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Summary. Digital tools have made it easy to design freeform surfaces and structures. The 
challenges arise later in respect to planning and construction. Their realization often results 
in the fabrication of many unique and geometrically-complex building parts. Current 
research at the Chair of Structural Design investigates curve networks with repetitive 
geometric parameters in order to find new, fabrication-aware design methods. In this paper, 
we present a method to design doubly-curved grid structures with exclusively orthogonal 
joints from flat and straight strips. The strips are oriented upright on the underlying surface, 
hence normal loads can be transferred via bending around their strong axis. This is made 
possible by using asymptotic curve networks on minimal surfaces 1, 2. This new construction 
method was tested in several prototypes from timber and steel. Our goal is to build a large-
scale (9x12m) research pavilion as an exhibition and gathering space for the Structural 
Membranes Conference in Munich. In this paper, we present the geometric fundamentals, the 
design and modelling process, fabrication and assembly, as well as the structural analysis 
based on the Finite Element Method of this research pavilion. 

 
 

Figure 1 Prototype of an asymptotic gridshell. The structure is built from straight strips of steel. The lamellas are 
oriented normal to the design surface. All slot joints are identical and orthogonal. Image: (Eike Schling) 
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Figure 2: Grid structure based on asymptotic curves: The model is built from straight strips of beech veneer. All 
joints are orthogonal. Image: (Denis Hitrec) 

1 INTRODUCTION 
There are a number of design strategies aiming to simplify the fabrication and construction 

process of doubly-curved grid structures. Therein, we can distinguish between discrete and 
smooth segmentations 3. One strategy, to build smoothly curved structures relies on the elastic 
deformation of its building components in order to achieve a desired curvilinear geometry 
from straight or flat elements 4. Consequently, there is a strong interest in the modelling and 
segmentation of geometry that can be unrolled into a flat state, such as developable surfaces 5. 
Recent publications have given a valuable overview on three specific curve types – geodesic 
curves, principal curvature lines, and asymptotic curves (Fig. 3) – that show great potential to 
be modelled as developable strips 6. Both geodesic curves and principle curvature lines have 
been successfully used for this purpose in architectural projects 7. However, there have been 
no applications of asymptotic curves for load-bearing structures. This is astounding, as 
asymptotic curves are the only type which are able to combine the benefits of straight 
unrolling and orthogonal nodes (Fig.2).1, 2 

In this paper we present a method to design strained grid structures along asymptotic 
curves on minimal surfaces to benefit from a high degree of simplification in fabrication and 
construction. They can be constructed from straight strips orientated normal to the underlying 
surface. This allows for an elastic assembly via their weak axis, and a local transfer of normal 
loads via their strong axis. Furthermore, the strips form a doubly-curved network, enabling a 
global load transfer as a shell structure. 2 

 In Section 2, we describe the geometric theory of curvature and curve networks. In 
Section 3 we introduce our computational design method of modelling minimal surfaces, 
asymptotic curves and networks. In Section 4, we implement this method in the design of a 
research pavilion for the Structural Membranes Conference. In Section 5, we discuss the 
fabrication, construction details and assembly by means of two prototypes, in timber and 
steel. Section 6, gives insights into the local and global load-bearing behavior, and describes 
the structural analysis based on Finite Element Method. We summarize our results in Section 
7 and conclude in Section 8, by highlighting challenges of this method, and suggesting future 
investigations on structural simulation and façade development. 
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2 FUNDAMETALS 

2.1 Curvature of curves on surfaces 
To measure the curvature of a curve on a surface, we can combine the information of 

direction (native to the curve) and orientation (native to the surface) to generate a coordinate 
system called the Darboux frame (Fig.3 right). This frame consists of the normal vector z, the 
tangent vector x and their cross-product, the tangent-normal vector y. When moving the 
Darboux frame along the surface-curve, the velocity of rotation around all three axes can be 
measured. These three curvature types are called the geodesic curvature kg (around z), the 
geodesic torsion tg (around x), and the normal curvature kn (around y) 6.  
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Figure 3: Definitions of curvature. Left: Curvature of a curve is measured through the osculating circle.  

Middle: The Gaussian or mean curvature of a surface is calculated with the principle curvatures k1 and k2. 
Right: A curve on a surface displays normal curvature kn. geodesic curvature kg and geodesic torsion tg. 

