
e
rf

o
rm

a
n
ce

 (
M

F
lo

p
s) PS=192 Elements per side, CS=4096 Iterations

TF4
TF16
TF64
T

Fig. 3: Comparison of HPCCG benchmark using region de-
pendences with regular tasks and worksharing tasks.

then worksharing tasks can be applied. Worksharing tasks
are especially useful to deal with applications containing
multiple kernels especially if those present different patterns
(regular/irregular). Worksharing tasks enables users to program
using a pure data-flow model while efficiently exploiting fine-
grained loop parallelism. Some benchmarks that we expect
to benefit from worksharing tasks and we are looking at, or
plan to do so in the future are: Strassen, XSBench, SparseLU,
MiniTri, Jacobi and miniAMR, to name a few.

E. Utility

Worksharing tasks mitigate or solve the problems presented
in Section II. Firstly, worksharing tasks enlarge the set of
granularities that deliver good performance. In scenarios where
only a few tasks are created and if these are not enough
to keep all the resources busy, the use of worksharing tasks
mitigate the lack of parallelism. Thus, providing several extra
granularities that still work well compared to regular tasks,
overall, easing the granularity choice.

Furthermore, as we already discussed in Section II, there
are scenarios when a good granularity does not exist and
developers incur either on overhead or lack of parallelism.
For that scenarios, worksharing tasks are especially useful
because developers can reduce overhead by setting coarser
granularities, without fearing a lack of parallelism. Given that
worksharing tasks split the work among a whole team of
collaborators, the total number of tasks required to keep all
the resources busy is reduced from the total number of cores
to the total number of teams. Hence, offering a solution to
scenarios where tasks are unable to perform well.

Finally, since worksharing tasks are able to reduce the num-
ber of tasks by making them coarser without any significant
performance loss, runtime libraries can develop sophisticated
mechanisms to deal with task management. One example can
be seen in Figure 3, where region dependences are in use. They
are not suitable to be used with regular tasks given its low
performance. However, they become suitable when combined
with worksharing tasks.

V. IMPLEMENTATION DETAILS

We have implemented the concept of worksharing tasks
in the OmpSs-2 programming model, which relies on the
Mercurium source-to-source compiler [16] and the Nanos6

runtime library [17]. In this section, we detail the extensions
performed in both components to support worksharing tasks.

A. Mercurium compiler

We have extended the Mercurium compiler to support the
new for clause applied to the task construct. Though, as
this combination of task for can only be applied to loop
statements, Mercurium is also in charge of checking so. In
the same line, Mercurium also checks that final clause is not
applied to a task for since it is not valid.

Given that a worksharing task may be executed by sev-
eral different threads, each of them should have a correct
data environment to avoid possible errors in the computa-
tions. Sometimes, this may imply firstprivate or private data-
sharings. Mercurium has the responsibility of providing a valid
data duplication method to the runtime if firstprivate or private
data-sharings have been set by the user. Otherwise, the runtime
may not know how to duplicate data.

B. Nanos6 runtime library

Regarding the runtime library, firstly, we have extended the
work descriptor of a task to include some extra information
that permits splitting and spreading of the work. Basically,
we add information about the boundaries of the loop and the
chunksize. This information is taken at task creation time.

Then, when the worksharing task becomes ready, it is
enqueued as the rest of the tasks. Eventually, the task is
scheduled for execution. At this point, worksharing tasks
follow a different path from regular tasks. Regular tasks are
assigned to a worker thread, and it is in charge of executing
the task and release its dependences if any. Worksharing tasks
are also initially assigned to a worker thread but, instead of
executing the whole task itself, it shares the task with its team.

Currently, in our implementation, the maximum size of the
teams is defined at the beginning of the execution and remain
unchanged until the end. Moreover, all the teams have the
same maximum size. We build teams by grouping together
hardware threads that are close in the physical layout.

The way a worksharing task is actually executed also differs
from regular tasks. While for regular tasks we simply assign
a work descriptor with its respective data environment to a
thread and it just runs; worksharing tasks need some further
steps. First of all, as several workers may collaborate to do the
work, each of them needs its own work descriptor and data
environment to avoid interferences caused by the concurrency.

Each CPU has a preallocated extended work descriptor.
When this CPU receives a chunk, the preallocated extended
work descriptor is filled with the actual information of the
chunk that has been assigned. This represents the control
information for running its part of the worksharing task.

Regarding the data environment, given that we do not know
in advance how many collaborators will be—neither which
of them—, each worker triggers the duplication of the data
environment in a lazy way. The worker triggers the data
duplication when it has received work to do, and it has filled
its preallocated work descriptor with the control information.

Using the data duplication method provided by the compiler,
the runtime duplicates the data environment and assigns it to
the preallocated work descriptor of the thread.

Once a CPU already has the work descriptor and the data
environment, it can start running its part of the work. The
assignment of work from a worksharing task is done on a
first-come-first-serve basis. It is guaranteed that a worker never
receives fewer iterations than those specified in the chunksize
clause, except the last chunk if there are not enough iterations
to complete a chunk. However, it may receive several chunks.

In the current implementation, the chunk scheduling policy
is very similar to the guided scheduling policy of OpenMP
since the number of assigned chunks is proportional to the
number of unassigned chunks divided by the number of collab-
orators. Note that no matter how many chunks a collaborator
receives, it performs the work descriptor filling and the data
environment duplication only once per work request. After
terminating the assigned chunks, a thread checks if it is the
last. If so, the worksharing task has finished all the chunks,
and as a result, it has finished as a whole. Data dependences,
if any, are released at this moment.

Otherwise, when a worker finishes its assigned chunks but
the whole worksharing task has not finished there exist two
possibilities: (1) all the work has been assigned and other
collaborators are still running; (2) there is still work to be
assigned. In (1), the worker that finishes its chunks just leaves
the team and tries to get new work. In (2), the worker requests
more chunks to the current worksharing task.

