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Summary. A common challenge for architects and engineers in the development of 
structurally efficient systems is the generation of good structural forms for a specific set of 
boundary conditions, a process known as form-finding. Dynamic relaxation is a well-
established explicit numerical analysis method used for the form-finding and analysis of 
highly non-linear structures. With the incorporation of bending and clustered elements, the 
method can be extended for the analysis of complex curved and bending-active structural 
systems. Bending-active structures employ elastic deformation to generate complex curved 
shapes. With low computational cost, dynamic relaxation has large potential as a design and 
analysis technique of novel large span structural systems such as spline stressed membranes 
and small scale robotics, bio-mechanics and architectural applications made of novel 
materials such as electro- active polymers (EAP).    

 
 
1 INTRODUCTION 

 Large elastic deformation phenomena are well known to engineers. At a (sub)microscopic 
level, these phenomena are attractive for their potential as concept generators for micro-lens 
surfaces and gels [1], [2] nano-tubes [3] and elastic shells [4]. However, in larger scales such 
as in structural engineering large elastic deformations are considered as failures and are 
designed against. There are only few examples in the built environment where implementing 
elastic deformation as a form-generating strategy has been explored [5-10].  

 
Current design theory holds that excessive elastic deformations are undesirable in 

structures. Our research challenges that philosophy; we believe that large elastic deformations 
can be successfully modeled, analyzed and interpreted as a form-finding strategy for bending-
active systems. By integrating elastic deformations in the form-finding process, novel 
lightweight spatial structures constructed from flexible yet strong engineering materials can 
be explored. 
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This paper focuses on the analysis of bending-active systems using dynamic relaxation. 
Dynamic relaxation is an established explicit numerical form-finding and analysis method 
[11]. In Section 2, the method and the element formulations for bending and clustered 
elements are presented. Section 3 presents the numerical modeling of a dielectric-elastomer 
minimum-energy structure and a stressed spline membrane. Finally, conclusions are presented 
in Section 4. 

 

2 THEORY AND ELEMENT FORMULATION  

2.1 Dynamic Relaxation Basic Scheme 
Dynamic relaxation (DR) traces the motion of each node of a structure for small time 

increments, Δt, until, due to artificial damping, the structure reaches a static equilibrium [12]. 
In form-finding, the process may be started from an arbitrary geometry, with the motion 
initiated by a stress or force application. For analyses, the process starts with a valid geometry 
and the motion is caused by a sudden load application. The DR description summarized 
below is for structures with axial links and assumes a ‘‘kinetic’’ damping of the structural 
system to obtain a static equilibrium state. When kinetic damping is employed, the motion of 
the structure is traced and when a local peak in the total kinetic energy of the system is 
detected, all velocity components are set to zero. The process is then restarted from the 
current geometry and repeated until the energy of all modes of vibration has been dissipated 
and static equilibrium is achieved.  

 
Dynamic relaxation is based on Newton’s second law that governs the motion of any node 

i in direction x at time t: 
 

𝑅𝑅𝑖𝑖𝑥𝑥𝑡𝑡 𝑀𝑀𝑖𝑖𝑣𝑣 𝑖𝑖𝑥𝑥𝑡𝑡   (1) 
 

where 𝑅𝑅𝑖𝑖𝑥𝑥
𝑡𝑡   is the residual force (difference between external and internal forces) at node i in 

direction x at time t, 𝑀𝑀𝑖𝑖  is the lumped mass at node i which is set to optimize the convergence 
and ensure the stability of the numerical process. 𝑣𝑣 𝑖𝑖𝑥𝑥𝑡𝑡  is the acceleration at node i in direction x 
at time t. 
 

