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Abstract

Motivated by the sizable increase of available computing resources, large-eddy simulation of complex turbulent
flow is becoming increasingly popular. This technique reduces by several orders of magnitude the computational
cost of simulating turbulence in comparison to directly resolving all the flow scales. The reduction in cost is a direct
consequence of a filtering operation that enables to represent only large-scale motions. However, the small-scale
fluctuations and their effects on the resolved flow field require additional modeling. The assumptions made in the
closure formulations become potential sources of incertitude that can impact the quantities of interest. The objective
of this work is to introduce a framework for the systematic estimation of structural uncertainty in large-eddy simulation
closures. In particular, the methodology proposed is independent of the initial model form, computationally efficient,
and suitable to general flow solvers. The approach is based on introducing controlled perturbations to the turbulent
stress tensor in terms of magnitude, shape and orientation, such that propagation of their effects can be assessed. The
framework is rigorously described, and physically plausible bounds for the perturbations are proposed. In order to
test its performance, a comprehensive set of numerical experiments are reported for which physical interpretation of
the deviations in the quantities of interest are discussed.
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1. Introduction1

Over the past decade, large-eddy simulation (LES) has gained significant popularity as a high-fidelity (HF) refer-2

ence technique for the numerical resolution of complex turbulent flow. For example, it has been successfully applied3

to the study of reactive flow in industrial gas turbine combustors [1, 2, 3], for which experimental data is difficult and4

expensive to acquire due to the elevated pressures and temperatures typically achieved under operational conditions.5

One of the main reasons for this increase in popularity is the tremendous growth in available computational power,6

which has made its superior accuracy attractive with respect to other strategies like the Reynolds-averaged Navier-7

Stokes (RANS) equations. Moreover, despite the presumably further increase in computing resources through the8

deployment of upcoming exascale supercomputers — 1-10k times augmented floating-point capacity is foreseen [4]9

—, the expectation in the computational community is that LES will continue its consolidation as a workhorse method-10

ology for engineering applications and multiscale problems, whereas direct numerical simulation (DNS) will remain11

as the gold standard technique, affordable only in very controlled scientific studies. In comparison to DNS, LES12

approaches reduce the computational cost of solving turbulent flow by removing small-scale information from the13

governing equations via low-pass filtering. However, the effects of the small scales on the resolved flow field are often14

not negligible, and therefore their contribution in the form of subfilter stresses needs to be modeled. As a result, the15

assumptions introduced in the closure formulations become potential sources of structural uncertainty that can affect16

the quantities of interest (QoI).17
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A significant number of studies have been dedicated to identify sources of error resulting from the numerical18

approximations required to discretely solve the LES governing equations. Some of the most notable works are the19

seminal paper by Ghosal [5] and the detailed error database gathered by Meyers et al. [6]. However, even with the20

widespread utilization of LES in many scientific and technological areas, there have been few studies in which model-21

form incertitude has been analyzed from an uncertainty quantification (UQ) viewpoint. In general, most analyses are22

based on non-intrusive methodologies applied to simple flow configurations, and are concerned mainly with sensi-23

tivities to LES closure parameters, such as model coefficients [7], filter characteristics [8] or mesh resolution [9]. A24

more sophisticated approach is to consider the closure parameters uncertain, and estimate their effects on the QoIs by25

forward-propagating them as probability distributions. This strategy has been applied to RANS [10] and LES [11]26

models, and extended to incorporate experimental data by means of data-assimilation [12] and machine learning tech-27

niques [13]. In the case of complex flows, some methodologies perform predictions based on an ensemble of solutions28

obtained using different models, as for example in earth sciences for weather and ocean forecasting [14, 15]. All these29

approaches, although useful from the practitioner’s perspective, present important impediments to generalization due30

to their dependency on the underlying structure of the models utilized. In this regard, the present work aims at devel-31

oping a framework for the methodical estimation of structural uncertainty in LES closures that is independent of the32

initial model form, computationally efficient and suitable to general LES solvers.33

The framework proposed feeds from the methodology previously introduced in the context of RANS approaches [16,34

17], although it contains important differences due to the inherent distinction between the two turbulence-resolution35

techniques. In short, the strategy is based on introducing perturbations to the decomposed turbulent stress tensor36

within a range of physically plausible values. These correspond to discrepancy in magnitude (trace), shape (eigen-37

values) and orientation (eigenvectors) of the normalized subfilter stresses with respect to a given tensor state. In this38

paper, the UQ framework is presented in detail and a comprehensive set of numerical experiments are performed.39

First, the conservation equations governing LES, together with a description of the eddy-viscosity closure group, are40

summarized in Section 2. A detailed analysis of the filtered advection term and its representation in terms of the41

barycentric map is discussed in Section 3. In Section 4, the methodology is derived and physical bounds for structural42

incertitude estimation are proposed. A consistent set of numerical results for turbulent channel flow are reported in43

Section 5. Finally, conclusions are drawn and future work is outlined in Section 6.44

2. Large-eddy simulation equations45

The governing LES equations are derived by applying a low-pass filter, G, to the Navier-Stokes equations. The46

filter decomposes any flow variable φ(x, t) into large-, φ, and small-scale, φ′, contributions, i.e., φ = φ + φ′. The47

filtered part is defined as48

φ(x, t) =

∫
Ω

G(x, x′,∆)φ(x′, t) dx′, (1)

with x and x′ position vectors in the domain Ω, and ∆ the characteristic width of the filter.49

Assuming that differentiation and filtering commute [18, 19], the filtered incompressible continuity and Navier-50

Stokes equations result in51

∂ui

∂xi
= 0, (2)

52

∂ui

∂t
+
∂(uiu j)
∂x j

= −
1
ρ

∂p
∂xi

+ ν
∂2ui

∂x j∂x j
, (3)

where ui and p are the velocity vector and pressure variables, and ρ and ν are the density and kinematic viscosity of53

the fluid. This system is undetermined since it contains more unknowns (ui, uiu j, p) than equations. Hence, in order54

to advance the solution of the filtered quantities in time, a closure definition for the nonlinear filtered advection term,55

uiu j, needs to be provided, as well as boundary conditions and an initial state for ui and p.56

In a LES framework, Leonard’s decomposition [20] separates uiu j into a large-scale part, uiu j, and a subfilter scale57