It is also important to highlight that assigning chunks to
a worker and finishing those chunks imply some overheads
that regular tasks do not have. Even though we have tuned
our implementation to allow fine-grained chunks, setting an
adequate chunksize is important for the proper exploitation
of worksharing tasks as shown in Section VI-D. Furthermore,
the process of requesting work crosses the scheduler path. So,
it has some associated locks that may be taken into account
when setting the chunksize.

VI. EVALUATION

In this section, we provide an evaluation of our proposal, as
well as a discussion of the results. First of all, we introduce
the environments and platforms in which the experiments
were conducted. Following, the benchmarks used and the
different implementations developed are described. Then, for
each experiment, we detail the methodology followed along
with the results and discussion about them.

We include three different experiments. The first one is a
granularity analysis on a many-core system. The objective is
to show how the traditional ways of exploiting parallelism
may easily suffer from a lack of parallelism on many-core ar-
chitectures. The second experiment is a chunksize granularity
analysis which aims to stress the importance of an adequate
chunksize. Finally, the third experiment is a strong scaling
experiment to illustrate some scenarios where the problem size
per core prevents setting a good task granularity.

We wish to remark that OmpSs-2 implements region de-
pendences. In contrast, OpenMP implements discrete depen-
dences. Given that difference, we have introduced a new
dependency system that supports discrete dependences in
OmpSs-2 to make comparisons fairer.

A. Environment

The experiments were carried out on two different plat-
forms. The first platform is composed of nodes with 2 sockets
Intel Xeon Platinum 8160 2.1GHz 24-core and 96GB of main
memory. The second platform is composed of nodes with 1
socket Intel Xeon Phi CPU 7230 1.3GHz 64-core and 96GB
of main memory plus 16GB of high bandwdith memory.

Regarding the software, we used the Mercurium compiler
(v2.3.0), the Nanos6 runtime library, the gcc and gfortran
compilers (v7.2.0), and the Intel compilers (v17.0.4).

We would like to highlight that all the experiments have
been run using the interleaving policy offered by the numactl
command, spreading the data evenly across all the available
NUMA nodes, in order to minimize the NUMA effect.

B. Benchmarks

We have considered four different benchmarks for the
evaluation: the High Performance Computing Conjugate Gra-
dient (HPCCG) [18], the matrix multiplication kernel (MAT-
MUL), the N-body simulation and the Stream benchmark [19].
HPCCG and the Stream benchmark were selected as represen-
tants of memory-bounded benchmarks while MATMUL and
the N-body simulation represent computed-bounded workload.

Code 5: OMP F(S/D/G)
1 #pragma omp f o r \
2 s c h e du l e (\
3 [s t a t i c / dynamic / guided] , TS)
4 f o r (i =0 ; i<PS ; i ++)
5 do work (i) ;

Code 6: OMP T/OSS T
1 f o r (i =0 ; i<PS ; i +=TS)
2 #pragma [omp / o s s] ta sk \
3 depend (i n o u t : i)
4 f o r (j = i ; j<i +TS ; j ++)
5 do work (j) ;

Code 7: OMP TTL
1 f o r (i =0 ; i<PS ; i +=TS)
2 #pragma omp task \
3 depend (i n o u t : i)
4 {
5 #pragma omp t a s k l o o p \
6 g r a i n s i z e (c s)
7 f o r (j = i ; j<i +TS ; j ++)
8 do work (j) ;
9 }

Code 8: OMP TF(N)
1 f o r (i =0 ; i<PS ; i +=TS)
2 #pragma omp task \
3 depend (i n o u t : i)
4 {
5 #pragma omp p a r a l l e l \
6 f o r s c h e d u l e (guided , c s)
7 f o r (j = i ; j<i +TS ; j ++)
8 do work (j) ;
9 }

Code 9: OSS TF(N)
1 f o r (i =0 ; i<PS ; i +=TS)
2 #pragma o s s task f o r chunks ize (c s) i n o u t (i)
3 f o r (j = i ; j<i +TS ; j ++)
4 do work (j) ;

For each of them, we have developed six different versions.
Code 5 implements a version using OpenMP parallel for
with the static (OMP F(S)), dynamic (OMP F(D)) or guided
(OMP F(G)) scheduler. Code 6 shows a version using tasks in
both OpenMP and OmpSs-2. This is a blocked version where
each task computes a block of TS size. Code 7 is a version
using the OpenMP taskloop. However, as taskloops do not
accept data dependences, there is a first decomposition using
tasks with data dependences. Then, inside each task, the block

512 1K 2K 4K 8K
TS (Particles)

0

20K

40K

60K

80K

P
e
rf

o
rm

a
n
ce

 (
U

p
d
a
te

s/
s)

OMP_F(S)

OMP_F(D)

OMP_F(G)

OMP_T

OSS_T

512 1K 2K 4K 8K
TS (Particles)

PS=1M Particles, CS= 256 Iterations

OSS_TF4

OSS_TF16

OSS_TF64

512 1K 2K 4K 8K
TS (Particles)

OMP_TTL

OMP_TF4

OMP_TF16

OMP_TF64

Fig. 4: Granularity chart of different implementations of the
N-body simulation.

of TS size is partitioned anew using a taskloop. Code 8 is quite
similar to the previous code just replacing the taskloop inside
the tasks by a parallel for with guided scheduling, to make it
similar to our worksharing tasks. Finally, Code 9 illustrates an
implementation done with worksharing tasks.

The N in codes 8 and 9 indicates the number of threads
used in each worksharing construct and the maximum number
of collaborators in a worksharing task, respectively.

As a final remark, all the OpenMP implementations have
been compiled and run with Intel OpenMP.