Expressing the acceleration term in Equation (1) in a finite difference form and rearranging 
the equation gives the recurrence equation for updating the velocity components: 

 
𝑣𝑣𝑖𝑖𝑥𝑥𝑡𝑡 ∆𝑡𝑡 ∆𝑡𝑡

𝑀𝑀𝑖𝑖
𝑅𝑅𝑖𝑖𝑥𝑥𝑡𝑡 𝑣𝑣𝑖𝑖𝑥𝑥

𝑡𝑡−∆𝑡𝑡  
 

(2) 

 
Hence, the updated geometry projected to time t+Δt/2 is given by: 

 
𝑥𝑥𝑖𝑖𝑡𝑡 ∆𝑡𝑡 𝑥𝑥𝑖𝑖𝑡𝑡 ∆𝑡𝑡𝑣𝑣𝑖𝑖𝑥𝑥

𝑡𝑡 ∆𝑡𝑡   (3) 
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Equations (2) and (3) apply for all unconstrained nodes of the mesh in each coordinate 
direction. Moreover, the equations are nodally decoupled: the updated velocity at a node 
depends only on the previous velocity and residual force of the same node. Nodes are not 
directly influenced by updates at other nodes.  
 

The updated geometry is then employed to determine the new link forces and together with 
the applied load components Pix to define the updated residual forces Rix: 

 

𝑅𝑅𝑖𝑖𝑥𝑥𝑡𝑡 ∆𝑡𝑡 𝑃𝑃𝑖𝑖𝑥𝑥   
𝐹𝐹
𝐿𝐿 
𝑡𝑡 ∆𝑡𝑡
 𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑖𝑖 

𝑡𝑡 ∆𝑡𝑡
 
 

(4) 

 
where 𝐹𝐹𝑡𝑡 ∆𝑡𝑡   is the force in member m connecting node i to an adjacent node j at time t+Δt, 
𝐿𝐿𝑚𝑚𝑡𝑡 ∆𝑡𝑡  is the length of member m at time t+Δt. The procedure is thus time stepped using 
Equations (2) – (4), until a kinetic energy peak is detected. Velocity components are then reset 
to zero (with a small adjustment made to the geometry to correct to the true kinetic energy 
time peak), and the process is repeated until adequate convergence (equilibrium) is achieved. 

2.2 Spline Bending Formulation 
‘Splines’ originally denoted continuous flexible wooden or rubber strips used by 

draughtsmen to draw smooth curves for ship lines or railway curves. In this paper, the term 
refers to tubular structural elements that are bent from an initially straight state. It was shown 
that the torsional stiffness need not enter the analysis of a bent spline [7]. Therefore, the 
bending action in the spline is idealized as a series of bending moments between the nodes of 
the finite elements that compose the spline. The basic idea behind the bending formulation is 
that the bending moments across the elements result from changes in the curvature 
engendering shear forces at their nodes. Shear forces are then taken into account in the 
residual forces in the DR scheme. 

 
Adriaenssens and Barnes [13] proposed a spline type formulation that deals with moments 

and shear forces in deformed tubular members. The formulation adopts a finite difference 
modeling of a continuous beam. Figure 1a represents consecutive nodes along an initially 
straight tubular element, and Figure 1b two adjacent deformed segments, a and b, viewed 
normal to the plane of nodes ijk. The two elements are assumed to lie on a circular arc of 
radius R. The spacing of nodes along the traverse must be sufficiently close but the segment 
lengths need not be equal. The radius of curvature R through i, j and k and the bending 
moment M in the arc can be defined as: 

 

 
𝑅𝑅 𝑙𝑙𝑐𝑐
𝑠𝑠𝑖𝑖𝑛𝑛𝛼𝛼 

    
(5) 

  
𝑀𝑀 𝐸𝐸𝐼𝐼
𝑅𝑅   

(6) 
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where EI is assumed to be constant along the beam, E is modulus of elasticity and I second 
moment of area. The free body shear forces Sa, Sb of elements a and b complying with 
moment M at j are thus given by: 

 
𝑆𝑆𝑎𝑎

𝐸𝐸𝐼𝐼𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝑙𝑙𝑎𝑎 𝑙𝑙𝑐𝑐

 
 

(7) 
  

𝑆𝑆𝑏𝑏
𝐸𝐸𝐼𝐼𝑠𝑠𝑖𝑖𝑛𝑛𝑎𝑎
𝑙𝑙𝑏𝑏 𝑙𝑙𝑐𝑐

 
 

(8) 

 
where la, lb, lc are the distances between nodes ij, jk and ik, respectively. The three non-
collinear nodes i, j and k define a reference plane ijk. The shear forces Sa and Sb are applied at 
nodes i, j and j, k, respectively and act normal to the links ij and jk respectively and in the ijk 
plane. 
 

