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Abstract. Part I deals with material modelling of woven fabric membranes. Due to their
structure of crossed yarns embedded in coating, woven fabric membranes are characterised
by a highly nonlinear stress-strain behaviour. In order to determine an accurate structural
response of membrane structures, a suitable description of the material behaviour is re-
quired. A linear elastic orthotropic model approach, which is current practice, only allows
a relative coarse approximation of the material behaviour. The present work focuses on
two different material approaches: A first approach becomes evident by focusing on the
meso-scale. The inhomogeneous, however periodic structure of woven fabrics motivates
for microstructural modelling. An established microstructural model is considered and
enhanced with regard to the coating stiffness. Secondly, an anisotropic hyperelastic ma-
terial model for woven fabric membranes is considered. By performing inverse processes
of parameter identification, fits of the two different material models w.r.t. measured data
from a common biaxial test are shown. The results of the inversely parametrised material
models are compared and discussed.

Part II presents an extended approach for a simultaneous form finding and cutting
patterning computation of membrane structures. The approach is formulated as an opti-
misation problem in which both the geometries of the equilibrium and cutting patterning
configuration are initially unknown. The design objectives are minimum deviations from
prescribed stresses in warp and fill direction along with minimum shear deformation. The
equilibrium equations are introduced into the optimisation problem as constraints. Addi-
tional design criteria can be formulated (for the geometry of seam lines etc.). Similar to
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the motivation for the Updated Reference Strategy [4] the described problem is singular
in the tangent plane. In both the equilibrium and the cutting patterning configuration
finite element nodes can move without changing stresses. Therefore, several approaches
are presented to stabilise the algorithm. The overall result of the computation is a stressed
equilibrium and an unstressed cutting patterning geometry. The interaction of both con-
figurations is described in Total Lagrangian formulation.

The microstructural model, which is focused in Part I, is applied. Based on this
approach, information about fibre orientation as well as the ending of fibres at cutting
edges are available. As a result, more accurate results can be computed compared to
simpler approaches commonly used in practice.

Part I: Comparison of a microstructural model with an anisotropic hyper-
elastic model gained by inverse problems of parameter identification

1 INTRODUCTION

The structure of a woven fabric embedded in coating, which is caused by the manufac-
turing process, leads to a significant physically nonlinear material behaviour. Moreover,
membrane structures are characterised by a pronounced geometrically nonlinear behav-
ior as well. Hence, a realistic analysis demands for a suitable modelling of the material
behaviour in context of finite deformations theory. For this purpose there are several
approaches, which arise from different modelling scales.

At first, the test data from a biaxial tension test is presented with regard to its usage
in parameter identification (Chapter 2). In Chapter 3 we give just the basic ideas about
approaches for modelling material behaviour on different modelling scales. After that, we
firstly present an established microstructural model with our enhancement (Chapter 4)
and we secondly pose an anisotropic hyperelastic model (Chapter 5). In Chapter 6 the
processes of identification of the model parameters are outlined. Finally, the results of the
two material models are compared and discussed (Chapter 7). The contribution focuses on
the elastic deformation behaviour. Neither viscoelastic, viscoplastic nor wrinkling effects
are considered.

2 EXPERIMENTAL DATA FROM A BIAXIAL TENSION TEST

In order to perform the identification of the parameters of the microstructural model
(Chapter 6) as well as the anisotropic hyperelastic model (Chapter 5), data from a biaxial
tension test are considered. The test data was kindly provided by Low and Bonar GmbH
(former Mehler Texnologies GmbH, Fulda/Germany). Figure 1 outlines the setup of the
test. The specimen is a slotted woven fabric membrane, whose two families of fibres are
orthogonal and orientated parallel to the load directions.