C. Granularity evaluation in many-core architecture

This subsection is devoted to performing a deep evaluation
of our proposal in a many-core architecture such as the Intel
KNL. So, the experiments were conducted on the second
platform.

In this section, we analyze the behavior of a compute-
bound benchmark, the N-body simulation; and a memory-
bound benchmark, the Stream benchmark.

In this experiment, we wish to show how the traditional
ways of exploiting parallelism—worksharings and tasks—
suffer from a lack of parallelism when the granularity is
coarse. In that scenario, the versions using nested levels of
parallelism—OSS TF, OMP TTL and OMP TF—can per-
form better because they allow higher resource utilization.

The results presented were obtained by averaging the exe-
cution times of 5 different runs per version.

1) N-body simulation: Left chart of Figure 4 compares
how OMP_T, several OMP_F, and OSS_T versions perform
with different granularities. The x-axis determines the size
of the blocks. The y-axis represents performance. For the
OMP_F version, TS means the chunksize specified in the
schedule(static,TS) clause.
OMP_F(S) and OMP_F(G) implementations perform well

almost across the whole set of granularities but the last one.
This happens because the heaviest computational loop contains
as many iterations as the number of blocks. Thus, when the
block size is 8K, there is a lack of parallelism because there
is only work for (1M/8K = 128) threads, so the other
128 are idle, and performance falls. Note that these versions
performs well even when using quite small block sizes, where
tasks suffer. This is because worksharing constructs introduce
a few overhead in comparison with tasks. Notwithstanding,
dynamic scheduler is performing quite badly. The overhead
is introduced by the dynamic handling of chunks. It also
happens with guided scheduling, but dynamic uses exactly the

0
20K
40K
60K
80K

100K
120K
140K
160K

PS=1M KElements, CS=32 KIterations
OMP_F(S)

OMP_F(D)

OMP_F(G)

OMP_T

OSS_T

0
20K
40K
60K
80K

100K
120K
140K
160K

P
e
rf

o
rm

a
n
ce

 (
M

B
/s

)

OSS_TF4

OSS_TF16

OSS_TF64

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K256K
TS (KElements)

0
20K
40K
60K
80K

100K
120K
140K
160K

OMP_TTL

OMP_TF4

OMP_TF16

OMP_TF64

Fig. 5: Granularity chart of different implementations of the
Stream benchmark.

chunksize set by the user, while guided uses it as a minimum,
and so may get bigger chunks, reducing the overall number
of chunks and consequently the overhead.

The OMP_T and OSS_T versions start far from the work-
sharing because of the overhead introduced by tasks where the
granularity is too fine. Then, they get peak performance until
the last granularity when the performance falls for the same
exact reason than OMP_F: there is not enough parallelism.

The second and third chart of Figure 4 exhibit the results for
OSS_TF(N), and OMP_TF(N) and OMP_TTL, respectively.
There, one can see an important difference with respect to
the previous versions. The difference is that performance does
not fall for the biggest granularity when N is big enough. This
means that these implementations are able to prevent the lack
of parallelism when the granularities are too coarse. As all
these implementations are using a nested level of parallelism,
the lack of parallelism in the outer level is alleviated by
using the idle resources in the inner level. Consequently, peak
performance is maintained for a broader set of granularities
than traditional implementations do.

That being said, there are some other interesting points in
the second and third charts of Figure 4. Firstly, it is possible
to observe divergences among the distinct OpenMP series in
the third chart. OMP_TTL adds no extra overhead compared
with using only tasks, in the lower granularities. Then, it gives
a small boost to the performance in the peak granularities.
Finally, for the coarser granularities, it starts falling, but
the drop is less pronounced than the drop in the OMP_T
version. In contrast, all the OMP_TF versions are introducing
extra overhead comparing with OMP_T. Note that this extra
overhead becomes bigger as N grows. However, they are also
able to provide a small increase in the peak, like OMP_TTL.

On the other hand, the OSS_TF versions, shown in the
second chart of Figure 4, are not introducing further overhead
with respect to OSS_T, even with the biggest N, while they are
also introducing a small improvement in the peak performance.

2) Stream benchmark: The topmost chart of Figure 5
compares the performance of OMP_T, OMP_F, and OSS_T
versions using different granularities. The x-axis determines
the size of the blocks. The y-axis represents memory band-
width. For the OMP_F version, TS means the chunksize
specified in the schedule(static,TS) clause.

The main difference between the Stream benchmark and the
N-body simulation is the weight of the computation, which is
much lighter for the Stream benchmark. Therefore, it needs
bigger granularities to hide the overhead of tasks. In the
topmost chart of Figure 5, the first granularity in which tasks
get good performance is 3072 Kbytes, while for the N-body
simulation, it was 44 Kbytes, almost 70x more. Given that
we need bigger granularities, it is more likely to end up in a
granularity that constraints parallelism.

Looking at the topmost chart of Figure 5, it is interesting
to point out that the OMP_F versions performs well even for
the lowest granularity, as happened in the N-body simulation,
confirming that it introduces very small overhead. All the
OMP_F versions perform very similarly except for the biggest
granularities. The reason for that remains in a small change in
the source code: the version with static scheduler can use the
nowait clause. Hence, the OMP_F(S) version only waits
once at the end of the four loops while the rest waits four
times, one per each loop. So, when granularities are fine, each
thread runs several chunks and load balancing problems can
be solved by the dynamic/guided scheduler. However, with
the biggest granularities, very few chunks, or even a single
one, are run by each thread, so load balance problems make
a significant difference, happening 4 times against only 1.

