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Summary. This paper presents the implementation of a simple wrinkling/slackening model 
into the classical Argyris membrane element, comparing the solution performance by 
Newton’s iterations, using either the tangent stiffness matrix (numerically evaluated through a 
finite-difference approximation), or a secant stiffness matrix (obtained through the 
modification of the elasticity matrix, according to a projection technique which decompose 
deformations into elastic and wrinkle components).  

 
 
1 INTRODUCTION 

There may be cases in which wrinkles on a membrane must be represented with accuracy. 
In these cases, a shell-like formulation is generally required, and numerical solutions require 
heavy computation. In the case of architectonical membranes, however, wrinkling is to be 
avoided, at least on the initial configuration.  

 
To guarantee a taut surface, shape finding processes seek configurations where the 

minimum membrane’s principal stresses are positive everywhere. In past times, this 
requirement was also extended to the membrane under design loads, and the onset of 
wrinkling was considered as a type of structural failure. Thus, in order to avoid wrinkling, 
high initial stresses were usually prescribed at the initial membrane configuration. 
Nevertheless, in practical architectonical applications, there is not an unconditional reason for 
the membrane to be free of wrinkles, or even slack zones, in extreme load cases, nor it is 
required to know the precise pattern of wrinkling, when it occurs. What does is necessary is a 
method capable to determine the correct load transfer mechanisms, which are distorted if the 
adopted finite elements do not avoid spurious compression states. Besides, if wrinkling and 
slackening are allowed in some conditions, the resulting anchorage loads are reduced, because 
smaller initial membrane stresses are then required, and also because larger membrane 
displacements contribute to a more favorable load distribution. 

 

Implementation of a simple wrinkling model into Argyris’ membrane finite element 
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In this paper, we present the implementation of a simple wrinkling/slackening model for 
the classical Argyris membrane element, already available in the SATS program1,2, and 
compare the performance of the tangent stiffness matrix (consistent with the proposed 
wrinkling/slackening model, but numerically evaluated through a finite-difference 
approximation),  to the performance of a secant stiffness matrix (obtained when the classical 
linear elasticity matrix is replaced by the modified elasticity matrix derived by Akita et al.3, 
using a projection technique to decompose deformations into elastic and wrinkle 
components). 

2 NONLINEAR EQUILIBRIUM. VECTOR NOTATION 
Upon discretization, the problem of equilibrium of a membrane structure can be expressed 

as finding a displacement  vector *u  such that  
      * * *  g u p u f u 0   (1) 

where r u x x  is the global displacement vector with respect to a reference configuration 

rx ,  g u  is a residual force vector,  p u  is the internal load vector and  f u  is the external 
load vector, all of order dofn , the number of degrees of freedom of the system. 
   

 These functions can be computed in sub-domains e , or elements (Figure 1(a)), as a 
function of the element displacement vectors e e

   u u , 1, , e
nn  , 1, , ee n , where en is 

the number of elements and e
nn  is the number of nodes defining the eth element. Defined onto 

every element, there exist an element residual force vector e e
   g g , where  e e e

 g g u  is 

the contribution of the eth element to the residual vector, evaluated at its th node. 
  
The equilibrium problem (1) can be solved –within a vicinity of a solution *u – iterating 

Newton’s recurrence formula,  

      
1

-1
1

k

k k k k k k





 
      u

gu u g u u K g u
u

  (2) 

where we define the tangent stiffness matrix 
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  (3) 

 
Recurrence (2) may converge to a solution even when the consistent linearization of (1) is 

replaced by some approximation (i.e., a secant stiffness matrix), usually at the price of 
reduced convergence rate.   
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The element displacement vectors eu  can be extracted from the global one according to 
e eu A u , where eA  is a Boolean incidence matrix for that element. Likewise, the global 

residual force vector and the global tangent stiffness matrix can be assembled according to 

1

en
eT e

e
g A g      and        , , 1, ,

ee
e ei

dofe e
j

g i j n
u

 
   
   

gk
u

      (4),   (5) 

where e
dofn denotes the number of degrees of freedom of the eth element.  