(SFS), or turbulent, stress tensor, τi j, i.e., uiu j = uiu j + τi j. Therefore, the conservation of filtered momentum can be58

recast in the form59

∂ui

∂t
+
∂(uiu j)
∂x j

= −
1
ρ

∂p
∂xi

+ ν
∂2ui

∂x j∂x j
−
∂τi j

∂x j
. (4)
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The resolved scales of LES, φ, are characterized by the filter applied to the conservation equations. In a general60

context, the filtering and discretization operators are different [21]. However, in most cases the spatial discretization is61

chosen to be specifically the low-pass filter [22], and therefore τi j is habitually referred to as the subgrid-scale (SGS)62

tensor.63

2.1. Subgrid-scale models64

The objective of SGS models is to replace the unknown value of τi j by an approximate representation. In order65

to clearly differentiate τi j from its approximation, τsgs
i j will be used in this paper to refer to the modeled τi j. Many66

different models for τsgs
i j exist [23, 24, 25, 26]. However, the eddy-viscosity assumption [22] is the most popular67

closure due to its robustness and ease of implementation. This group of models represents the anisotropic part of τi j68

as69

τ
sgs
i j −

τ
sgs
kk

3
δi j = −2νsgsS i j, (5)

where τkk = τ11 + τ22 + τ33 is the trace of the tensor, δi j is the Kronecker delta, νsgs is the turbulent viscosity given by70

a specific model [27, 28, 29, 30, 31], and S i j = 1/2(∂ui/∂x j + ∂u j/∂xi) is the strain rate tensor of the resolved scales.71

As it can be observed in the above equation, the different eddy-viscosity models only differ in the evaluation of νsgs.72

Therefore, they only account for variability in the magnitude of the tensor, while the anisotropy and orientation are73

directly determined by S i j. In other words, this group of models focuses only in one of the six degrees of freedom in74

τi j. In addition, as it will be analyzed in Sec. 5.1, its particular construction is such that it is inherently dissipative,75

and therefore this group of models is typically combined with low-dissipation numerical schemes [32]. For example,76

the Wall-Adapting Local Eddy-Viscosity (WALE) model [29] evaluates the turbulent viscosity as77

νsgs = (Cw∆)2

(
Sd

i jS
d
i j

)3/2(
S i jS i j

)5/2
+

(
S i jS i j

)5/4 and Sd
i j =

1
2

(
g2

i j + g2
ji

)
−

g2
kk

3
δi j, (6)

with Cw a model coefficient (Cw = 0.325 based on homogeneous isotropic turbulence data), ∆ the subgrid charac-78

teristic length scale (in practice the size of the mesh), and gi j = ∂ui/∂x j the velocity gradient tensor of the resolved79

scales.80

An additional parameter requiring modeling is the trace of the tensor, τsgs
kk , as it has been subtracted from τ

sgs
i j in81

Eq. 5. However, in LES of incompressible flows, the isotropic part, τsgs
kk /3, is usually added to the filtered pressure,82

resulting in a modified pressure that the LES solver evolves in time. In the case of compressible flows, explicit subgrid83

models have been proposed for τsgs
kk , like for example the parametrization by Yoshizawa [33]84

τ
sgs
kk = 2CI∆

2
∣∣∣S ∣∣∣2 with

∣∣∣S ∣∣∣ =
(
2S i jS i j

)1/2
, (7)

where CI is a model coefficient that can be approximated, for instance, as proposed by Moin et al. [34].85

3. Nonlinear filtered advection term86

3.1. Realizability conditions87

In the RANS approach, the ensemble average process confines the turbulent effects in the Reynolds stresses,
Ri j = 〈u′iu′ j〉; here, u′i and u′ j refer to the fluctuating components and 〈u′iu′ j〉 is the time-averaged quantity of their
product. Therefore, since the averaging operator is a statistical mean, Ri j must be symmetric and positive semi-definite
in order to ensure physically plausible values, i.e., non-negative real energies. This requirement is equivalent to the
conditions of realizability [35] given by the following inequalities1

Rαα ≥ 0 for α ∈ {1, 2, 3}, (8)

R2
αβ ≤ RααRββ for α , β, (9)

det(Ri j) ≥ 0, (10)

1The summation convention is adopted for Latin, but not for Greek indices.
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which guarantee that the spectrum of Ri j is non-negative and real.88

In a LES context, the common premise is that realizability conditions apply to τi j. However, rather than a physical
requirement, this assumption is a modeling choice to restrict the closure space to non-negative real τsgs

kk . In fact, it has
been demonstrated [36] that the conditions are not satisfied for τi j if nonpositive filters are used. The most general
requirement is that the divergence of the filtered advection term is real, i.e., ∂(uiu j)/∂x j ∈ R3, but this leads to stresses
defined up to a constant, and therefore there is no possibility of constructing formal bounds. As a consequence, the
approach chosen in this work is to impose realizability conditions to uiu j = uiu j + τ

sgs
i j , viz. total filtered energy is

non-negative and real, which is a compromise between generality and feasibility. In this regard, the conditions of
realizability applied to uiu j read

uαuα ≥ 0 for α ∈ {1, 2, 3}, (11)

uαuβ
2
≤ uαuα uβuβ for α , β, (12)

det(uiu j) ≥ 0. (13)

3.2. Tensor decomposition89

The nonlinear filtered advection term can be decomposed into factors by introducing the normalized anisotropy90

tensor, ai j, as91

ai j =
uiu j

ukuk
−

1
3
δi j = vinΛnlv jl, (14)

which is symmetric and trace-free, i.e., the eigenvalues sum zero. Moreover, its eigendecomposition is given by a92

matrix of orthonormal eigenvectors, vin, and a diagonal matrix of eigenvalues, Λnl, ordered such that λ1 ≥ λ2 ≥ λ3.93

The realizability constraints, Eqs. 11-13, bound the intervals of the anisotropy tensor components. The diagonal
elements, aαα, take minimum and maximum values if uαuα = 0 and uαuα = ukuk, respectively, while, due to the
positive semi-definiteness of uiu j, the off-diagonal components, aαβ, reach their minimum and maximum values when
uαuβ = ±ukuk/2. Introducing these conditions in Eq. 14 results in the following intervals

−1/3 ≤ aαα ≤ 2/3 for α ∈ {1, 2, 3}, (15)
−1/2 ≤ aαβ ≤ 1/2 for α , β. (16)