Apart from this, in the same chart is possible to see the
tasking versions outperforming all OMP_F versions at some
specific granularities. The reason for this is that tasking
versions are able to exploit some data locality due to the
immediate successor mechanism of the scheduler. With this
mechanism, when a task finishes, if some other successor
task becomes ready due to the data dependences release of
the finished task, the successor is bypassed to the same CPU
to exploit data locality. Finally, for the biggest granularities,
there is a performance drop in all the versions since there is
insufficient parallelism given that few tasks are created. For
instance, for the biggest granularity, only (1M/256K) = 4)
tasks are created, so 252 threads are idle.

The center chart and the bottom chart of Figure 5 exhibit
the results for OSS_TF(N), and OMP_TF(N) and OMP_TTL,
respectively. Again, like for the N-body case, there exist
important dissimilarities comparing these versions with the
ones in the topmost chart of Figure 5. The main one is that the
biggest granularities are not falling so much. Again, the reason
for this is that the additional level of parallelism introduced in
these implementations palliates the lack of parallelism in the
outer level. So, we end up having a wider set of granularities
reaching good performance.

Interestingly, in the versions shown in the second and third
chart of Figure 5 there is a considerable speedup in comparison
with its tasking counterparts. For OmpSs-2, second chart,

OSS_TF64 gets a 1.25x against OSS_T. For OpenMP, the
third chart, OMP_TF16 gets a 1.5x speedup against OMP_T.
The reason for this is that they are able to better exploit the
memory hierarchy. For instance, when the block size is 8
KElements, using N=16, there are at most 16 tasks running
concurrently, that means 3GB. In contrast, tasks imply N=1, so
that means 48GB. The high bandwidth memory of the KNL,
which is acting as an L3, has 16GB of capacity. Then, for
N=16, the whole dataset fits in L3, while for N=1, it does not.

Unlike with the N-body case, the OSS_TF(N) versions,
shown in the second chart of Figure 5, do introduce further
overhead with respect to OSS_T when N starts growing. The
same happens with their OpenMP counterparts, shown in the
third chart, and in fact, OMP_TF(N) versions are introducing
much more overhead than OSS_TF(N). Anew, OMP_TTL
does not introduce extra overhead comparing to OMP_T.

Overall, we would like to highlight how the set of granu-
larities achieving peak performance becomes wider as N in-
creases. This is a consequence of better resource exploitation.
When N is small and TS is big, few tasks are created. If
the number of created tasks is smaller than the number of
concurrent teams, it is guaranteed that several resources will
do nothing because some teams never get a task, hindering
performance. When N grows, there are fewer teams—with
many more collaborators—, and so it becomes more difficult
for a team to get no tasks. Thus, it is unlikely that any
of the resources remain idle. However, as the team size
increases, the contention inside it also increases and may
threaten performance. Overall, it looks like the best option
is to use a big N, but still allow several concurrent teams.

The goal of this experiment is to show that traditional ways
of exploiting parallelism suffer from a lack of parallelism when
using coarse granularities. We did show that lack of parallelism
on traditional approaches. However worksharing tasks still
perform well in scenarios where traditional approaches do
not. We can conclude that worksharing tasks offer a wider
range of granularities delivering good performance making
granularity choice easier and not so critical, especially when
using large teams. From this experiment, we can also conclude
that the number of collaborators (N) is important for achiev-
ing good performance. Users must take into account several
considerations for choosing it. The first one is the number
of worksharing tasks. As happens with regular tasks, the
best performance is achieved when all the resources are busy.
Therefore, if there are many tasks, N can be lower, since the
teams will be still busy. Oppositely, if there are only a few
tasks, N must be bigger, so that the total number of teams is
reduced, and they can be occupied with such a low number of
tasks. The second one is lock contention. Each team contains
a lock which is shared among all the collaborators. Although
it is optimized, more collaborators introduce more contention
into the lock. Thus, using a single group with all the available
cores may result in performance degradation. The last one is
hardware layout. We do not recommend going beyond a CPU
socket when setting up teams. As a general recommendation,
we suggest using one or two teams per socket. In fact, the

32 64 128 256 512
CS (Iterations)

0
10K
20K
30K
40K
50K
60K

P
e
rf

o
rm

a
n
ce

(U
p
d
a
te

s/
s) N-body simulation, PS=1M Elements

OSS_TF4 OSS_TF16 OSS_TF64 OMP_TTL OMP_TF4 OMP_TF16 OMP_TF64

2K 4K 8K 16K 32K
CS (Iterations)

40K
45K
50K
55K
60K
65K
70K

P
e
rf

o
rm

a
n
ce

(M
B

/s
) Stream benchmark, PS=1M Elements

BS: OSS_TF4=512, OSS_TF16=512, OSS_TF64=512, OMP_TTL=512

BS: OMP_TF4=1024, OMP_TF16=2048, OMP_TF64=4096

BS: OSS_TF4=32, OSS_TF16=64, OSS_TF64=256, OMP_TTL=64

BS: OMP_TF4=128, OMP_TF16=256, OMP_TF64=1024

Fig. 6: Chunksize granularity of an N-body simulation and the
Stream benchmark.

default value of our implementation is one team per socket.

D. Chunksize granularity

The objective of this experiment is to show that the
chunksize may affect the performance as much as the task
granularity. Thus, it must be considered and adequately tuned.

Figure 6 show an analysis for the N-body simulation and the
Stream benchmark of different chunksizes for a fixed problem
size. The block size may vary for different versions, but it
is the same for all the different chunksizes of a version. In
consequence, series cannot be compared against others, only
points within the same series can be compared. The block size
is a point in the first phase of a typical granularity chart, where
tasking overheads still hinder performance.

In the charts, the x-axis stands for chunksize (CS) in number
of iterations, while the y-axis shows the performance for the
N-body simulation, and the memory bandwidth for the Stream
benchmark. The chunksize must be lower or equal than the TS,
because a single chunk cannot do more iterations than those
in the whole block.