3 INTERNAL LOAD VECTOR FOR A MEMBRANE ELEMENT 
Figure 1 shows the Argyris’ natural triangular membrane finite element, defined in an 

initial configuration 0 , in which it is already under an initial stress field. A reference 
configuration r usually considers stress-free conditions. For small strains, we assume 

0r   . The element’s current configuration is denoted by c .  Element nodes and edges 
are numbered anticlockwise, with edges facing nodes of same number. Nodal coordinates are 
referred to a global Cartesian system, and a local coordinate system, indicated by an upper 
hat, is adapted to every element configuration, such that the x̂  axis is always aligned with 
edge 3, oriented from node 1 to node 2, whilst the ẑ  axis is normal to the element plane.  
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Fig. 1: (a) a domain  , discretized into elements e ;  (b) a triangular element in three different configurations; 
(c) position vector Px  and displacement vector Pu  ; (d) internal angles , ,   and unit vectors iv  along the 

edges; (e) internal nodal forces ip  decomposed into natural forces i iN v . 
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Fig. 1(c) displays the current global coordinates of eP . Nodal coordinates are given by 
0 1, 2,3,i i i i  x x u , where iu  are the element’s nodal displacements. Fig. 1(d) displays the 

lengths of element edges, given by i i k j  l x x , with indexes , , 1, 2,3i j k   in cyclic 

permutation. Unit vectors parallel to the element edges are denoted by i i iv l l . With these 
definitions, the vector of internal nodal forces can be decomposed into forces parallel to the 
element edges, according to 

 
1 2 2 3 3 2 3 1

2 3 3 1 1 1 3 2

3 1 1 2 2 1 2 3

e

N N N
N N N
N N N

        
                   
               

p v v 0 v v
p p v v v 0 v CN

p v v v v 0
          (6) 

where C is a geometric operator, which collects the unit vectors parallel to the element edges 
and  1 2 3

TN N NN is the vector of natural forces (see Fig. 1(d)). 
 

We assume that the taut behavior of the element is linear-elastic, thus a linear relationship 
exists, such that 

 0
r
n N k a N ,  (7) 

where  1 2 3
T   a , is the vector of natural displacements (with 

0 1, 2,3,i i i i    ) and the element  natural stiffness is a constant matrix given by 

 -1 1 -1ˆr T
n r r r r rV  k T TL LD , (8) 

where rV  is the element volume,  diag r
r iL , D̂ collects the coefficients of Hooke’s law 

for plane stresses, such that ˆˆ ˆσ ε=D  and, finally, rT  is a transformation matrix, relating the 
linear Green strains ε̂  to the natural strains , i.e., ˆ

rn  T εε , highlighting the fact that Argyris’ 
natural membrane element is akin to a strain gauge rosette. Explicitly we have 

 

2 2

2 2

cos sin sin cos
cos sin sin cos

1 0 0

r r r r

r r r r r

   
   

 
   
  

T  , (9) 

where the internal angles r and r  are depicted in Figure 1(d).  The upper or lower index 'r' 
indicates that computations are performed in the reference configuration, which, for small 
strains kinematics, can be superimposed to the initial one. A more detailed deduction of r

nk  is 
provided in references1,2. Since r

nk  has only six independent components, its storage is 
usually economic, reducing the number of operations required to calculate the internal loads 
and tangent stiffness, and thus the overall computing time.  

 
Inserting (7) into (6), the vector of internal forces at each configuration is given by  
  0

e r
n p C k a N .  (10) 
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It is interesting to define also an external wind load vector, according to 

  3 3 33
Te e

w
pA

 f I I I n , (11) 

where p  is a normal wind pressure acting on the element, A  is its area and en its normal unit 
vector, in the current configuration. Thus, the element error vector becomes 

 e e e
w g p f   (12) 

Proceeding with derivation of (5),  the consistent tangent stiffness matrix of the membrane 
element is obtained:  
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k k k k

 (13) 

where 3
T

i i i M I v v  , 1, 2,3i  , and skew( )i iΛ l are skew-symmetric matrices, whose axial 
vectors are given by i i il v , and where each component define, respectively, the 
constitutive, the geometric and the external components of the element tangent stiffness 
matrix. The contributions of eg  and ek  to (4) and (5) are given according to 

1 2 3 3
e e e
i j k  A A A I  and 1 2 3

e e e
m m m  A A A O ,    1,2, , \ , ,nm n i j k . 

 

4 A SIMPLE WRINKLING MODEL 

Matrix r
nk is constant, and provides a fast way to compute the element’s internal loads and 

tangent stiffness, when the membrane is fully under tension, avoiding explicitly calculation of 
strains or stresses during solution, as they can be post-processed after equilibrium is achieved.  

 
However, before developing compressive stresses, membranes become wrinkled or slack. 