The test procedure as well as the evaluation method is performed in accordance to JIS
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Figure 1: Biaxial tension test of a woven fabric membrane – outline of the setup (after [1])

MSAJ/M-02-1995 [14]. This means that load-strain curves corresponding to 5 load ratios
are extracted for further regards. These 5 load ratios (N̄1,i/L) : (N̄2,i/L) are 2:1, 1:2, 2:0,
2:2 and 0:2, where the ratio value of 2 resp. 1 is equivalent to a load of 45.0 resp. 22.5 kN/m.
It is a load-controlled test with a constant loading rate of +/–0.2 kN/(m s), which is
assumed to be a quasi-static loading process. Since the loads are related to a refer-
ence dimension L, they act as first Piola-Kirchhoff stresses. Therefore, P̄11,i := N̄1,i/L
resp. P̄22,i := N̄2,i/L (with regard to unit thickness) is assumed. Engineering strains are
measured with extensometers in the inner area of the specimen. They are aligned parallel
to the directions of the yarns. More details concerning the biaxial tension test, the specific
test procedure and evaluation method are given in e.g. [7, pp. 51f.], [16, pp. 382f.].

There are a total of nV = 380 test data points indexed by the symbol i = 1, . . . , nV .
The measured and evaluated test data is shown in Figure 5. λ̄11,i resp. λ̄22,i is the i-th
measured stretching in warp resp. fill direction (note: stretchλ = engineering strain+1).

3 MODELLING APPROACHES FOR WOVEN FABRIC MATERIALS

Considering woven fabric materials in an engineering context, three distinct approaches
can be utilised to model the stress-strain behavior accounting for the material structure:

(a) Micro-scale approach The modelling of the particular components of the material
(yarns, coating, contact) is applicable for determination of local phenomena like e.g.
failure or damage behaviour.

(b) Macro-scale approach The assumption of a phenomenological material model like
a linear elastic, orthotropic model is a basic engineering approach and is used in
practical applications. A hyperelastic material model falls in this category as well.
The material parameters have to be determined by means of experimental methods
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(e.g. [18], [7], [16]).

(c) Meso-scale approach Since a woven fabric membrane is characterised by a repe-
titive structure, the modelling of the material behaviour by means of a submodel
at the meso-scale is reasonable. Such a submodel represents the smallest repetitive
unit and is called a unit cell model or microstructural model (e.g. [5], [6], [1]).

In the present contribution, approach (c) is focused by assuming a microstructural model
for plain-woven fabric materials. Inversely gained results are compared with results of an
anisotropic hyperelastic material model (approach (b)). In order to perform numerical
computations of full scale engineering structures, the microstructural model at the meso-
scale (approach (c)) is coupled with the macro-scale in context of e.g. finite element
computations (see Part II, Figure 6). Such an approach is denoted as multi-scale modelling
or FE 2 ([9]).

4 MICROSTRUCTURAL MODEL

In this section an established microstructural model is stated, enhanced and at last the
governing model equations are mentioned.

4.1 Established model

The basis of Part I of the present contribution is the established microstructural model
for plain-woven fabric membrane materials shown in Figure 2. An early publication of a

Figure 2: Left: Plain-woven fabric membrane; right: established microstructural model (from [1, p. 17])

mechanical description of the model is attributed to Kawabata [12]. He modelled one
single intersection point as inclined, piecewise linear bar elements coupled by another bar
element, which represents the contact between the yarns. Amongst others, there were
Meffert [13] as well as Blum [5], who made further studies of the above-mentioned
model. On this basis, Bögner reveals a considerable influence of the transversal com-
pression of the yarns. Therefore she modelled a spring in between the two intersection
points of the yarns [6]. Recently, Kaiser/Haug/Pyttel/Duddeck [11] used a beam
model with bending stiffness as representatives for the yarns. They couple it with a finite
element system and handle draping simulation problems by using material properties from
earlier publications.

A methodological feature of the work mentioned above is, that the geometrical as well
as the stiffness parameters of the models are directly obtained by means of experimental
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methods. This means that for example geometrical dimensions of the particular woven
fabric like yarn diameters and yarn spacings were obtained by means of experimental
measurement. In contrast to this, in the present paper model parameters are gained as
solutions of inverse problems on the basis of test data of a standardised biaxial tension
test (see Chapter 6). An advantage is the flexible adaption to other test data. Moreover,
there is no need for special measurement equipment. On the other hand, a direct physical
meaning of the determined parameters is not ensured at all times.