Looking at the right chart of Figure 6, it can be seen that the
chunksize does not have any effect on the Stream benchmark.
This happens because the limiting resource in this benchmark
is the memory. Thus, waiting to acquire some locks, or letting
some resources become idle, wasting CPU time, is not so
critical like in compute-bound benchmarks.

The chunksize is crucial in the N-body simulation, as can be
seen in the left chart of Figure 6. Regarding worksharing tasks,
for medium and large values of N, an adequate chunksize
provides +2x of speedup compared with a bad chunksize. The
reason for this is that an excessively small chunksize may
imply many more requests to the scheduler, augmenting the
contention on the scheduler locks. Making it too large does
not affect, because even if there are not enough chunks in a
task for to feed all the workers, new work can start.

In contrast, the left chart of Figure 6 shows the opposite
behavior for OpenMP. It almost does not matter how small
the chunksize is. The OpenMP guided policy assigns chunks
dynamically. The actual chunk size is proportional to the
number of unassigned chunks divided by the number of
threads in the team, with the costraint that it can never be
lower than the value set by the user. So, usually, big chunks
are assigned at the beginning. Then, they become smaller and
smaller until the last iterations where the restriction appears.
So, when a user sets a chunksize too small, it only affects a
few chunks at the end of the execution, and so it does not

make a big difference. However, it is affected if the chunksize
becomes too big since it cannot feed all the cores and some
of them may wait in the barrier until the rest finish.

We have evidenced that chunksize may be important in
some applications; while completely nimium in others. As a
general recommendation, we suggest using CS = TS/N so
that each collaborator in the team has at least one chunk to
execute. Nonetheless, having at least one chunk per collab-
orator is not really important if we have several ready tasks
at the same time, because in that case, collaborators can get
new tasks. In contrast, when there are only a few ready tasks,
it is important to have as many chunks as collaborators or
they will probably remain idle. Furthermore, the cost of the
computation is also important. Heavier computations can work
well with lower chunksizes while lighter computations will
require bigger chunksizes to palliate the overheads.

E. Strong scaling

This experiment consists in fixing a given number of re-
sources and decreasing the problem size, obtaining a smaller
problem size per core at each new point of the experiment.
The goal is to illustrate that there exist scenarios where
the problem size per core prevents the possibility of set-
ting an adequate granularity. In these scenarios, either task
management overheads—if the granularity is too fine— or
lack of parallelism—if the granularity is too coarse— hinders
performance. Thus, by using nested levels of parallelism that
allow the use of coarse-grained tasks that are then split into
several chunks, performance improves. For this experiment,
we have used all the benchmarks presented in Section VI-B.

The results of the experiment are presented in two charts
per benchmark, one per platform. In these charts, in the x-axis,
there are different problem sizes. The left y-axis represents
performance while the right y-axis stands for work units per
hardware thread. The charts show four different series (bars)
for each problem size. Those series are six different imple-
mentations, OMP_F(S), OMP_F(D), OMP_F(G), OMP_T,
OSS_TF and, finally, the one obtaining best performance
between OMP_TF(N) and OMP_TTL. For each of the bars,
there is also a circle pointing out the number of work units
per hardware thread for that specific configuration. Finally,
there is a horizontal line which corresponds to 1 work unit
per hardware thread. Thus, it is easy to see when there is at
least work for all the resources (above the line) and when there
is not (below the line).

For all the versions, we have explored the whole set of
combinations for each of the parameters (TS, CS and N if
applicable), and selected the best configuration.

Figure 7 shows the results for the N-body simulation. In the
first platform, left chart of Figure 7, all the implementations
perform very similarly for the three biggest problem sizes, with
all OMP_F versions standing out a bit for the biggest problem
size. Then, performance decreases for all the versions. For
the biggest problem sizes, all OMP_F versions deliver similar
performance. Then, OMP_F(S) outperforms its dynamic and
guided counterparts. Dynamic and guided schedulers introduce

1M 512K 256K 128K 64K 32K 16K
PS (Particles)

0

10K

20K

30K

40K

50K

60K

70K

P
e
rf

o
rm

a
n
ce

 (
U

p
d
a
te

s/
s)

Platform 1
OMP_F(S)

OMP_F(D)

OMP_F(G)

OMP_T

OMP_TF4

OSS_TF24

1M 512K 256K 128K 64K 32K 16K
PS (Particles)

Platform 2
OMP_F(S)

OMP_F(D)

OMP_F(G)

OMP_T

OMP_TF64

OSS_TF64

10-2

10-1

100

101

102

103

104

105

106

W
o
rk

 u
n
it

s
p
e
r

H
W

 t
h
re

a
dWork units per HW threadWork units per HW thread

BS: OMP_F(S,D,G)=512, OMP_T=512, OMP_TF=2048 OSS_TF=1024

CS: OMP_TF=1, OSS_TF=256

BS: OMP_F(S,D,G)=2048, OMP_T=2048, OMP_TF=4096, OSS_TF=2048

CS: OMP_TF=128, OSS_TF=256

Fig. 7: Strong scaling charts of the N-body simulation.

more overhead than static. They are worth if the application
is highly imbalanced, but this is not the case. Hence, they
are introducing overhead but not getting any benefit, hurting
performance. It is not significant in the biggest problem sizes
because the long execution time amortizes the overhead, but
it pops up when the execution shortens.

Regarding OMP_F and OMP_T versions, except for the
lowest problem size, there is at least one work unit for each
hardware thread, so only the lowest granularity has a lack
of parallelism. From 32K to 128K, there is a load balancing
problem. There are, respectively, 5.33, 2.67, and 1.33 work
units per thread for 128K, 64K, and 32K. This means that
some threads are performing more work than others, and those
others are just idle wasting resources.
OMP_TF version has more than enough parallelism when

considering both levels of parallelism, but the nested parallel
regions are introducing a lot of overhead, and that hurts perfor-
mance. Additionally, for the lowest problem size, there is not
enough parallelism in the first level to feed all the resources,
so that even having enough work units when considering
combined parallelism, those work units are concentrated in
only half of the resources, remaining the rest idle.