Finally, the anisotropy tensor allows reformulating uiu j in terms of magnitude, ukuk, shape, Λnl, and orientation,94

vin, in the form95

uiu j = ukuk

(
vinΛnlv jl +

1
3
δi j

)
. (17)

3.3. The barycentric map96

For any anisotropy tensor, the diagonal matrix of eigenvalues characterizes the shape of a corresponding ellipsoid.97

Its major, medium and minor axes compose the basis of eigenvectors, with scalings equal to the values of the associated98

eigenvalues. The number of non-zero values, i.e., the rank, holds a direct connection with the limiting states of99

componentiality. In this work, componentiality primarily indicates the number of proper vectors of uiu j with non-zero100

scaling, but it can also be utilized to reflect the number of non-zero eigenvalues in the main directions of its resolved,101

uiu j, and modeled parts, τsgs
i j , or in the principal axes of the Reynolds stresses, Ri j.102

Three limiting shapes exist in the case of a positive semi-definite second-order tensor. The one-component limiting103

state (rod-like) corresponds to a one-rank tensor where 2/3 = λ1 > λ2 = λ3 = −1/3. Similarly, the two-component104

axisymmetric limiting state (disk-like) presents two principal directions with equal non-zero eigenvalues of value105

1/6 = λ1 = λ2 < λ3 = −1/3. Finally, the three-component isotropic limiting state (spherical) is characterized by a106

basis of eigenvectors with all eigenvalues equal to zero, i.e., λ1 = λ2 = λ3 = 0.107

Tensor anisotropy, or shape, is usually visualized by means of anisotropy-invariant maps (AIM). In the context108

of turbulence analysis, commom AIMs are the nonlinear Lumley [37] and turbulence [38] triangles or the linear109

eigenvalue map [37]. An alternative construction is the barycentric map [39]. This approach relies on the fact that any110

anisotropy state is a convex combination of the limiting states of componentiality. In an Euclidean space, these can111

be represented, for example, as the vertices of an equilateral triangle with coordinates x1c = (0, 0), x2c = (1, 0), and112
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Figure 1: Barycentric map based on the eigenvalues of a general second-order anisotropy tensor. Left: limiting states of componentiality. Right:
tensor shapes visualized with superquadric glyphs [40] (figure regenerated using open-source software [41]).

x3c = (1/2,
√

3/2). A graphical representation of the map and the different anisotropy shapes is illustrated in Fig. 1.113

One of the main advantages is that it provides a linear relation between anisotropy eigenvalues and Euclidean space114

through the projection115

x = x1c (λ1 − λ2) + 2x2c (λ2 − λ3) + x3c (3λ3 + 1) . (18)

This projection, together with the requirement that the eigenvalues sum zero, is a unique invertible linear mapping116

that can be mathematically expressed as xi = BinΛnl. Note that realizability conditions imply that any anisotropy state117

of uiu j lies within the triangle (indicated in Fig. 2 by x).118

4. Structural uncertainty estimation framework119

The strategy to analyze model-form error in the underlying SGS closure is to introduce controlled perturbations120

into the nonlinear filtered advection term such that their impact on the QoI can be assessed. In a LES context, large121

scales are directly resolved, whereas model assumptions are confined to the subgrid scales. Consequently, in order to122

restrict the injection to τsgs
i j , the decomposed uiu j, Eq. (17), needs to be separated into resolved and modeled parts.123

This is accomplished through the following expression124

uiu j = ukuk

(
ares

i j + asgs
i j +

1
3
δi j

)
, (19)

where ares
i j and asgs

i j are the resolved and SGS components of the total anisotropy tensor given by125

ares
i j =

1
ukuk

(
uiu j −

ukuk

3
δi j

)
= vres

in Λres
nl vres

jl and asgs
i j =

1
ukuk

τsgs
i j −

τ
sgs
kk

3
δi j

 = vsgs
in Λ

sgs
nl vsgs

jl , (20)

with ukuk the resolved part of ukuk.126

Once the separation between resolved and modeled parts is performed, perturbations are defined as

uiu j
∗

= uiu j + τ
sgs
i j
∗

= uiu j + ukuk
∗asgs

i j
∗

+
τ

sgs
kk
∗

3
δi j, (21)

with ukuk
∗

= ukuk + τ
sgs
kk
∗ and asgs

i j
∗

= vsgs
in
∗
Λ

sgs
nl
∗vsgs

jl
∗
. (22)

Thus, perturbations (indicated with ∗) are applied to the subgrid-scales only, and are specified as a discrepancy of the127

SGS tensor in terms of magnitude (τsgs
kk
∗

= τ
sgs
kk + ∆τ

sgs
kk ), shape (diagonal matrix Λ

sgs
nl
∗ of perturbed eigenvalues λ∗l ),128

and orientation (vsgs
i j
∗

= qinvsgs
n j with qin an orthonormal rotation matrix).129
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4.1. Modeled subgrid-scale tensor magnitude perturbation130

Lower and upper bounds for the perturbation of τsgs
kk can be obtained by considering the sign nature of the quantities131

composing the trace of the nonlinear filtered advection term. Its mathematical expression is132

ukuk = ukuk + τ
sgs
kk , (23)

where ukuk and ukuk are non-negative. The former, ukuk, is non-negative due to the restriction made in this work that133

realizability conditions apply to uiu j, whereas the latter, ukuk, is non-negative by construction independently of the134

filter utilized, given its square product expression. In order to respect these properties, any possible perturbation of135

τ
sgs
kk is bounded by ukuk = ukuk +τ

sgs
kk ≥ 0 and ukuk = ukuk−τ

sgs
kk ≥ 0. Therefore, the interval of magnitude discrepancy136

written in terms of ∆τ
sgs
kk results in137

−ukuk − τ
sgs
kk ≤ ∆τ

sgs
kk ≤ ukuk − τ

sgs
kk . (24)

Notice that expressions for ukuk and τsgs
kk are not typically considered in LES calculations. The latter is absorbed in138

the pressure term for incompressible flow, while commonly considered small for low-Mach-number and compressible139

flows. However, closures for its evaluation exist in the literature; for instance, the model proposed by Yoshizawa [33].140