4.2 Enhancement of the established model

A well-described deformation mechanism is the crimp interchange (e.g. [7], [1]), which
is essentially responsible for the nonlinear material behaviour. Figure 3 outlines the
mechanism in context of the established unit cell modell. In cases, where the load in
one direction dominates (e.g. F1 � F2), the coating is lengthened resp. shortened and
tension resp. compression stresses are activated, whose magnitudes are functions of the
coating stiffness and contact stiffness of the yarns. Hence, the model is enhanced by

F2

F2

tension in coating

F1F1

F1 � F2

compression in coating

Figure 3: Deformation of the established model during crimp interchange

springs representing the stiffness in as well as perpendicular to the model plane. The
entire model is illustrated in Figure 4. It is explained in the subsequent section. During
the parameter identification process (see Chapter 6) the spring elements turned out to be
the decisive elements in order to obtain results with a high accuracy in comparison with
the test data.

4.3 Structural analysis of the enhanced model

The enhanced model is shown in Figure 4. The blue resp. red bar elements represent
the yarns, the green bar models the contact and the spring elements make considera-
tion of the stiffness of the coating. Moreover, the geometric dimensions of the model
are parametrised. The following eleven model parameters are assumed, at which the
dimension L1 serves as a reference quantity of the model:

• Relative dimensions L2, H1 und H2 (physical unit: [L1]);

• relative extensional stiffnesses ky,1, ky,2 and kc (physical unit: [force]);
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• relative spring stiffnesses cA,1, cA,2, cN,12 and cN,21 (physical unit: [force]/[L1]).

All parameters are posed in Mmic :=
[
L1 L2 H1 H2 ky,1 ky,2 kc cA,1 cA,2 cN,12 cN,21

]T
.

The index ’1’ corresponds to the warp direction whereas the index ’2’ refers to the fill di-
rection. It is assumed, that the microstructure represents the smallest unit of the material,
whose force-strain behaviour does not depend on the characteristic dimension, here L1.
Hence, there is no need to define a certain physical unit for L1. The deformation behaviour

is symmetric and is therefore determined by four displacements, u =
[
u1 u2 u3 u4

]T
.

−u4

u1/2
u2/2

F2

F2

F1

u1/2

u2/2

−u3

F1θ2

θ1

cN,21

cN,21
cA,2 cA,1

cN,12

cN,12

L1

L2
g1

g2g3

�1

�2�3

�4

�5

�6

H1

H2

ky,2
ky,1

kc

warp
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Figure 4: Microstructural model – undeformed and deformed configuration

Kinematic equations Nonlinear kinematics is applied to relate the displacements u
with the strains resp. elongations of the bar resp. spring elements. These equations
are partially nonlinear in L1, L2, H1, H2 and u .

Constitutive equations Linear equations, which plug element forces and strains resp.
elongations, are assumed. Hence, the constitutive equations are linear in ky,1, ky,2,
kc, cA,1, cA,2, cN,12 und cN,21.

Equilibrium Equilibrium of forces at joints �1 , �2 , �3 und �4 yield four independent
nonlinear equations in u :

G (u) = Fint (u)− Fext
!
= 0 . (1)

The residual force vector G is a vector-valued, continuously differentiable nonlinear
function in u . Fint means the vector of internal forces and Fext denotes the vector
of external forces. With regard to the parameter identification the nodal forces are
assumed to be F1 = P̄11,iL2 resp. F2 = P̄22,iL1.
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Solution One may solve the nonlinear system of equations (Eq. (1)) for each set of
test data i = 1, . . . , nV by using a Newton-Raphson iteration scheme (equilibrium
iteration), wherein the tangential stiffness matrix KT = ∂G/∂u occurs. The corre-
sponding stretching λi is computed as

λi = [λ11,i λ22,i ]
T , λdd,i = λdd,i (u) =

ud,i

Ld

+ 1 , d = 1, 2 . (2)

5 ANISOTROPIC HYPERELASTIC MODEL

In an alternative approach, a woven fabric membrane material is presumed to be-
have anisotropic hyperelastic. Holzapfel assumes a form of an energy function for an
anisotropically hyperelastic material with two families of fibres to be

ψ = ψ(C,M(1),M(2)) = ψ(QTCQ,QTM(1)Q,QTM(2)Q) . (3)