In contrast, it can be seen how OSS_TF is able to maintain
the performance much better than the other versions, reaching
up to a 1.5x speedup for the lowest size against the best
competitor. Note that the problem size is reduced by up to 64x,
but OSS_TF performance is still 70% of the peak performance
while the rest are below 50%. The main reason is that even
for the lowest size, we reach high levels of hardware resources
ocuppancy thanks to having very few (concretely 2) teams with
a high amount of CPUs. This allows not only the parallelism
to be maximized but also to improve load balancing.

In the second platform, the right chart of Figure 7, the
behavior is very similar but accentuated because of the large
number of cores available. The performance of OMP_F and
OMP_T falls very quickly because of the lack of parallelism.
In contrast, both OMP_TF and OSS_TF are able to maintain
acceptable performance even when there is not enough paral-
lelism in the first level, thanks to its nested level of parallelism.
Nevertheless, OSS_TF outperforms its OpenMP equivalent,
becoming the difference between them bigger as the problem
size per core decreases. OSS_TF is able to get up to 2x
speedup compared with OMP_TF and more than 5x compared
with OMP_T and OMP_F.

Figure 8 shows the results for the MATMUL benchmark.
Regarding the results of the first platform, displayed in the

left chart of Figure 8 it is possible to observe one more time the

6144 4096 2048 1024 512
PS (Particles)

0

200K

400K

600K

800K

1M

1.2M

1.4M
P
e
rf

o
rm

a
n
ce

 (
M

Fl
o
p
s)

Platform 1
OMP_F(S)

OMP_F(D)

OMP_F(G)

OMP_T

OMP_TTL

OSS_TF24

6144 4096 2048 1024 512
PS (Particles)

Platform 2
OMP_F(S)

OMP_F(D)

OMP_F(G)

OMP_T

OMP_TTL

OSS_TF64

10-2

10-1

100

101

102

103

104

105

106

W
o
rk

 u
n
it

s
p
e
r

H
W

 t
h
re

a
dWork units per HW threadWork units per HW thread

BS: OMP_F(S,D,G)=128, OMP_T=128, OMP_TTL=256 OSS_TF=128

CS: OMP_TTL=4, OSS_TF=64

BS: OMP_F(S,D,G)=128, OMP_T=128, OMP_TTL=128, OSS_TF=128

CS: OMP_TTL=4, OSS_TF=32

Fig. 8: Strong scaling charts of the matmul benchmark.

0
50K

100K
150K
200K
250K
300K
350K
400K

P
e
rf

o
rm

a
n
ce

 (
M

B
/s

)

Platform 1
OMP_F(S)

OMP_F(D)

OMP_F(G)

OMP_T

OMP_TF12

OSS_TF4

1M 512K 256K 128K 64K 32K 16K 8K 4K 2K 1K
PS (Elements per array)

0
50K

100K
150K
200K
250K
300K
350K
400K

P
e
rf

o
rm

a
n
ce

 (
M

B
/s

)

Platform 2
OMP_F(S)

OMP_F(D)

OMP_F(G)

OMP_T

OMP_TF16

OSS_TF64

10-4
10-3
10-2
10-1
100
101
102
103
104
105
106

W
o
rk

 u
n
it

s
p
e
r

H
W

 t
h
re

a
d

Work units per HW thread

10-4
10-3
10-2
10-1
100
101
102
103
104
105
106

W
o
rk

 u
n
it

s
p
e
r

H
W

 t
h
re

a
d

Work units per HW thread

BS: OMP_F(S,D,G)=32, OMP_T=128, OMP_TF=512 OSS_TF=512

CS: OMP_TTL=256, OSS_TF=256

BS: OMP_F(S,D,G)=512, OMP_T=2048

OMP_TF=8192, OSS_TF=8192 CS: OMP_TTL=8192, OSS_TF=8192

Fig. 9: Strong scaling charts of the Stream benchmark.

performance reduction as the problem size becomes smaller.
The reasons are load balancing, like for the N-body simulation,
for PS=1024; and the lack of parallelism for PS=512. Yet,
OSS_TF keeps performance better than the other versions,
achieving up to a 2x speedup against the best OpenMP version.

The nature of the chart of the second platform, shown in
the right chart of Figure 8, is similar to the previous, but in
this case, the main problem is actually the lack of parallelism
given the large number of available resources. In this platform,
nonetheless, OSS_TF is able to reach up to a 2.7x speedup
versus the best OpenMP version.

The results of the Stream benchmark, available in Figure 9,
are different than the previous. In the previous benchmarks,
there was a trend where lowering the problem size led to a
performance drop, especially in the OpenMP versions.

In the first platform, the topmost chart of Figure 9, this does
not happen, or at least, the drop is not as large. The main
reason is that the limiting resource in this benchmark is the
memory bandwidth instead of the CPU. Thus, even without
using all the resources, peak performance can be achieved.
For this reason, decreasing the problem size, leading to a lack
of parallelism, is not so important in this benchmark.