On the other hand, ukuk is always decomposed into resolved and modeled parts, and consequently is never explicitly141

computed. Even so, deconvolution methods [42] are frequently utilized to approximate the subfilter velocity, ui
′, of142

the Navier-Stokes equations. To a first approximation, similar approaches could be applied to directly model ukuk.143

4.2. Modeled subgrid-scale tensor eigenvalue perturbation144

Different strategies can be designed to perturb the eigenvalues of asgs
i j . In fact, the framework proposed allows the145

perturbations to be defined implicitly through the coordinates in the barycentric map as λsgs
l
∗

= B−1xsgs∗ independently146

of their nature. For this initial study, we choose the uncertainty to be characterized by a direction, xt − xsgs, and a147

magnitude, |xt − xsgs|, both of which could vary in space and time. In particular, perturbations within the barycentric148

map are considered toward each of the three corners of the triangle, namely x1c, x2c, and x3c, and are defined by means149

of a relative distance ∆B toward the target vertex. In mathematical form, the eigenvalue perturbation can be expressed150

through the following translation151

xsgs∗ = xsgs + ∆B

(
xt − xsgs

)
, (25)

where xsgs, xsgs∗, and xt are the coordinates of the base-model prediction, new pertubed position and target corner,152

respectively. This translation process is illustrated in Section 4.2.1. Finally, by applying the linear map B to the new153

position xsgs∗, the perturbed eigenvalues are uniquely defined as154

λ
sgs
l
∗

= (1 − ∆B) λsgs
l + ∆Bλ

t
l. (26)

4.2.1. Graphical representation155

Injection of shape uncertainty into the modeled part of uiu j is represented in Fig. 2. First, the eigenvalues of the156

resolved and SGS base-model tensors determine the initial location of ai j in the map, x. Note that x is not a direct157

summation of xres and xsgs since the eigenvectors of the tensors are, in general, different. In particular, this example158

depicts the case in which the shape of ares
i j is predominantly rod-like, and the SGS tensor is approximated by an159

eddy-viscosity-type model. Subsequently, uncertainty is introduced by applying a translation to xsgs of magnitude ∆B160

toward xt (x2c in this example), resulting in the perturbed location xsgs∗. Finally, the perturbation to the eigenvalues of161

the SGS part, together with the contribution from the resolved scales, induces a new location within the barycentric162

map indicated as x∗.163

4.3. Modeled subgrid-scale tensor eigenvector perturbation164

The methodology to introduce perturbations into the eigenvectors of asgs
i j is based on the physical constraints of165

energy transfer between resolved and modeled scales. The starting point is the balance equation for resolved filtered166

kinetic energy, E f = ukuk/2, given as [43]167

∂E f

∂t
+ u j

∂E f

∂x j
−

∂

∂xi

[
u j

(
2νS i j − τi j −

1
ρ

p δi j

)]
= −ε f − Pr. (27)
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Figure 2: Sequential illustration of the eigenvalue perturbation procedure. The resolved, xres, and SGS base-model, xsgs, parts provide an initial
location x within the triangle (left). A perturbation of magnitude ∆B toward x2c is applied to xsgs (center). The new location of the SGS part, xsgs∗,
indirectly modifies the coordinates of x, resulting in a perturbed state x∗ (right).

The terms on the left-hand side represent transport, while the terms on the right-hand side correspond to viscous168

dissipation, ε f = 2νS i jS i j, and rate of production of SGS kinetic energy, Pr = −τi jS i j. The latter is of particular169

interest since it represents the transfer of energy between resolved and modeled scales. In three-dimensional (3-170

D) turbulence, Pr transfers energy from large to small scales in a statistically-averaged sense, i.e., forward-scatter.171

However, it can present positive or negative values instantaneously, and therefore it can act as a sink (forward-scatter)172

or source (backscatter) term for E f [44].173

In the above equation, the transport of SGS stresses, ∂(u jτi j)/∂xi, and Pr require closure through τi j. However,174

modeling ∂(u jτi j)/∂xi involves non-local information due to the differentiation operator. By contrast, it is reasonable175

to consider the modeling of Pr local since τsgs
i j is typically closed based on local information. The SGS kinetic energy176

production rate term is an inner product between τi j and S i j equal to Pr = −tr(τi jS i j). In this regard, the value of177

the inner product depends on the alignment between the eigenvectors of τi j and S i j. Diverse alignments between178

these two tensors can be considered. However, for the purpose of enveloping the possible dynamics, the methodology179

proposed seeks the extremal values of this inner product. In the case of τi j being real and S i j real symmetric, the lower180

and upper bounds are given by the following expression [45]181

λ1γ3 + λ2γ2 + λ3γ1 ≤ Pr ≤ λ1γ1 + λ2γ2 + λ3γ3, (28)

with λl and γl the eigenvalues of τi j and S i j, respectively. The upper bound in this inequality corresponds to the182

situation in which τi j and S i j share the same basis of eigenvectors, while the lower bound is the case in which the183

eigenvector bases are the same except for a permutation between the first and third eigenvectors. From a practical point184

of view, the existence of bounds suggests that only two eigenvector sets need to be considered. These can be easily185

analyzed by setting the perturbed eigenvectors of τsgs
i j to be the eigenvectors of S i j with and without a permutation of186

its first and third eigenvectors.187

Caution is required, however, when considering the case with permuted eigenvectors. Its negative character in-188

troduces backscatter into the discrete system and may result in unstable computations as kinetic energy will tend to189

accumulate at the grid scale [46]. In this regard, if perturbations vary in time and space, the only necessary require-190

ment is to satisfy the second law of thermodynamics, viz. the net transport of energy is of forward-scatter type. On191

the contrary, if perturbations are constant in space and time, one possible local constraint is to impose the perturbed192