ψ is an isotropic tensor function in (C,M(1),M(2)), if Eq. (3) holds for all proper ortho-
gonal transformation tensors Q [10, pp. 273ff.]. C is the right Cauchy-Green deformation
tensor. Hence, the energy is invariant w.r.t. C,M(1) and M(2), wherein the so-called
structural tensorsM(d) = a (d)⊗a (d) (d = 1, 2) specify the symmetries of the material. The
directions of fibres are represented by a (d). Such an energy can in general be formulated
in terms of nine invariants. In most woven fabric materials the two families of fibres (warp
resp. fill) can be assumed to be orthogonal, a (1) · a (2) = 0. The orthogonality yields ψ to
be a function of only the first seven invariants:

ψ = ψ(C,M(1),M(2)) = ψ(I1, I2, I3, J
(1)
4 , J

(1)
5 , J

(2)
4 , J

(2)
5 ) , d = 1, 2 (4)

I1 := tr(C) , I2 := tr(CofC) , I3 := det(C) , J
(d)
4 := tr(CM(d)) , J

(d)
5 := tr(C2M(d))

Amongst others, [2] derives an energy function which fulfils Eq. (4):

ψ = ψiso +
∑
d=1,2

ψ
(d)
ti , d = 1, 2 (5)

ψiso (I1, I3) = c1

(
I1

I3
1/3

− 3

)
+ ε1

(
I3

ε2 +
1

I3
ε2

− 2

)
, c1 > 0 , ε1 > 0 , ε2 > 1 ,

ψ
(d)
ti

(
J
(d)
4

)
=




α
(d)
1

(
J
(d)
4 − 1

)α
(d)
2

for J
(d)
4 > 1

0 for J
(d)
4 ≤ 1

, α
(d)
1 ≥ 0 , α

(d)
2 > 1

Eq. (4) is an additive decomposition in an isotropic part ψiso and two discontiuous,

transversal isotropic parts ψ
(d)
ti , each of them corresponding to a certain fibre family.

The decomposition is motivated by constitution of a woven fabric material, which is
made of a relatively weak matrix materials and two orthogonal families of stiff fibres [3,
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p. 1021]. In [2] it is proved, that this energy function is convex in all arguments (poly-
convexity) and therefore stable. The meaning of each of the seven material parameters

Mhyp := [ c1 ε1 ε2 α
(1)
1 α

(1)
2 α

(2)
1 α

(2)
2 ]T and the case distinction in Eq. (5) is explained in

[2, pp. 6058, 6064]. Based on the energy function Eq. (5) second resp. first Piola-Kirchhoff
stresses S resp. P as well as the material tangent tensor C can be computed from the de-
formation state, which is assumed to be characterised by right Cauchy-Green deformation
tensor C resp. deformation gradient F resp. right stretching tensor U (see [3]):

S = 2
∂ψ(C,M(1),M(2))

∂C
=

3∑
j,k=1

Sjk ej ⊗ ek , C = 4
∂2ψ

∂C∂C
(6)

P = FS =
3∑

j,k=1

Pjk ej ⊗ ek , C = FTF = U2 , U =
3∑

j,k=1

λjk ej ⊗ ek (7)

S and C pose the expressions for the corresponding constitutive model for an anisotropic
hyperelastic material with two orthogonal families of fibres. This approach has been used
in several publications, e.g. [17], [16], [3].

As described so far, the constitutive model is valid for a 3d continuum. Since the
assumption of a 2d plane stress state (Pj3 = P3j = 0 , j = 1, 2, 3) is reasonable for a
woven fabric material, the constitutive model has still to be condensed. While neglecting
shear deformation (λjk = λkj = 0 , j, k = 1, 2, 3 , β �= γ) and consequently obtaining no
shear stresses (⇒ Sβγ = Sγβ = Pβγ = Pγβ = 0 , β, γ = 1, 2 , β �= γ) of the woven fabric
material, the remaining three deformation quantities – namely the stretches λ11, λ22, λ33 –
can be computed from firstly the zero-stress condition in transversal direction and secondly
two conditions with regard to the imposed loads in the biaxial tension test P̄11,i = N̄1,i/L
resp. P̄22,i = N̄2,i/L (w.r.t. unit thickness). These three conditions are collected in a
residuum vector:

R = R (λi, λ33) :=




P33

P11 − P̄11,i

P22 − P̄22,i


 !
= 0 , λi = [λ11,i λ22,i ]

T (8)

The stretches can be computed for each set of test data i = 1, . . . , nV by applying a
linearisation and performing a subsequent Newton-Raphson iteration scheme. Herein,
the Jacobian of R w.r.t. the stretches can be calculated considering the case distinction
in Eq. (5).