Criteria for identification of the status of a membrane element (taut, wrinkled or slack) 
require consideration of stresses, strains, or both. Therefore, when wrinkling or slackening are 
possible, equations (10)  and (13) have to be replaced for lengthier calculations. For isotropic 
materials, the principal stress and strain directions are parallel, and stress, strain or mixed 
wrinkling criteria are equivalent [7]. We choose a pure stress criterion and calculate element 
stresses directly from natural displacements.  

 
In order to further speed up calculations, we first decompose the element natural stiffness 

r
nk  according to  

   -1 1 -1ˆr T r r
n r r r r r aV 

  k T T k kL LD ,  (14) 
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where we observe that r
k and  1 ˆ Tr r

a rV 
k kD are two symmetric constant matrices that can 

be conveniently stored during the pre-processing phase. Then stresses in any configuration 
can be evaluated according to 

 0ˆ ˆr
a σ k a σ= , (15) 

and, after calculating the principal stresses 1,2 and the “principal angle” 1   (between axis x̂  
and the 1  direction), we determine the element status and eventually modify stresses 
according to the following criterion: 

     
2

1
1 2 1 1 1

1

ˆ ˆ0 TAUT          

ˆ0 0 WRINKLED 1 cos 1 cos sin 2
2

ˆ0 SLACK       

T


    



    

           

    

σ σ

σ

σ 0

   (16) 

 
Thereafter, we replace (10) by (17): 
 ˆe r

p Ck σ . (17) 
 
A mixed stress-strain criterion could avoid the intermediate calculation of negative 

stresses, which have no physical meaning for membranes, but by using equations (15) and 
(17) we determine stresses and internal loads without explicit calculation of strains, thus a 
stress criterion becomes more effective in our framework. 

5 A FINITE-DIFFERENCE ESTIMATIVE OF THE CONSISTENT STIFFNESS 
MATRIX 

Equation (17), inserted into (12) is all what is needed to solve the equilibrium problem 
through dynamic relaxation, as done for instance in reference4. In order to use Newton’s 
iterations, however, also the system’s tangent stiffness matrix is required. Nevertheless, 
instead of performing the consistent linearization of (17), we opt to evaluate it numerically, 
through the finite-difference approximation developed in references5,6, which was shown to 
yield the same convergence rate and precision as the consistent tangent stiffness matrix, for 
highly nonlinear problems of cables, membrane and shell structures, with fairly acceptable 
extra computational cost. Such type of finite-difference procedures is commonly used in 
nonlinear mechanics, to compute approximate consistent tangent moduli, for complicated 
material laws  σ σ ε . In our approach, however, instead of approximating the tangent 
modulus, we directly approximate the tangent stiffness matrix, including all nonlinear effects 
that might affect the global error vector g . 

 
First, we first partition the element tangent stiffness matrix (13) according to  

 1 2 e
dof

e e e e
n

    
k k k k  (18) 
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where column j
jx





gk  can be interpreted as the directional derivative of g with respect to 

the jth  component of x . Thereafter, we approximate these e
dofn directional derivatives e

jk  by a 
central-difference scheme, according to  

    1 , 1, ,
2

e e e e e e e
j j j dofh h j n

h
      k g x δ g x δ  , (19) 

where h  is a finite scalar parameter and e
jh δ are backward and forward perturbations of the 

jth element degree of freedom, such that , 1, ,e e
j ij dofi n   δ , and where ij  is the 

Kronecker delta. Finally, inserting approximations (19) into (18), we obtain numerical 
estimates for the tangent stiffness matrices ek , which are then assembled into a global a 
stiffness matrix K . In references5,6 we have shown that this method provides excellent 
approximations for the consistent tangent stiffness matrix, as long as h  is small enough. 
Moreover, since no extra cost is associated to reducing the size of h , it can be taken as a 
function of the machine precision  , as small as possible, but without introducing numerical 
noise. In MATLAB environment, where SATS was implemented, we found that 4h   is a 
good compromise estimative.    

6 A SECANT STIFFNESS MATRIX 
We have also investigated the use of a secant approximation to the stiffness matrix, by 

which instead of performing the consistent linearization of  equation (17), we simply modify 
the elements’ natural stiffness, equation (14), according to a modified elasticity matrix, 
borrowed from the paper by Akita et al.3. After decomposing the total strains on a membrane 
element into elastic and wrinkled fractions, according to ˆ ˆ ˆe w ε ε ε , these authors finally 
arrive to 

 2 2

2 2

ˆ
ˆ ˆˆ

T

w T
 

s s Dε Qε
s Ds

, (20) 

where Q is a projection matrix, that extracts the wrinkled portion of the deformation from the 
total one. Vectors 1s  and 2s  are such that 1 1 2 2    ε s s , with 1  and 2 being the 
element’s principal strains (never actually calculated, in our method). Explicitly,  