 
 

Figure 1: (a) Consecutive nodes along an initially straight tubular beam traverse; (b) Two adjacent deformed 
segments, a and b, viewed normal to the plane ijk. 

The calculations and transformations required in the DR scheme are thus rather simple. 
Nodes along the spline element are considered sequentially in sets of three, each lying in 
different planes when modeling a spatially curved tubular element bent from an initially 
straight condition. The formulation is useful for modeling grid shells with continuous tubular 
members, and also for membranes in which flexible battens are employed to give shape 
control such as in sails.  

2.2 Clustered Formulation 
Clustered elements describe sliding or continuous tensile elements and were introduced by 

Moored and Bart-Smith [14]. Clustered elements can group two or more links. Figure 2 
(right) illustrates a clustered four-node system, where the clustered element replaces two 
tensile elements (links 2 and 3). The clustered element can be seen as a cable running over a 
small frictionless pulley on node 3. Therefore, links 2 and 3 in the clustered element carry the 
same tensile force. Additionally, node 3 in the clustered structure has fewer kinematic 
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constraints compared with the same node in the un-clustered system (see Figure 1 left) as it 
can move around its current position. 

 

 
Figure 2: Illustration of an un-clustered four-node system (left) and a clustered configuration (right). 

A clustered element for dynamic relaxation was proposed by Bel Hadj Ali et al. [15]. 
Similar to [14], a clustering matrix S is used to link the clustered structure with its 
corresponding un-clustered configuration. The clustering matrix 𝑆𝑆 ∈ ℝ𝑒𝑒 𝑒𝑒   is defined as 
follows: 
 

𝑆𝑆𝑖𝑖𝑗𝑗  𝑖𝑖𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑙𝑙𝑖𝑖𝑛𝑛𝑘𝑘 𝑒𝑒𝑗𝑗 𝑖𝑖𝑠𝑠 𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡 𝑜𝑜𝑓𝑓 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑙𝑙𝑢𝑢𝑠𝑠𝑡𝑡𝑒𝑒𝑟𝑟𝑒𝑒𝑑𝑑 𝑒𝑒𝑙𝑙𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛𝑡𝑡 𝑒𝑒𝑖𝑖
𝑖𝑖𝑓𝑓 𝑛𝑛𝑜𝑜𝑡𝑡  

 
 
where 𝑒𝑒   is the number of elements in the clustered structure and e is the number of elements 
in the traditional (un-clustered) structure. The equilibrium of the clustered system is thus 
linked with the equilibrium of the un-clustered system. Element characteristics such as the 
elastic modulus, the cross-section area, the fabrication length and pre-stress are also linked to 
the un-clustered system using the clustering matrix S: 

 
𝑝𝑝 𝑆𝑆𝑝𝑝  (9) 

 
where 𝑝𝑝   corresponds to a characteristic of the clustered system and p is the same 
characteristic for the un-clustered system. The internal force in the mth element of the 
clustered structure at a time t is given by: 

 