SGS kinetic energy production rate term to be smaller in magnitude than the viscous dissipation, i.e., |Pr | ≤ 2νtr(S
2
i j),193

by setting the instantaneous turbulent viscosity to be νsgs ≤ ν.194

5. Numerical experiments195

The performance of the structural UQ framework proposed is investigated by computing LES of turbulent flow196

with the unstructured and massively parallel Nalu open-source code [47]. First, sensitivity to injection of individ-197

ual homogeneous perturbations in the magnitude, anisotropy and orientation of the modeled SGS tensor is carefully198
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analyzed. Subsequently, the methodology is applied within a (small) ensemble calculation in which combined pertur-199

bations are considered. In this section, results corresponding to the WALE model [29] (eddy-viscosity-type family)200

without perturbations are referred to as base-model solutions, while computations where magnitude, shape or orien-201

tation uncertainty has been introduced are designated by the sign of magnitude discrepancy (∆τsgs
kk < 0 or ∆τ

sgs
kk > 0),202

target corner (1-comp., 2-comp., or 3-comp.) or eigenvector permutation (perm. 1, perm. 2, or perm. 3) of the203

respective perturbation.204

The canonical periodic channel flow at friction Reynolds number Reτ = 395 is selected as test case; numerical205

results will be compared to reference DNS data from Moser et al. [48]. As is customary, Reτ = uτh/νwith uτ being the206

friction velocity, h the channel half-height, and ν the kinematic velocity of the fluid. The mass flow rate is determined207

through a static pressure gradient dp/dx = −τw/h, where τw is the wall shear stress. The computational domain is208

2πh × 2h × πh in the streamwise (x), vertical (y), and spanwise (z) directions, respectively. Streamwise and spanwise209

boundaries are set periodic, and no-slip conditions are imposed to the horizontal boundaries (x-z planes). The grid210

is uniform in the streamwise and spanwise directions with spacings in wall units equal to ∆x+ = 38.8 and ∆z+ =211

12.9, while stretched in the vertical direction with the first grid point at y+ = 0.5 and with resolutions in the range212

∆y+ = [0.5− 15.1]. This grid arrangement corresponds to a wall-resolved LES of size 64× 128× 96. The simulations213

start from a sinusoidal velocity field from which turbulence develops and reaches steady-state behavior after several214

flow through times. For each calculation, the averaging process is started once a sufficiently long transient period is215

surpassed (approximately at t = 100h/uτ), and statistics are collected over a time interval of length T = 1000h/uτ.216

5.1. Sensitivity analysis of individual uncertainties217

Individual perturbations to the magnitude (τsgs
kk ), shape (Λsgs

nl ), and orientation (vsgs
in ) of the SGS stress tensor are218

considered first in order to estimate their isolated effects on the QoIs. In detail, magnitude perturbations are discussed219

in Sec. 5.1.1, shape perturbations in Sec. 5.1.2, and orientation permutations in Sec. 5.1.3. For each type of uncer-220

tainty, perturbations are fully described and their effects carefully interpreted by extracting the physical mechanisms221

responsible for deviations from the base-model prediction. In addition, connections between the different perturba-222

tions are exposed to further understand their similarities and differences. Finally, the insight gained from this analysis223

is later leveraged in Sec. 5.2 to characterize the limiting values of the perturbation parameters for a batch of samples.224

5.1.1. Uncertainty in tensor magnitude225

The effects of structural uncertainty in the magnitude of the SGS stress tensor are estimated by applying pertur-226

bations to the base-model τsgs
kk value. Two opposite cases are studied based on the limits of Eq. 24. In one the tensor227

magnitude is augmented by setting the perturbation to ∆τ
sgs
kk = ukuk − τ

sgs
kk (∆τsgs

kk > 0), while in the other the discrep-228

ancy is set to ∆τ
sgs
kk = −ukuk − τ

sgs
kk (∆τsgs

kk < 0). These two extreme cases can be roughly interpreted as multiplying the229

turbulent viscosity by two and switching the SGS model off, respectively.230

The prediction of averaged (in time and x- and z-directions) streamwise velocity obtained from the base-model and231

perturbed LES calculations is shown in Fig. 3(a). An important observation is that the combination of mesh and base-232

model chosen for the numerical experiments provides results in good agreement with the DNS solution. This feature233

is not a mere coincidence, it is in fact a desired requirement for these calculations; different spatial discretizations234

have been explored for this purpose as detailed in the Appendix. Consistency with DNS data is a choice made to235

present the results since the objective is not to develop a more accurate SGS model, but to introduce a framework236

to study sensitivity to model-form uncertainty. In particular, we are interested in exploring the performance of the237

methodology in the context of predictive studies for which fairly well-resolved LES are expected.238

The effect of discrepancy in tensor uncertainty on averaged streamwise velocity is better visualized in Fig. 3(b),239

where the normalized relative difference of the perturbed LES solutions with respect to the base-model prediction is240

plotted. Differences in the viscous sublayer are practically negligible due to the inherent construction of the base-241

model which tends to zero in near-wall regions (cubic behavior [49] designed to mimic turbulence damping due to242

no-slip boundary conditions), and therefore both the base and perturbed LES models are in practice switched off.243

However, in the buffer layer and log-law region, where the contribution from the LES models becomes important,244

enlarging or shrinking the size of the SGS stresses results in two opposite behaviors. For ∆τ
sgs
kk < 0, the averaged245

streamwise velocity is decreased by a relative factor of 0.02, while symmetrically increased for ∆τ
sgs
kk > 0. For246

eddy-viscosity-type closures, like the base-model chosen in this work, this trend can be understood from SGS kinetic247
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Figure 3: Effect of SGS stress tensor magnitude perturbation on averaged streamwise velocity (quantities in wall units). (a) y-axis profiles of
DNS data from [48] (solid line), base-model solution (solid triangles), and magnitude perturbation results (dashed lines). (b) Normalized relative
difference with respect to base-model prediction.

energy considerations as perturbations in magnitude can be directly interpreted as P∗r = 2ν∗sgstr(S
2
i j). Consequently,248

increasing the magnitude of τsgs
i j reduces the amount of kinetic energy in the system, which accordingly results in249

a more parabolic-like streamwise velocity profile. The opposite effect is obtained for ∆τ
sgs
kk < 0, since SGS kinetic250

energy dissipation is reduced and the profile becomes flatter due to an increase in turbulence levels.251

As it is deduced from the plots, the effects of magnitude perturbation on the flow field are rather small, especially252

when compared to discrepancies in anisotropy or orientation as it will be shown below. The main reason for the limited253

effects is the small values of νsgs with respect to the fluid kinematic viscosity; for example, the ratio is 〈νsgs〉/ν < 0.4254

for the base-model case. This is a direct consequence of the relatively fine mesh chosen in this study, but exposes255

the small range of deviations in QoI prediction that a set of different eddy-viscosity models can provide as they only256

account for variations in tensor magnitude.257

5.1.2. Uncertainty in tensor anisotropy258

Model-form uncertainty in the spectrum of τsgs
i j is analyzed by perturbing the eigenvalues of the base-model259

tensor. Three cases are considered in which the anisotropy of the SGS tensor is forced toward the limiting states of260

the barycentric map. As described in Section 4.2, these cases correspond to perturbations toward the one-component261