6 PARAMETER IDENTIFICATION PROCESSES

In order to identify the parameters of the microstructural model, resp. the parameters
of the anisotropic hyperelastic model in such a way, that they fit the load-stretch data
from the biaxial tension test (see Figure 5), two different inverse problems are formulated
analogously. Since the number of test data points is in general greater than the number
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of identifiable model parameters, a problem of parameter identification is overdetermined
and therefore is treated by methods of optimisation. Subsequently, the optimisation prob-
lem is formulated (Section 6.1), the used algorithms are mentioned briefly (Section 6.2)
and the resulting model parameters are presented and discussed (Section 6.3).

6.1 Formulation and solution of the inverse problems

The design vector smic resp. shyp contain the model parameters Mmic resp. Mhyp,
which shall be identified. The particular objective function fmic resp. fhyp equals the sum
of squared errors and yields

f(·) = f(·)
(
λi(s(·)), . . . ,λnV

(s(·))
)
=

nV∑
i=1

[
wi

(
λ11,i − λ̄11,i

)2
︸ ︷︷ ︸
i-th squared error
in warp direction

+wi

(
λ22,i − λ̄22,i

)2
︸ ︷︷ ︸
i-th squared error
in fill direction

]
. (9)

λ̄dd,i is the i-th measured stretch. λdd,i is the corresponding computed stretch (see Eq. (2)
resp. Eq. (8)). wi is the i-th weighting factor (wi ∈ R+). The particular least-squares
optimisation problem yields

min
s(·)

f(·)
(
λi(s(·)), . . . ,λnV

(s(·))
)
. (10)

6.2 Substantial aspects towards solution of the inverse problems

The necessary condition for stationarity of the particular problem Eq. (10) is:

∇s(·)f(·)
!
= 0 ⇔ s (·) is a minimum, maximum or saddle point (11)

∇s(·)f(·) is the particular gradient of f(·) w.r.t. s(·) and therefore it contains first derivatives
dλdd,i/ds(·),j. For the microstructural model, where λdd,i = λdd,i (smic,u(smic)), the chain
rule yields

dλdd,i

dsmic,j

=
∂λdd,i

∂smic,j

+

(
∂λdd,i

∂u

)T
∂u

∂smic,j

, d = 1, 2.

The implicit derivatives ∂u/∂smic,j are computed as analytical expressions by performing
a direct sensitivity analysis. The explicit derivatives result from Eq. (2) without fur-
ther explanations. For the hyperelastic model, the required derivatives can be computed
analogously.

The particular solution vector s(·)
∗ is computed based on linearisation of Eq. (11) and

subsequent application of an iteration scheme. s (·)
∗ is a (local) minimum of Eq. (10), if

and only if the sufficient condition for a minimum

s(·)
∗T Hf(·),s(·),k∗ s(·)

∗ > 0 ⇔ Hf(·),s(·),k∗ positive definite

is fulfilled in addition to Eq. (11). Herein, Hf(·),s(·),k∗ means the particular Hessian matrix
of f(·) w.r.t. to s(·) evaluated in the k∗-th iteration step. The Hessian matrix occurs in
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the linearisation of Eq. (11) as well. It contains all second derivatives of f(·), which can
be computed (numerically efficient) as analytical expressions analogue to the first deriva-
tives. Morevover, the particular inverse Hessian matrix Hf(·),s(·),k

−1 occurs. Therefore it
is necessary, however by no means trivial, to ensure a regular Hessian matrix Hf(·),s(·),k

during the entire iteration process. Amongst few strategies, a Levenberg-Marquardt al-
gorithm is applied for parameter identification of the microstructural model. There is a
close relation between the choice of design space (model parameters) and the regularity
of the Hessian matrix.

For the parameter identification of the hyperelastic model, a Sequential Quadratic
Programming algorithm with an Active-Set strategy (e.g. [15, Ch. 18]) is applied, in
order to handle constraints in Eq. (5). Initial values are obtained by performing coarse
genetic algorithm computations with slightly constrained design spaces.

6.3 Results of parameter identification processes

The design vector for the microstructural model is defined as

smic =
[
L2 H1 H2 ky,1 ky,2 cN,12 cN,21 cA,1 cA,2 kc

]T
.