That being said, we can see how the OMP_F versions are
even increasing its performance, especially OMP_F(S). The
increase stems from the data locality exploitation given that
in the lowest sizes, the whole problem or a large part of it
fits in the caches. This effect is seen in none of the other
versions mainly due to two reasons. The first one is the
pollution of the caches caused by the runtime libraries. The
second one is that the static scheduling of the OMP_F(S),
combined with the nowait clause, allows that a CPU executes
the same elements of each loop, maximizing data reuse. In
contrast, task-based versions, although they have immediate

256 128 96 64 32
PS (Elements per dimension)

0

5K

10K

15K

20K

25K

30K

P
e
rf

o
rm

a
n
ce

 (
M

Fl
o
p
s)

Platform 1
OMP_F(S)

OMP_F(D)

OMP_F(G)

OSS_TF12

256 128 96 64 32
PS (Elements per dimension)

Platform 2
OMP_F(S)

OMP_F(D)

OMP_F(G)

OSS_TF16

10-3
10-2
10-1
100
101
102
103
104
105
106

W
o
rk

 u
n
it

s
p
e
r

H
W

 t
h
re

a
dWork units per HW threadWork units per HW thread

BS: OMP_F(S,D,G)=64, OSS_TF=128

CS: OSS_TF=4096

BS: OMP_F(S,D,G)=32, OSS_TF=256

CS: OSS_TF=8192

Fig. 10: Strong scaling charts of the HPCCG benchmark.

successor policy which favors locality, is not so perfect as the
OMP_F(S) one. Regarding the dynamic and guided versions,
they need to run the whole loop, iterating over the whole data
arrays before moving forward to the next loop, preventing
them from any kind of data reuse.

In the second platform, the bottom chart of Figure 9, the
effect of insufficient parallelism is notable, like in the previous
benchmarks. It is caused by the large number of cores available
in this platform, which needs a bigger value of problem size
to keep the problem size per core able to perform decently.
In this platform, there are four versions that stand out. Again,
the reason is data locality. This platform incorporates a 16GB
high bandwidth memory used as L3. The problem sizes where
we get the best performance are those where the whole data
set fits in cache while there is enough parallelism.

Figure 10 introduces the results obtained in the HPCCG
benchmark. In this benchmark, each chart only contains two
series instead of the four mentioned previously. The reason
is that the HPCCG benchmark contains several reductions.
The Intel OpenMP compiler and runtime we have used do not
support task reductions. Therefore, all the versions using tasks
(OMP_T, OMP_TF and OMP_TTL) perform poorly.

The results of the first platform are given in the left chart
of Figure 10. In that chart, it is possible to see again, like in
the previous benchmark, how the performance of all OMP_F
versions drops when the problem size per core decreases. In
contrast, the performance of OSS_TF remains very similar
until the lowest problem size where it finally drops. Despite
the drop, OSS_TF gets more than 9x speedup compared to
OMP_F for that problem size. The reason for the drop, one
more time, is the lack of parallelism. However, it is possible to
see some of the circles below the line while the performance is
still peak. This happens for the same reason than the Stream
benchmark. HPCCG is also memory-bound, so it does not
need to occupy all the cores to reach peak performance. There
are also some differences depending on the scheduler for
the OMP_F versions. Dynamic and guided seems to perform
slightly better. The reason is load imbalance.

In the second platform, the right chart of Figure 10, the
trends are similar. OMP_F performance is deteriorated by the
lack of parallelism. However, the OSS_TF performance in this
platform, falls faster because there are many more resources
available, and even OSS_TF is not able to exploit enough
of them when the problem size is reduced. Still, OSS_TF
outperforms OMP_F by up to 1.65x.

We have demonstrated that when performing strong scaling
experiments we can easily get into scenarios where the prob-
lem size per core prevents traditional ways of exploiting par-

allelism to get good performance. At the same time, we have
shown how worksharing tasks mitigate the lack of parallelism
issue being able to perform well across several benchmarks
on two different platforms, even in scenarios where traditional
approaches suffer.

VII. CONCLUSIONS

In this paper, we propose a new concept called worksharing
tasks that leverage the flexibility of tasks and the efficiency
of worksharing techniques to exploit fine-grained loop par-
allelism. Our proposal introduces the new for clause—do
clause in Fortran—to the task construct.

A worksharing task is like a regular task that encompasses a
for loop. The key difference is that this for loop can be run by
several workers using worksharing techniques that have been
adapted to avoid any fork-join synchronization to preserve the
fine-grained data-flow execution model of regular tasks.

In general, task-based programming models require at least
one task per core to achieve the best performance. This fact
provides an upper bound on the task granularity, which pro-
portionally increases with the problem size but proportionally
decreases with the number of cores. Thus, a small problem size
combined with a large number of cores limits task granularity
and impacts performance.

Using too fine-grained tasks, the overheads related to task
management hinder performance; while using too coarse-
grained tasks, the number of tasks is not enough to fully
exploit all cores. The lower bound of task granularity that
reaches peak performance is determined by the efficiency of
the runtime system to handle tasks, while the upper bound of
task granularity is determined by the problem size per core.

Worksharing tasks overcome the requirement of one task
per core to achieve high resource utilization by allowing a
small number of coarse-grained worksharing tasks that are
partitioned into several fine-grained chunks. Worksharing tasks
allow us to increase task granularity up to 64x without limiting
the available parallelism. Hence, a small number of workshar-
ing tasks can efficiently exploit a many-core processor.

Our evaluation shows that worksharing tasks not only out-
perform traditional tasks and worksharing techniques, but also
advanced combinations of both techniques. Worksharing tasks
get up to 9x speedup against the most performant OpenMP
alternative in some scenarios. Moreover, the use of workshar-
ing tasks increases the range of granularities that reach peak
performance. Finally, our proposal does not add any coding
complexity over the traditional task-based implementation.

VIII. FUTURE WORK

We plan to investigate additional scheduling policies to
distribute loop iterations across workers, as well as dynamic
composition of the teams that execute a worksharing task,
with the goal of improving the flexibility and efficiency of
this mechanism.

Also, we intend to explore the interaction between the
OpenMP taskloop and our worksharing tasks. Currently,
taskloop distributes a loop into tasks. Given that worksharing
tasks are essentially tasks, this should naturally work.