 
   

   

1 1 1 1

2 1 1 1

1 1 cos 2 1 cos 2 2sin 2
2
1 1 cos 2 1 cos 2 2sin 2
2

T

T

  

  

     

      

s

s
  (21) 

Now since ˆwε does not rise stresses,    ˆ ˆ ˆ ˆˆ ˆ ˆe w     σ Dε D ε ε D I Q ε Dε , where 

  ˆ ˆ D I Q D  (22) 
is the modified elasticity matrix we seek. Inserting (22) into (14) and that into (13),  we finally 
obtain a modified, secant stiffness matrix 
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 e
c g ext  k k k k  , (23) 

in which only the constitutive part ck is approximate.  In principle, this non-consistent 
stiffness matrix may slow down convergence rates, but its use in reference7 allowed easy 
solution, as shown in the following benchmark.   

7 A FIRST BENCHMARK – THE ‘MEMORIAL DOS POVOS’  
In references4,7 we presented results obtained by the SATS program2 for the membrane 

roof of the “Memorial dos Povos de Belém do Pará”, shown Figure 2, under a uniform 
upward wind load acting over the whole membrane surface, considering both fully-adherent 
and frictionless sliding border cables. A discretization much coarser than the one used in 
actual design was adopted, to ease the visualization of results. In the present paper, we 
consider only results obtained for the fully-adherent model, which can be compared also with 
results given by the Ansys FEM  code (a sliding cable is not directly available in Ansys, thus 
the sliding condition was not analyzed by that program).  

  

 
Figure 2: The membrane roof of the “Memorial dos Povos de Belém do Pará” 

 
We also compare results obtained by SATS, through Newton’s iterations, using both the 

tangent or the secant stiffness matrices ( ek or ek ), with those obtained through dynamic 
relaxation4, a method which only requires the definition of the modified error vector g , 
yielding an independent checking for results, besides Ansys model. 

Table 1:  Comparison of some selected results, for   5
0/ 10g g   

Program SATS Ansys 

Method 
Newton  

( tangent K ) 
Newton  

( secant K ) 
Dynamic 

Relaxation 
Newton + line-

search 
Maximum displacement    [m] 0.40403 0.40403 0.40343 0.40285 

Maximum 1  [MPa] 13.60979 13.60974 13.59338 13.6 
Minimum  1  [MPa]    5.47444    5.47442   5.47499   5.47 
Maximum 2  [MPa]  5.37598  5.37598   5.37532   5.37 
Minimum 2   [MPa] 0.00000 0.00000 0.00000 0.00014 

Number of iterations 5 7 -- 12 
Time to solution [s] 4.586 4.353 -- 1.747 
Time per iteration [s] 0.9172 0.6218 -- 0.1456 
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Figure 3: Results by SATS (both Newton’s iterations dynamic relaxation) compared to results by Ansys;  
Top to bottom: displacement norms; 1  on elements; 2 on elements, wrinkled elements shown in grey. 

 
Converged results obtained considering these four different methods were all in good 

agreement, as can be seen in Table 1, which compares some selected results obtained with 
SATS and Ansys models. In the Ansys model, the wrinkled elements detected in SATS 
presented very low but still positive 2nd principal stresses, possibly due to the post-processing 
extrapolations adopted by that program. Figure 3 compares displacement’s norms and 
principal stresses on elements, obtained using SATS (differences of results through different 
methods are visually imperceptible, so figures are not repeated) and Ansys. In the plotting 
generated by SATS, principal directions are shown with lines of length proportional to the 
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stress magnitude. The wrinkled elements coincide for any alternative solution, and are 
displayed in grey, on the 2  plotting.  

As expected, the use of the secant stiffness matrix K  requires more Newton iterations for 
convergence, but each iteration is about 30% faster than the number-crunching finite 
difference procedure used to numerically calculate the tangent stiffness K . We also remark 
that, being a research program, SATS is implemented in MATLAB interpreted environment,  
and a lot of redundant calculations is performed, for the sake of readability, so the program is 
by no means optimized for speed, being much slower than Ansys, a compiled program. 

8 AN INSUFFLATE DOME REINFORCED BY CABLES 
Although results presented in the previous benchmark suggest that good results for 

problems of membrane wrinkling may be obtained using either the secant stiffness matrices 
ek  or the tangent stiffness matrices ek , in fact only a few elements of the considered 

membrane did presented a wrinkled status. Besides, models with a small number of DOFs can 
be deceiving, in non-linear analysis. 