𝑓𝑓 𝑚𝑚𝑡𝑡
𝐸𝐸 𝑚𝑚𝐴𝐴 𝑚𝑚
𝑙𝑙  𝑚𝑚

 𝑙𝑙  𝑚𝑚𝑡𝑡 − 𝑙𝑙  𝑚𝑚
𝑡𝑡  𝑓𝑓 𝑚𝑚  

 
(10) 

 
where 𝐸𝐸 𝑚𝑚  , 𝐴𝐴 𝑚𝑚   and 𝑓𝑓 𝑚𝑚   are the elastic modulus, the cross-section area and initial pre-stress of 
the clustered member m. 𝑙𝑙  𝑚𝑚   and 𝑙𝑙  𝑚𝑚𝑡𝑡   are the fabrication length and the current length of 
clustered member m. The internal forces of the un-clustered structure can be related to the 
clustered-element internal forces through: 
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𝑓𝑓𝑚𝑚𝑡𝑡 𝑆𝑆𝑇𝑇𝑓𝑓 𝑚𝑚𝑡𝑡   (11) 
 
where 𝑓𝑓 𝑚𝑚𝑡𝑡   is the internal force in the mth element of the un-clustered structure at a time t. 
Linking the equilibrium of the clustered system with the equilibrium of its corresponding un-
clustered configuration allows dynamic relaxation to correctly model sliding or continuous 
tensile elements while maintaining its computational advantages. 
 

3 FORM-FINDING AND ANALYSIS EXAMPLES 

3.1 Dielectric-Elastomer Minimum-Energy Structures 
Dynamic relaxation provides an inexpensive alternative for the simulation of dielectric-

elastomer minimum-energy structures (DEMES). DEMES are electro-active bending-active 
structures composed of a prestressed dielectric elastomer membrane adhered to a thin flexible 
frame [16]. The strain energy of the prestressed membrane is transferred to the initially 
straight frame deforming the structure until equilibrium. The shape of the structure is 
controlled by prestress and reflects a minimum energy state in the structure [17]. DEMES 
have been proposed for shape-shifting applications in various disciplines such as robotics 
[16], bioengineering [17] and architecture [18]. However, predicting the behavior of  DEMES 
remains a challenging task requiring complex analytical or numerical models.  

 
In this paper, we analyze a DEMES with a rounded triangular shape (Figure 3) using 

dynamic relaxation and compare the form-found shape with the shape obtained with a 
physical model. The frame of the model has a length of 52mm and a width of 4mm. A similar 
structure was studied by O’Brien et al. [19]. The input for dynamic relaxation (nodal 
coordinates and connectivity) is a planar mesh of links connected with nodes based on the 
scheme of Figure 3. Nodes at the base of the system are pinned. Clustered elements with an 
axial stiffness of 0.08N/mm are used to model the membrane while bending elements with a 
bending stiffness of 7.8mm2 are employed for the frame. 

 
Dynamic Relaxation Model

Clustered element

Bending element

Pinned node

Inextensible frame

Dielectric 
elastomer

Physical Model

 
 

Figure 3: Illustration of the elements in the numerical model in relation with the physical model. 
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DEMES equilibrium shapes are controlled by the prestress in the membrane. Therefore, 
clustered elements are given initial lengths providing the desired prestress. To initiate the 
simulation in the numerical model, the top of the mesh is given a small initial deformation. 
The prestress in the membrane induces the bending of the frame until an equilibrium shape is 
obtained. Figure 4 shows the equilibrium shape obtained with the dynamic relaxation DEMES 
model in relation with the shape of the physical model. The shape resulting from the 
application of prestress in the clustered elements of a flat structure is similar to the shape of 
the DEMES physical model. 
 

 
 

Figure 4: DEMES equilibrium shape obtained with dynamic relaxation in relation the physical model. 

The equilibrium shape of the numerical model and the physical model correspond to 
different prestress states. The membrane in the physical model is prestressed at 200% of its 
initial length, while in the numerical model clustered elements have a prestress of 150%. This 
discrepancy is most likely due to uncertainties in the numerical model [20] as well as due to 
the hysteretic DEMES behavior [21]. 

3.2 Stressed Spline Membranes 
Stressed spline membrane structures are bending-active structures that combine spline 

elements with a prestressed membrane. Splines need to be sufficiently flexible to be curved 
into the required shape and to enough strength to resist the forces arising from bending and 
the loading combinations. Therefore, materials such as Fibre Reinforced Plastics (FRP) that 
have low Young’s modulus and high strength are favored for spline applications over 
traditional structural materials such as steel and timber.  