The reference quantity L1 is set as L1 := 1 in order to perform a numerical computation.
As argued on p. 6, there is no need to specify a certain physical unit. The design vector
for the hyperelastic model is defined as

shyp =
[
c1 ε1 ε2 α

(1)
1 α

(1)
2 α

(2)
1 α

(2)
2

]T
.

The two analogous optimisation problems (Eq. (10)) are solved as described before. The
identified model parameters are (rounded to five digits):

Mmic
∗ :=

[
smic

∗

L1

]
=




L2
∗

H1
∗

H2
∗

ky,1
∗

ky,2
∗

cN,12
∗

cN,21
∗

cA,1
∗

cA,2
∗

kc
∗

L1




=




0.78431 [L1]

0.10891 [L1]

0.073070 [L1]

2292.5 kN

2132.3 kN

18.259 kN/[L1]

16.680 kN/[L1]

−115.72 kN/[L1]

−90.025 kN/[L1]

162.43 kN

1.0




, Mhyp
∗ :=




c1
∗

ε1
∗

ε2
∗

α
(1)
1

∗

α
(1)
2

∗

α
(2)
1

∗

α
(2)
2

∗




=




100.84 kN/m2

473.27 kN/m2

9.6713 [-]

326.15 kN/m2

3.2936 [-]

294.94 kN/m2

3.3357 [-]



.

The microstructural model with Mmic
∗ is denoted by MATmic, the hyperelastic model

withMhyp
∗ is denoted by MAThyp. Figure 5 shows the load- and stetch curves of the mea-

sured data in comparison with the computed results by using material models MATmic
resp. MAThyp.
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Figure 5: Load- and stretch curves – comparison between measured data from the biaxial tension test
and computed results by using material models MATmic resp. MAThyp
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7 DISCUSSION

Regarding Mmic
∗ the dimensions L2

∗, H1
∗ and H2

∗ show reasonable ratios in com-
parison to typical dimension ratios of woven fabrics. For example, the height of the
microstructural modell H1

∗ + H2
∗ is about a fifth of the dimension L1. However, a di-

rect physical interpretation of the spring stiffnesses cA,1
∗ and cA,2

∗ in Mmic
∗ (Eq. (12)) is

not given (negative values). As long as the input forces Fd are positive (tension forces)
the potential of the microstructural model remains strictly convex in u1, u2, u3, u4 and
therefore has one unique minimum (stable equilibrium state). In order to ensure phys-
ically interpretable parameter values, one may consider constraining the design space
(constrained optimisation). By means of successively leaving out one load ratio in the
parameter identification, the microstructural model reveals a satisfying robustness.

Concerning Mhyp
∗ the exponents of the anisotropic parts of energy function Eq. (5)

α
(1)
2

∗
and α

(2)
2

∗
as well as c1

∗ and ε2
∗ show values, which fit well in terms of range compared

to parameters given in the literature [16, 3].
Considering Figure 5, the measured and computed stretchings with MATmic match

well over all considered load ratios. This is confirmed by a coefficient of determination
of R2 = 0.996. Hence, the measured data may almost completely be represented by
the microstructural model. Comparing the measured and computed stretchings with
MAThyp, the representation is widely satisfactory for load ratios 2:0, 2:2 and 0:2, though
it is not for load ratios 2:1 and 1:2. This is reflected by a coefficient of determination of
R2=0.604.

The deviations between MAThyp and MATmic are significant. Compared to the chosen
hyperelastic model the microstructural model presents a more accurate description of
the elastic deformation behaviour. Considering the reasonable effort for the parameter
identification the presented microstructural model is a profound and practicable modelling
approach.