ACKNOWLEDGMENT

This work is supported by the Spanish Ministerio de
Ciencia, Innovación y Universidades (TIN2015-65316-P), by
the Generalitat de Catalunya (2014-SGR-1051) and by the
European Union’s Seventh Framework Programme (FP7/2007-
2013) and the H2020 funding framework under grant agree-
ment no. H2020-FETHPC-754304 (DEEP-EST).

REFERENCES

[1] OpenMP Architecture Review Board, “OpenMP Application
Programming Interface,” November 2018, accessed: 2019-03-
24. [Online]. Available: https://www.openmp.org/wp-content/uploads/
OpenMP-API-Specification-5.0.pdf

[2] J. M. Perez, V. Beltran, J. Labarta, and E. Ayguadé, “Improving the
integration of task nesting and dependencies in openmp,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2017, pp. 809–818.

[3] E. Ayguade, R. M. Badia, D. Cabrera, A. Duran, M. Gonzalez, F. Igual,
D. Jimenez, J. Labarta, X. Martorell, R. Mayo et al., “A proposal to
extend the openmp tasking model for heterogeneous architectures,” in
International Workshop on OpenMP. Springer, 2009, pp. 154–167.

[4] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “Ompss: a proposal for programming heterogeneous
multi-core architectures,” Parallel processing letters, vol. 21, no. 02, pp.
173–193, 2011.

[5] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier, “Starpu:
a unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and Experience,
vol. 23, no. 2, pp. 187–198, 2011.

[6] K. Sala, X. Teruel, J. M. Perez, A. Pena, V. Beltran, and J. Labarta,
“Integrating blocking and non-blocking mpi primitives with task-based
programming models,” Parallel Computing, 12 2018.

[7] Barcelona Supercomputing Center, “OmpSs-2 Programming Model,”
accessed: 2019-03-24. [Online]. Available: https://pm.bsc.es/ompss-2

[8] T. Harris and S. Kaestle, “Callisto-rts: fine-grain parallel loops,” in 2015
{USENIX} Annual Technical Conference ({USENIX}{ATC} 15), 2015,
pp. 45–56.

[9] A. Navarro, S. Mateo, J. M. Perez, V. Beltran, and E. Ayguadé, “Adaptive
and architecture-independent task granularity for recursive applications,”
in International Workshop on OpenMP. Springer, 2017, pp. 169–182.

[10] H. Dursun, K.-I. Nomura, L. Peng, R. Seymour, W. Wang, R. K. Kalia,
A. Nakano, and P. Vashishta, “A multilevel parallelization framework for
high-order stencil computations,” in European Conference on Parallel
Processing. Springer, 2009, pp. 642–653.

[11] S. Chatterjee, S. Tasirlar, Z. Budimlic, V. Cave, M. Chabbi, M. Gross-
man, V. Sarkar, and Y. Yan, “Integrating asynchronous task parallelism
with mpi,” in 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. IEEE, 2013, pp. 712–725.

[12] R. Rabenseifner, G. Hager, and G. Jost, “Hybrid mpi/openmp parallel
programming on clusters of multi-core smp nodes,” in 2009 17th
Euromicro international conference on parallel, distributed and network-
based processing. IEEE, 2009, pp. 427–436.

[13] R. Nanjegowda, O. Hernandez, B. Chapman, and H. H. Jin, “Scalability
evaluation of barrier algorithms for openmp,” in International Workshop
on OpenMP. Springer, 2009, pp. 42–52.

[14] Université de Bordeaux, CNRS and Inria, “StarPU Handbook -
Parallel Tasks,” April 2019, accessed: 2019-04-04. [Online]. Available:
http://starpu.gforge.inria.fr/doc/html/TasksInStarPU.html#ParallelTasks

[15] Intel, “Intel C++ Compiler 19.0 Developer Guide and Reference,”
accessed: 2019-03-24. [Online]. Available: https://software.intel.com/
en-us/cpp-compiler-developer-guide-and-reference-cilk-for

[16] Barcelona Supercomputing Center, “Mercurium Compiler,” accessed:
2019-03-24. [Online]. Available: https://github.com/bsc-pm/mcxx

[17] ——, “Nanos6 Runtime,” accessed: 2019-03-24. [Online]. Available:
https://github.com/bsc-pm/nanos6

[18] Michael A. Heroux, “High Performance Computing Conjugate
Gradients: The original Mantevo miniapp,” accessed: 2019-03-24.
[Online]. Available: https://github.com/Mantevo/HPCCG

[19] University of Tennessee, “HPC Challenge Benchmark,” accessed:
2019-03-24. [Online]. Available: http://icl.cs.utk.edu/hpcc/

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://pm.bsc.es/ompss-2
http://starpu.gforge.inria.fr/doc/html/TasksInStarPU.html#ParallelTasks
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-cilk-for
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-cilk-for
https://github.com/bsc-pm/mcxx
https://github.com/bsc-pm/nanos6
https://github.com/Mantevo/HPCCG
http://icl.cs.utk.edu/hpcc/

	I Introduction
	II Motivation
	II-1 Strong scaling in distributed environments
	II-2 Many-core architectures
	II-3 Applications requiring different granularities

	III Related work
	III-A OpenMP related work
	III-B Non-OpenMP related work

	IV Worksharing tasks
	IV-A Syntax
	IV-B Semantics
	IV-C Integration in OmpSs-2
	IV-D Applicability
	IV-E Utility

	V Implementation Details
	V-A Mercurium compiler
	V-B Nanos6 runtime library

	VI Evaluation
	VI-A Environment
	VI-B Benchmarks
	VI-C Granularity evaluation in many-core architecture
	VI-C1 N-body simulation
	VI-C2 Stream benchmark

	VI-D Chunksize granularity
	VI-E Strong scaling

	VII Conclusions
	VIII Future work
	References