 
In order to assess the performance of the alternative methods proposed above, in a large 

model, where wrinkling is more widespread, we consider as second application the large 
cable-reinforced, pneumatic envelope shown in Figure 4. It was designed to cover the site of a 
new nuclear power plant, during the process of ground preparation, remaining on site for only 
6 months. The structure had a roughly rectangular plant, 110m x 86m, 30 meters high, and 
was anchored to a perimeter concrete wall. The membrane was reinforced by seven cables 
laid over the membrane, transversally constrained by fabric straps, but otherwise capable of 
sliding. A relatively small internal pressure 2

0 100 /p N m was specified, and due to the short 
lifetime, a reduced basic wind pressure 2245 /q N m was estimated. Figure 4(b) shows the 
membrane equilibrium configuration under internal pressure, adopted as initial configuration 
for wind analyses. In the present paper, we restrict our interest to comparing the convergence 
rates obtained considering K  or K , and only for the case of the envelope constrained by 
adherent cables, under a transversal wind load, for which the wind pressure coefficients are 
given in Figure 4(c). We direct the reader to reference8 for a detailed description of this 
system, as well as an explanation on the influence of cable sliding on its behavior. 
  

 

1

 vento longitudinal                                                             

JUL 23 2009
14:57:23

ELEMENTS

TYPE NUM

 
Figure 4 – (a) A large pneumatic dome reinforced by sliding cables; (b) equilibrium geometry under internal 

pressure; (c) wind pressure coefficients.   
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first principal stress :    min 903078.9314     max 5467164.1749                  SATS

 

1 1.5 2 2.5 3 3.5 4 4.5 5
x 106

 
first principal stress :    min 111867.8093     max 14691846.7985                  SATS

 

2 4 6 8 10 12 14
x 106  

 
second principal stress :    min 0     max 1437335.5748                  SATS

 

2 4 6 8 10 12 14
x 105

 
second principal stress :    min 0     max 4007291.9249                  SATS

 

0.5 1 1.5 2 2.5 3 3.5 4
x 106  

Figure 5: 1st column: results for internal pressure loads only; 2nd column: results for internal pressure plus 
transversal wind loads; 1st row: displacement norms; 2nd row: 1  on elements;  3rd row: 2 on elements, 

wrinkled elements shown in grey. 
 

Table 2 shows some selected results for two load cases: “internal pressure” and “internal 
pressure + transversal wind”, both with secant and tangent stiffness matrices. Figure 5 shows 
displacement norms, 1 and 2  stress fields for these two load cases. Differences between the 
alternative secant or tangent stiffness matrices are visually imperceptible, so results are not 
repeated.  From top to bottom, Fig. 5 shows displacement norms, 1 and 2  stress fields. A 
large wrinkled zone is observed in the case of transversal wind loads (right column), at the 
wind side. 
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Table 2. Comparison of results for the pneumatic envelope, for two load cases   4
0/ 10g g  

Load case “Internal pressure” “Internal pressure + transversal wind” 
Stiffness matrix Secant  Tangent  Secant  Tangent 
Maximum displacement [m] 0.11894 0.11894 0.76464 0.76463 
Maximum 1  [MPa] 5.46716 5.46718 14.69185 14.69122 
Minimum  1  [MPa] 0.90308 0.90308 0.11187 0.11193 
Maximum 2  [MPa] 1.43734 1.43733 4.00729 4.00730 
Minimum 2   [MPa] 0.00000 0.00000 0.00000 0.00000 
Number of iterations 9 6 25 8 
Total time [s] 143.072 129.074 469,42 173.153 
Time per iteration [s] 15.90 21.51 18.77 21.64 

9 PROVISIONAL CONCLUSIONS 
It was seen that both secant and tangent stiffness matrices are able to cope with the 

problem of membrane wrinkling, under the simplified assumptions describe above. When 
wrinkling is not widespread along the membrane, both secant and tangent matrices provide 
good convergence rates. On the other hand, when wrinkling is widespread, the secant stiffness 
renders convergence more difficult. Iteration cost also becomes larger for the secant stiffness, 
whilst it is practically invariant when the tangent stiffness is evaluated by finite differences. 
Therefore, although implementation of the secant matrix requires little extra computation 
when a linear-elastic material is already available, the finite difference approximation 
provides a systematic, straightforward way to keep quadratic convergence, requiring the sole 
definition of force vectors. At this point of research, this last is our preferable method. 
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