Part II: An extended numerical approach for form finding and cutting patter-
ning of membranes

1 INTRODUCTION

The common approach of engineering practice is to determine the cutting pattern-
ing geometry as a postprocessing step of form finding using a sequence of independent
geometrical and mechanical computation steps. Therefore, an incomplete mechanical de-
scription between the unstressed cutting patterning and stressed equilibrium geometry
exists. Since the equilibrium geometry of the prestressed membrane depends directly on
the unstressed cutting patterning geometry, a closed mechanical approach is in demand.
Such an approach is developed in the present contribution. In contrast to the approach
of Dieringer [8] the presented approach solves the form finding and cutting patterning

12

286



Jan Gade, Manfred Bischoff and Roman Kemmler

problem simultaneously. To this end, two topologically identical meshes are defined. One
mesh represents the cutting patterning and the other one the equilibrium geometry. The
mechanical behaviour is described by a Total Lagrangian finite element formulation. For
the strain-stress relationship the microstructural model derived in Part I is used. The
desired stress distribution does not lead to unique geometries of cutting patterning and
equilibrium geometry. Defining a least-squares problem of stresses and shear strains as a
weighted sum, an optimisation formulation leads to a unique solution. To keep the algo-
rithm numerically stable, the terms that contain the shear strains have to be considerably
large. Analogously to the starting point of Update Reference Strategy [4], the presented
approach is from a mathematical point of view singular in the tangential plane. Internal
nodes of two associated meshes can move without changing any mechanical quantities.
Several strategies can be developed to overcome this issue. A robust strategy is to describe
the movement of internal nodes of the cutting patterning mesh by means of movement
of edge nodes of the same segment. Advantages of this approach are: Firstly, it accounts
for the shear deformation of the woven fabric, which occurs during transformation of the
plane cutting geometry to the doubly curved surface. Secondly, the ending of membrane
fibres at inclined oriented cutting edges is considered. Moreover, it regards material non-
linearities by applying the microstructural model derived in Part I (see Part I, Chapter 4).
On the other hand the definition of the seam layout at the beginning of form finding is
disadvantageous.

2 OPTIMISATION APPROACH FOR FORM FINDING AND CUTTING
PATTERNING OF MEMBRANES

The basic idea of the approach is to formulate an optimisation problem in which both
the geometries of the equilibrium and cutting patterning configuration are initially un-
known. The two configurations are considered as current resp. reference configuration.
The design objectives are minimum deviations from prescribed stresses in warp and fill
direction along with minimum shear deformation. The equilibrium equations are intro-
duced into the optimisation problem as equality constraints. Additional design criteria
can be formulated (e.g. geometry of seam lines, stress states etc.).

Equilibrium equations are used in Total Lagrange finite element formulation with
4-node membrane elements (see Figure 6). Green Lagrange strains are computed from
the deformation gradient in each Gauss point. From this, the stretches of the microstruc-
tural model are calculated and a structural analysis is performed. The forces as well as
the derivatives of forces of the microstructural model w.r.t. the displacements yield the
constitutive equations of the material.

The optimisation problem is

min
s

f s. t. h (s) =
[
RCC RRC GCC GRC FCC

]T !
= 0 .
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Figure 6: Embedment in finite element approach
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The design vector s contains the nodal coordinates of all free nodes in the current config-
uration as well as those coordinates in the reference configuration that are in the cutting
plane. Hence, the dimension of the design space is dim s = 3 · nn,CC + 2 · nn,RC.

The objective function of the optimisation problem is:

f = f (s) =

nG∑
m=1

[
w11

(
S̃11,m − S̄11,m

)2

+ w22

(
S̃22,m − S̄22,m

)2

+ w12

(
φ̃12,m − φ̄12,m

)2
]

w11, w22, w12 ∈ R+: Weighting factors
nn,RC, nn,CC: Number of free nodes in the reference resp. current configuration
S̃11,m, S̃22,m: Computed second Piola-Kirchhoff stresses at Gauss point m = 1, . . . , nG

S̄11,m, S̄22,m: Prescribed second Piola-Kirchhoff stresses at Gauss point m = 1, . . . , nG

φ̃12,m: Computed shear angle at Gauss point m = 1, . . . , nG

φ̄12,m: Prescribed shear angle at Gauss point m = 1, . . . , nG

In order to obtain an optimisation problem whose approximation remains regular dur-
ing computation, further constraints are required along with the equilibrium equations.
Amongst others, the following equality constraints h (s) are reasonable:

• The Dirichlet boundary conditions in the current configuration;

• the fixation of the reference configuration in plane;

• the geometric position and the equilibrium of the nodes at the inner edges (seam
lines) in the current or reference configuration;

• the subdivision of inner as well as free edges.

Avoiding singularities in the tangential plane is explained in the next Section in more
detail.