(1-comp.), two-component (2-comp.), and three-component (3-comp.) vertices of the triangle. The perturbation262

distances are chosen to be ∆B = 0.001, 0.001 and 1.0, respectively. In a relative sense, these magnitudes are small263

for cases 1- and 2-comp. in comparison to case 3-comp. However, these values are not directly representative of the264

perturbations with respect to the size of τsgs
i j . The SGS anisotropy tensor in Eq. 20 is normalized by ukuk. Under265

this normalization, the eigenvalues obtained from the eigendecomposition are small, and therefore their location on266

the barycentric map is close to the x3c vertex as depicted in Fig. 4. As a consequence, perturbations toward vertices267

x1c or x2c, although small in relative value, are large in absolute terms. It is important to highlight that this initial268

location of the SGS base-model eigenvalues on the barycentric map does not restrict ∆B from taking values close to 1269

for perturbations toward x1c or x2c. In fact, numerical experiments with ∆B ∼ 1 for cases 1- and 2-comp. have been270

conducted. For the channel flow problem, however, the fact that perturbations are spatially uniform in the presence of271

periodic boundaries results in an excessive accumulation of the perturbation effects after several flow through times,272

and therefore results are shown in this work for the ∆B values given above.273

The effects of perturbing the eigenvalues of the SGS stress tensor are shown in Fig. 5 for the averaged streamwise274

velocity profile (a) and rms velocity fluctuations (b, c, d). Deviations from the base-model prediction are larger than275

in the case of perturbing the magnitude of the SGS stresses. This result is relevant as it demonstrates the importance276

of considering variations in all the degrees of freedom. For instance, an ensemble calculation in which different277

eddy-viscosity models are utilized would not have been able to capture the larger variability on the QoIs that the278

SGS stresses inherently possess. In terms of averaged streamwise velocity, Fig. 5(a) shows that perturbations to the279
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Figure 4: Representation on the barycentric map of instantaneous SGS base-model tensor anisotropies (solid triangles). Examples of eigenvalue
perturbation to the three vertices of the triangle are schematically illustrated. (a) SGS stress anisotropy tensor normalized by ukuk . (b) SGS stress
anisotropy tensor normalized by τsgs

kk based on Yoshizawa’s model [33].

anisotropy of τsgs
i j results in a bounding interval. In particular at y+ = Reτ, the solution interval is limited by the 1- and280

3-comp. perturbations with values u+ = 23.6 and 19.1, respectively, and which effectively envelope the base-model281

prediction (u+ = 19.6) and DNS result (u+ = 20.1). The outcome of eigenvalue perturbation is better comprehended282

by considering the average profiles of rms velocity fluctuations plotted in Fig. 5(b, c, d). In comparison to the283

base-model solution, forcing τsgs
i j to be more rod-like reduces the velocity fluctuations in the vertical and spanwise284

directions of the flow, while increases their magnitude in the streamwise dimension. This combination results in an285

overall laminarization of the flow, and consequently the mass flow rate for a given static pressure gradient is increased286

as captured by the averaged velocity profile. Similarly, perturbations toward the two-component vertex (2-comp.)287

result in a deviation of the fluctuations from the base-model solution to a more disk-like configuration; fluctuation288

intensities are largely reduced for v+
rms and w+

rms in comparison to u+
rms. By contrast, the effects of perturbing toward289

the isotropic limiting state are very small. For instance, the streamwise velocity barely deviates from the base-model290

prediction. Finally, to further illustrate the perturbation effects, contours of instantaneous streamwise velocity for the291

1-comp. case are qualitatively compared to the base-model solution in Fig. 6. Taking as a reference the base-model292

velocity field (top row), perturbing toward the one-component limiting state (center row) results in a reduction in293

turbulence intensity levels (flow laminarization), especially at the centerline region of the channel where the SGS294

model is active.295

5.1.3. Uncertainty in tensor orientation296

Propagation of incertitude in the orientation of the modeled SGS stress tensor is studied by constructing τsgs
i j based297

on rearrangements of the eigenvectors of S i j. As discussed in Section 4.3, two limiting states of eigenvector pertur-298

bation seem a priori good candidates. However, three cases are considered for completeness. The first permutation299

(perm. 1) sets the eigenvectors of τsgs
i j directly equal to the proper basis of S i j; this permutation is equivalent to the300

base-model in the absence of perturbations, and is reported here as a reference. The third permutation is exactly equal301

to perm. 1, but with a shift between the first and third eigenvectors. Finally, the second permutation (perm. 2) is an302

intermediate case in which the second and third eigenvectors of perm. 1 are interchanged. No additional modifica-303

tions are required except for perm. 3 in which, due to the sustained introduction of kinetic energy from the SGS to the304

resolved scales (backscatter), the constraint proposed in Sec. 4.3 is imposed on the magnitude of τsgs
i j to ensure that305

viscous forces are able to locally dissipate sufficient SGS kinetic energy to maintain the calculation stable.306

Variations in averaged streamwise velocity due to the three eigenvector perturbations are plotted in Fig. 7(a),307

together with the base-model and DNS solutions. The first observation is that the two limiting candidates proposed308
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Figure 5: Effects of SGS stress tensor eigenvalue perturbation (quantities in wall units). (a) Averaged streamwise velocity profile. (b) Streamwise
rms velocity fluctuation. (c) Vertical rms velocity fluctuation. (d) Spanwise rms velocity fluctuation. DNS data from [48] (solid line), base-model
solution (solid triangles), eigenvalue perturbation results (dashed lines).
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Figure 6: Effect of SGS stress tensor perturbation on instantaneous streamwise velocity (contours). Base-model (top), 1-comp. eigenvalue pertur-
bation (center), perm. 3 eigenvector perturbation (bottom). Images correspond to the xy- (left) and yz-plane (right) views.
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Figure 7: Effect of SGS stress tensor eigenvector perturbation on averaged streamwise velocity (quantities in wall units). (a) y-axis profiles of
DNS data from [48] (solid line), base-model solution (solid triangles), and eigenvector perturbation results (dashed lines). (b) Normalized relative
difference with respect to base-model prediction.