 
In this paper, we analyze focus on a branched spline system in which the splines 

themselves provide bracing. The structure is based on three arcs of a circle joined to each 
other at one end at a central height of 3.5m using a branching splice joint while their other end 
lies on the circumference of a 8m radius circle, 120degrees away from each other (Figure 5). 
Between the arc ends on the circumference, boundary arches with a central height of 2.3m are 
inclined at 65degrees from the vertical plane and fixed. The geometry provides a double 
curvature in the prestressed membrane and therefore increased stiffness. 
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Figure 5: Initial shape of the prestressed spline membrane structure. 

The apex joint is required to be stiff and flat to be a branched splice. Therefore, it is modeled 
using splice and virtual elements (Figure 6). Adjacent splines are connected through splices 
that run from the penultimate node of one spline via the central node to the penultimate node 
of the next spline. Virtual members are also added to the apex of the structure to keep it 
horizontal during the form-finding and the load analysis. The additional members link the 
penultimate nodes of the structural splines triangulating the apex into a rigid joint. In practice, 
the branched splice might be a stiff casting onto which the splines are slotted.  
 

Virtual elements for the 
planarity of  the apex joint

Splice elements at the 
apex joint

Spline elements Clustered elements

             
 

Figure 6: Elements for the apex joint. 

Splines are composed of tubular Glass Fibre Reinforced Plastic (GFRP) elements with a 
diameter of 120mm and a wall thickness of 5mm. GFRP tubes have a Young’s modulus of 
40000MPa and admissible stresses of 100N/mm2 for compression and 700N/mm2 for tension 
as well as bending. The membrane is made out of PVC. It has a warp and weft stiffness of 
1MN/m and an admissible strength of 12kN/m. Moreover, a prestress of 1kN/m is applied in 
the membrane in both directions. The design load cases considered include self-weight along 
with symmetric and asymmetric snow and wind loading. Four loading cases were analyzed: 1. 
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asymmetric wind loading and self-weight, 2. asymmetric snow loading and self-weight, 3. 
asymmetric snow and wind loading as well as self-weight, 4. uniform snow loading and self-
weight. Stresses under these load cases remain below element strength (Table 2). 
Furthermore, although splines tend to straighten out under loading, deformations remain 
within acceptable levels.  
 

Table 1: Engineering materials and their properties 

Loading condition: 
p=0.20kN/m2 

Max. stress in 
the spline 
[N/mm2] 

Max. force in 
the membrane 
[kN] 

Deflection at 
the center 
[mm] 

1. Asymmetric wind loading 
and self-weight: p and -4p 376.20 8.53 81 

2. Asymmetric snow loading 
and self-weight: 2.5p and p 394.30 6.79 277 

3. Asymmetric snow and 
wind loading as well as self-
weight: 2.5p and -4p 

381.90 8.67 146 

4. Uniform snow loading and 
self-weight: 2.5p and 2.5p 443.8 9.51 444 

 

4 CONCLUSION 
This paper focuses on the form-finding and analysis of bending-active structure. With the 

incorporation of bending and clustered elements, dynamic relaxation is extended for the 
analysis of complex curved and bending-active structural systems. The formulation provides a 
fast and valuable tool to investigate structural behavior in the radial direction of in-plane 
bending. Two bending-active structures were investigated using spline and clustered 
elements: a basic DEMES and a stressed spline membrane. When compared with actual 
physical models, it was found that dynamic relaxation correctly predicts the equilibrium 
shapes of DEMES. In the stressed spline membrane, the pre-stress in the membrane acts as a 
continuous restraint for the splines allowing them to be very slender and therefore bent to a 
tighter radius. The examples show that the presented formulation has great potential for the 
modeling of bending-active elements that undergo large elastic deformations and opens the 
door to the development of a whole new realm of novel structural curved systems. 

 

REFERENCES 
[1] Holmes, D., Crosby, A., Snapping Surfaces, Advances Materials, Vol. 19, No. 21 (2007) 

pp. 3589-3593. 