As mentioned, the equilibrium equations are handled as equality constraints. This
avoids numerically expensive implicit derivatives. Therefore, it is reasonable to plug first
derivatives as well as second derivatives into the optimisation algorithm. Thus, quadratic
convergence is achieved under appliance of the algorithm IPOPT [19].

Strategies for stabilisation of cutting configuration

In order to avoid singularities in the tangential plane, several strategies can be used:
Firstly, the stabilisation is possible by means of geometrical constraints that demand for
elements with (nearly) quadratic shape. This approach gives rise to a multicriteria opti-
misation. Defining suitable weighting factors is a challenging task. Secondly, movement
of inner nodes in the cutting configuration are coupled to movements of edge nodes by
using shape basis vectors. This is a common technique to preserve suitable meshes in form
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optimisation problems. Thirdly, the movements of the inner nodes can be controlled by
formulating an additional mechanical problem. This technique is known as deformation-
based shape basis vectors approach in form optimisation and leads to additional equality
constraints.

Due to its robustness, the third strategy is used.

3 EXAMPLE

Figure 7 below shows an exemplary conic membrane structure. Due to their curvature,
such membranes are characterised by relatively high stresses in warp direction. For the
sake of simplicity, the problem is reduced to a quarter model and symmetric boundary
conditions are considered.

Figure 7: Geometry model of a conic membrane (detail)

Based on the common approach described before, the warp direction is assumed to
be radial and the shear deformation is not considered. Though, the necessity of shear
deformation in order to obtain a doubly curved surface from plane cutting segments is
obvious. Results by using the common approach are compared to results that are obtained
applying the approach presented in this contribution. Figure 8a shows the distribution
of warp stress while prescribing S̄11,m = S̄22,m = 4.0 kN/m2 in comparison. The results
confirm that a homogeneously distributed stress state is not possible when considering
the occurence of shear deformation.

As additional load, a uniformly distributed snow load of 0.85 kN/m2 is imposed. Figure
8b shows the warp stresses in comparison, which reveal major deviations. In the presented
approach ending of membrane fibres at the cutting edges are considered, which leads to
stress concentrations nearby the cutting edges in the upper zones. In the valley zones of
the cutting edges warp yarns withdraw load-carrying and therefore stresses are relatively
low. This is caused by the lack of shear stiffness and a slightly destabilising effect due to
fill stress.

CONCLUSION

Part I Woven fabric membranes are characterised by a pronounced materially and
geometrically nonlinear behaviour. Part I of this contribution focuses on two different
material modelling approaches. Firstly, an established microstructural model is presented
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Warp stress [kN/m]

Approach presented here

Common approach;
warp direction is radial

5.50
4.95
4.40
3.85
3.30
2.75
2.20
1.65
1.10
0.55
0.00

(a) Prescribed stresses S̄11,m = S̄22,m = 4.0 kN/m
2

Approach presented here

Warp stress [kN/m]

Common approach;
warp direction is radial

45.0
40.5
36.0
31.5
27.0
22.5
18.0
13.5
9.0
4.5
0.0

(b) Prescribed stresses and snow load 0.85 kN/m2

Figure 8: Warp stress [kN/m] – comparison of common approach to approach presented here

and enhanced by introducing transverse spring elements, considering the coating stiffness.
Secondly, an established anisotropic hyperelastic model is given. The model parameters
of both models are gained by inverse computations w.r.t. to measured data from a biaxial
tension test using optimisation. Comparing the results of the microstructural model and
the chosen anisotropic hyperelastic material model, the microstructural model is assessed
as more suitable. Using a different energy function for the hyperelastic model could
probably improve results of this approach. Moreover, using a larger test data set would
be an interesting task in order to ensure robustness.

Part II In order to consider effects arising from nonlinear material behaviour, from
shear deformation of the woven fabric during transformation in a doubly curved surface
as well as from ending of material fibres at the cutting edges, form finding and cutting
patterning has to be treated in a coupled computation. The present contribution presents
an approach for consideration of the coupled problem as an optimisation problem, in
which both the reference as well as the current configuration are initially unknown. In
order to avoid singularity in the tangential plane of the surface, a shape basis vector
technique is applied.

Based on an exemplary conic membrane structure, major deviations of the common
approach in comparison to the presented approach are revealed.
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