for enveloping the uncertainty in eigenvector basis are successful, viz. the result of perm. 2 is bounded by the solutions309

of perm. 1 and perm. 3 as clearly shown in Fig. 7(b). In particular, deviations from the base-model prediction for310

perm. 3 are two times larger in comparison to the deviations obtained for the perturbations in magnitude. The second311

observation is that perm. 1 and base-model give the same prediction as expected.312

The physical mechanism responsible for the change in averaged streamwise velocity profile is inferred from the313

transport equation of filtered kinetic energy, Eq. 27. In the case of perm. 1, the orientation of the SGS stress tensor is314

exactly equal to the eigenvector basis of S i j. This alignment between tensors forces the inner product Pr to be defined315

positive. Consequently, the SGS kinetic energy production rate term acts as a sink extracting energy from the resolved316

to the modeled scales, and consequently reduces the magnitude of the velocity fluctuations. At the opposite extreme,317

perm. 3 energizes the flow by setting Pr to be negative, thereby acting as a source of kinetic energy from the small318

to the large scales. As a result, the flow becomes more turbulent and the streamwise velocity profile flattens. This319

description is in accordance with the rms velocity fluctuations depicted in Fig. 8. As it can be observed, the difference320

in fluctuation intensity between the three spatial dimensions is reduced, especially at the centerline region of the321

channel. Different magnitude levels in the effects of perm. 3 can be obtained by modifying the constraint required322

to guarantee that the second law of thermodynamics is satisfied in a statistically-averaged sense. Nonetheless, we323

find the local condition proposed in this work to be effective as it maintains the calculations numerically stable while324

allowing for sufficient backscatter such that sensitivity to perm. 3 can be analyzed.325

Effects on the orientation of the Reynolds stresses have been considered. Particularly, Rose diagrams of the Ri j326

polar (θ) and azimuthal (φ) spherical angles have been computed from the averaged solution of the three permutations.327

However, the pressure gradient imposed to the flow completely dominates the orientation of the stresses, hiding the328

smaller effects produced by the perturbations. Of particular interest would be their study in complex flow configura-329

tions with inflow-outflow boundary conditions. Lastly, similar to case comp. 1, contours of instantaneous streamwise330

velocity for perm. 3 are qualitatively contrasted to the base-model solution in Fig. 6. As shown by the contours,331

perturbation of the SGS stress tensor orientation by means of perm. 3 (bottom row) has a net effect of increasing332

the magnitude of the velocity fluctuations. In comparison to the base-model prediction, this increase results in more333

fragmented flow structures which are indicative of solutions presenting higher levels of turbulence.334

5.2. Ensemble estimation of combined uncertainties335

Estimation of the effects resulting from combining different types of perturbations is the final goal of this work.336

One option could be to consider pairs of combinations based on the individual limiting cases of the sensitivity analysis.337

For example, perturbation ∆τ
sgs
kk > 0 combined with perm. 3. However, due to the moderate complexity of turbulent338

channel flow, we can qualitatively anticipate what the effects would be. For the example proposed, perm. 3 would339

result in injection of energy (backscatter), which would be enhanced due to an increase in tensor magnitude by340
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Figure 8: Effects of SGS stress tensor eigenvector perturbation on velocity fluctuations (quantities in wall units). (a) Velocity fluctuations in the
principal directions. (b) Streamwise rms velocity fluctuation. (c) Vertical rms velocity fluctuation. (d) Spanwise rms velocity fluctuation. DNS
data from [48] (solid line), base-model solution (solid triangles), eigenvector perturbation results (dashed lines).
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Sample 1 2 3 4 5 6 7 8

∆τ
sgs
kk /ukuk (10−1) -0.8 0.5 -7.8 -3.5 0.6 1.4 -4.3 7.1

∆B (10−4) 8.2 3.3 4.9 4.0 0.4 8.8 5.7 2.4
xt 2 1 2 1 3 1 3 2
Perm. 1 1 3 3 1 3 3 3

Table 1: Values of the perturbation parameters for the eight samples in the ensemble calculation. Discrepancy in tensor magnitude (∆τsgs
kk ), relative

distance (∆B) and target vertex (xt) of anisotropy uncertainty, and permutation (Perm.) in tensor orientation.

∆τ
sgs
kk > 0. A different approach, which results in different variability, is to analyze the effects of combining random341

perturbations within a batch of samples. This idea can be interpreted as an ensemble calculation in which, instead342

of a set of LES models that may be all based on similar physical assumptions and therefore may lead to a biased343

prediction, we consider different amounts of structural uncertainty such that it will result in an unbiased estimation.344

As a demonstration example, we present results for an exploratory (small) ensemble calculation. Details of the345

perturbations for the eight different samples considered are listed in Tab. 1. For each sample, uniform independent346

random values are obtained for discrepancy in tensor magnitude (∆τsgs
kk ), relative distance (∆B) and target vertex (xt)347

of anisotropy uncertainty, and permutation (Perm.) in tensor orientation. The intervals of the perturbation parameters348

are based on the limiting values of the sensitivity analysis discussed in Sec. 5.1.349

The ensemble effects of the combined perturbations are shown in Fig. 9 for the averaged streamwise velocity350

profile (a) and rms velocity fluctuations (b, c, d). The first observation is that there is very good agreement between351

the mean and DNS velocity profiles in the viscous and buffer layers, as well as in the log-law region up to y+ ≈ 100.352

In addition, the profiles of minimum and maximum prediction completely envelope the DNS solution. This is not353

the typical result obtained from ensemble calculations based on sets of LES models that do not consider variations in354

all the degrees of freedom. The second important observation is that velocity fluctuations present different variability355

behavior with respect to individual perturbations. For instance, overprediction of streamwise fluctuation peak (y+ ≈356

15) is significantly reduced. Moreover, the minimum and maximum predictions are able to envelope the DNS result357

for practically all y+. Different variability is observed also for the vertical and spanwise fluctuations. In particular,358

the prediction envelope in the vertical direction considers solutions with larger fluctuations than the predictions for359

individual perturbations along the y-axis, especially close to the wall (y+ ≈ 50). A similar trend is obtained for the360

spanwise fluctuations, however, not for the near-wall region. This result is commonly observed in LES of turbulent361

channel flow and, as discussed in the Appendix and shown in Fig. 10, is mainly related to the incapacity of the meshes362

typically considered to properly capture the large scales in the spanwise direction, viz. this inaccuracy depends on the363

resolved scales and not on the SGS modeling.364

6. Conclusions and future work365

The aim of this work has been to develop a framework for estimating structural uncertainty in LES closures366

that goes beyond traditional non-intrusive sensitivity studies. The approach proposed is based on decomposing the367