60

S. Adriaenssens and L. Rhode-Barbarigos 

 10 

[2] Lee, H., Xia, C. and Fang, N., First jump of microgel: actuation speed enhancement by 
elastic instability, Soft Matter, Vol. 6 (2010), pp.4342-4345. 

[3] Lourie, O., Cox, D. and Wagner. H., Buckling and collapse of Embedded Nano Tubes, 
Phys. Rev. Lett., No. 8, (1998), pp.1638-1641. 

[4] Shim, J, Perdigou, E., Chen, E., Bertoldi, K., and Reis, P., Buckling Induced 
encapsulation of structured elastic shells under pressure, Proceedings of the National 
Academy of Sciences, Vol. 109 (16), pp. 5978-5983. 

[5] Liddell, W., Timber lattice roof for the Mannhein Bundesgarten, The Structural Engineer, 
(1975). 

[6] Adriaenssens, S., Feasibility Study of Spliced Spline Structures, Journal of Space 
Structures, Vol.23 (4), (2008), pp. 243-251. 

[7] Adriaenssens, S., PhD thesis: Stressed Spline Structures, University of Bath, Bath (2000). 
[8] Lafuente Hernandez, E., Gengnagel, C., Sechelmann, S. and Rorig, T., On the materiality 

and structural behaviour of highly elastic gridshell structures., Computational design 
Modeling, Springer Verlag, (2012), pp.123-125. 

[9] Douthe, C., Baverel, O., Caron, J., Gridshell in Composite Materials Materials towards 
wide span shelters., Journal of the International Association of Shell and Spatial 
Structures, Vol. 48, (2007), pp.175-180. 

[10] Douthe, C., Caron, J, and Baverel, O., Gridshell structures in glass fibre reinforced 
polymers, Construction and Building Materials, Vol. 24 (9), (2010), pp.1580-1589. 

[11] Barnes, M.R., Form Finding and Analysis of Tension Structures by Dynamic Relaxation. 
International Journal of Space Structures, 14, (1999), pp. 89-104. 

[12] Day, A.,S. An Introduction to Dynamic Relaxation. (1965). 

[13]Adriaenssens S, Barnes M.R., Tensegrity spline beam and grid shell structures, 
Engineering Structures 23(1),(2001);pp. 29–36. 

[14]Moored, K.W. and Bart-Smith, H., Investigation of clustered actuation in tensegrity 
structures. International Journal of Solids and Structures, 46(17), (2009) pp. 3272-3281. 

[15]Bel Hadj Ali, N., Rhode-Barbarigos, L. and Smith, I.F.C., Analysis of clustered tensegrity 
structures using a modified dynamic relaxation algorithm. International Journal of Solids 
and Structures, 48(5), (2011), pp. 637-647. 

[16]Petralia, M.T. and Wood, R.J., 2010. Fabrication and analysis of dielectric-elastomer 
minimum-energy structures for highly-deformable soft robotic systems, Intelligent 
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on 2010, pp. 
2357-2363. 

[17]O'Brien, B., Gibsy, T., Calius, E., Xie, S. and Anderson, I., FEA of dielectric elastomer 
minimum energy structures as a tool for biomimetic design. (2009), pp. 728706-728706. 

[18]Berardi, U., Dielectric electroactive polymer applications in buildings. Intelligent 



61

S. Adriaenssens and L. Rhode-Barbarigos 

 11 

Buildings International, 2(3), (2010), pp. 167-178. 

[19]O'Brien, B., Calius, E., Xie, S. and Anderson, I., An experimentally validated model of a 
dielectric elastomer bending actuator. (2008), pp. 69270T-69270T. 

[20]McKay, T.G., Calius, E. and Anderson, I.A., The dielectric constant of 3M VHB: a 
parameter in dispute. (2009.), pp. 72870P-72870P. 

[21] Zhao, X., Hong, W. and Suo, Z., Electromechanical hysteresis and coexistent states in 
dielectric elastomers. Physical Review B, 76(13), (2007), pp. 134113. 