SGS stress tensor such that incertitude can be independently injected as discrepancy in magnitude (trace), anisotropy368

(eigenvalues), and orientation (eigenvectors) of the normalized turbulent stresses with respect to a particular tensor369

state. In addition, physically reasonable bounds for estimating uncertainty are proposed for the six degrees of freedom370

of the methodology.371

The performance of the UQ framework has been tested by computing LES of wall-resolved turbulent channel372

flow, and comparing the solution of the perturbed cases to the results predicted by the base SGS model (WALE) and373

DNS reference data. The numerical results focus on spatially uniform perturbations to the magnitude, shape, and374

orientation of the SGS stress tensor. Three main outcomes have been observed in the case of well-resolved calcu-375

lations. First, the effects of perturbing the base-model in terms of magnitude discrepancy are small, especially in376

comparison to perturbations to the shape and orientation. Second, anisotropy perturbations to the one-component ver-377

tex result in flow laminarization, while perturbations to the three-component vertex increase the levels of turbulence,378

however, in a much lesser degree. Third, orientation incertitude by means of permutation three results in sustained379

introduction of kinetic energy from the modeled to the resolved scales (backscatter) that energizes the flow, whereas380
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Figure 9: Mean and envelope solutions of the ensemble perturbation calculation (quantities in wall units). (a) Averaged streamwise velocity profile.
(b) Streamwise rms velocity fluctuation. (c) Vertical rms velocity fluctuation. (d) Spanwise rms velocity fluctuation. DNS data from [48] (solid
line), mean solution and minimum and maximum bounds (dashed lines), sample 5 result (circles).
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permutation one is equivalent to eddy-viscosity-type models and acts as an energy sink (forward-scatter). Moreover,381

the ensemble calculation exposes the importance of considering combinations of perturbations as different variability382

is observed for first- and second-order statistics. From a general perspective, the overall numerical study demon-383

strates the capability of the strategy to provide bounds for the QoI (averaged streamwise velocity) that envelop the384

base-model prediction and DNS solution. This feature is of great importance for utilizing the proposed UQ estimation385

approach in computational studies involving engineering applications. Furthermore, the advantage of decomposing386

the tensor in magnitude, shape and orientation is illustrated by giving direct physical interpretation of the effects of387

the perturbations introduced.388

Ongoing work is focused on analyzing the performance of the methodology for complex flow configurations,389

as well as formal strategies for combining different types of perturbations. In addition, parallel studies are also390

being performed to incorporate the numerical uncertainty resulting from the discretization approximations into the391

current structural framework. Future work will concentrate on developing transport equations for the parameters of392

the methodology such that injection of incertitude is restricted to regions of the flow where the models are expected to393

provide less accurate predictions. For example, regions of transverse (Prandtl’s second kind of secondary flow) mean394

motion in turbulent square duct flow, thin separating shear layers in flows over circular cylinders, or reverse vorticity395

zones in flows over backward-facing steps.396
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Appendix. Mesh convergence study400

The main objective of this work is to introduce a framework to analyze sensitivity to structural uncertainty in LES401

closures. Of particular interest is the case of reasonably well-resolved LES calculations in which a balance between402

overall accuracy and computational cost is a critical aspect. In this regard, a mesh convergence study is presented here403

for the computational case considered in the numerical experiments section.404

The problem under consideration is LES of channel flow at Reτ = 395. Details of the computational setup are405

described in Sec. 5. Differences between three increasingly finer meshes are discussed and compared against DNS406

data from Moser et al. [48]. The size of the meshes in the streamwise, vertical and spanwise directions are 64×64×64,407

64× 128× 64, and 64× 128× 96. The meshes are uniform in the streamwise and spanwise directions, while stretched408

following a hyperbolic tangent distribution in the wall-normal direction. The latter mesh is chosen for the numerical409

tests of structural uncertainty.410

Results of averaged streamwise velocity profile (a) and rms velocity fluctuations (b, c, d) for the three meshes411

considered are shown in Fig. 10. The first observation is that the magnitudes and trends of the results are in accor-412

dance with equivalent LES calculations reported in the literature; for example in Gullbrand & Chow [50]. The (1)413

averaged streamwise velocity profile tends to be overpredicted starting from y+ ≈ 10, (2) there is an overprediction in414

streamwise velocity fluctuation at y+ ≈ 15, and (3) the vertical and spanwise fluctuations are underpredicted for all415

y+. However, a clear difference in trend is observed between averaged velocity profile and fluctuations. Irrespective416

of the spatial direction, refining the mesh improves the LES prediction of averaged velocity. Conversely, refining the417

mesh in the vertical direction by a factor of two does not improve significantly the accuracy in velocity fluctuation418

prediction, especially in the near-wall region (y+ ≈ 50), while a notable improvement is achieved when refining the419

mesh in the spanwise direction. An interpretation of this behavior in channel flow is that turbulence tends to organize420

in long streaks along the streamwise direction. Consequently, a relatively small number of gridpoints is sufficient421

to capture the evolution of the large structures in the streamwise direction. By contrast, the turbulent eddies in the422

spanwise direction are small, and therefore many more gridpoints are required per spatial length to properly capture423

them. Typical meshes considered in LES calculations are not fine enough in the spanwise direction, and consequently424

large scales tend to survive longer due to the incapacity of the grids to break them. In other words, the overprediction425

in streamwise and underprediction in vertical and spanwise velocity fluctuations is mainly related to the ratio between426

mesh resolution and large scales in the spanwise direction, and is effectively independent from the subgrid-scale427

modeling.428
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Figure 10: Mesh convergence study for LES of channel flow at Reτ = 395 (quantities in wall units). (a) Averaged streamwise velocity profile. (b)
Streamwise rms velocity fluctuation. (c) Vertical rms velocity fluctuation. (d) Spanwise rms velocity fluctuation. DNS data from [48] (solid line),
base-model mesh (solid triangles), coarser meshes (dashed lines).
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