2.2 Curvature related networks 
Certain paths on a surface may avoid one of these three curvatures (Fig. 4). These 

specific curves hold great potential to simplify the fabrication and construction of curved grid 
structures. Geodesic curves have a vanishing geodesic curvature. They follow the shortest 
path between two points on a surface. They can be constructed from straight, planar strips 
tangential to the surface. Principle curvature lines have a vanishing geodesic torsion — 
there is no twisting of the respective structural element. They can be fabricated from curved, 
planar strips, and bent only around their weak axis. Their two families intersect at 90 degrees. 
Asymptotic curves have a vanishing normal curvature, and thus only exist on anticlastic 
surface-regions. Asymptotic curves combine several geometric benefits: They can be formed 
from straight, planar strips perpendicular to the surface. On minimal surfaces, their two 
families intersect at 90 degrees and bisect principle curvature lines. 1 

 

geodesic curves principle curvature lines asymptotic curves
 

 
Figure 4: Surface-curves have three curvatures: Geodesic curvature (z), geodesic torsion (x), and normal curvature (y). For 

each of them, if avoided, a related curve type exists: geodesic curves, principle curvature lines and asymptotic curves. 
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3 METHOD 

3.1 Minimal surface 
 A minimal surface is the surface of minimal area between any given boundaries. Minimal 

surfaces have a constant mean curvature of zero. In nature such shapes result from an 
equilibrium of homogeneous tension, e.g. in a soap film. 

Various tools are capable of approximating minimal surfaces based on meshes, with 
varying degrees of precision and speed (Surface Evolver, Kangaroo-SoapFilm, Millipede, 
etc.). They are commonly based on a method by Pinkall and Polthier (1993) 8.  

The Rhino-plugin TeDa (Chair of Structural Analysis, TUM) provides a tool to model 
minimal surfaces as NURBS, based on isotropic pre-stress fields 9.  

Certain minimal surfaces can be modelled via their mathematical definition. This is 
especially helpful as a reference when testing the accuracy of other algorithms.  

3.2 Asymptotic curves 
 Geometrically, the local direction of an asymptotic curve can be found by intersecting the 

surface with its own tangent plane. We developed a custom VBScript for Grasshopper/Rhino 
to trace asymptotic curves on NURBS-surface using differential geometry. 

A detailed description of this method and the generation of accurate strip models is being 
published parallel at the Design Modelling Symposium 2017 1. 
 

 
Figure 5: Enneper surface with a) asymptotic curves b) principle curvature lines c) web of both networks d) strip 

model of the asymptotic network   

3.3 Network design 
Asymptotic curve networks consist of two families of curves that follow a direction field. 

The designer can only pick a starting point, but cannot alter their path. If the surface is locally 
planar, the quadrilateral network forms a singularity with a higher valence. 

To achieve a homogeneous network, we take advantage of the bisecting property between 
asymptotic curves and principle curvature lines (Fig. 5) 10. By alternately drawing each curve 
and using their intersections as new starting point, we create an “isothermal” web with nearly 
quadratic cells 11. 

The node to node distance, measured along the asymptotic curves, is the only variable 
information needed to mark the intersections on the flat and straight strips before bending and 
twisting them into an asymptotic support structure. 
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4 DESIGN 

4.1 General insights 
 A minimal surface can be defined by one (a, b), two (c), or multiple (d, e) closed 

boundary-curves (Fig. 6). Symmetry properties can be used to create repetitive (a, b, c) or 
periodic (e) minimal surfaces. Boundary-curves may consist of straight lines (a), planar 
curves (d), or spatial curves (b, c, e). Straight or planar curves are likely to attract singularities 
(a, c, d). A well-integrated edge can also be achieved by modelling a larger surface and 
“cookie-cutting” the desired boundary. The Gaussian curvature of the design surface directly 
influences the density of the network, the position of singularities and the geodesic torsion of 
asymptotic curves.  

Figure 6: Examples of asymptotic strip networks on minimal surfaces. a) One polygonal boundary, creating a 
saddle shape with singularities appearing along the edges. b) One spatially curved boundary, creating a network 
with central singularity. c) Two boundary curves creating a rotational repetitive network with regular 
singularities. d) Multiple boundaries creating a freely designed network. e) Variation of a singly-periodic Sherk’s 
2nd minimal surface, with six interlinking boundaries. 

4.2 Implementation 
 We applied this method in the design of a large scale research pavilion for the Structural 

Membranes Conference in Munich. The design is based on a catenoid – the minimal surface 
between two circles (Fig. 7). By adjusting the position and shape of these two boundary 
curves we created an architectural space that reacts to the specific site requirements.  

The design of this self-supporting grid structure needs to fulfill geometric requirements, 
creating a homogenously curved minimal surface with well positioned singularities and an 
aesthetic curve network; constructional requirements, considering the allowable bending 
and torsion of all strip profiles; and structural requirements creating a doubly curved 
structure with well positioned vertical and horizontal supports and efficient arched edges. 
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Figure 7 : Design Process : A catenoid is manipulated by shifting and shaping its boudary circles, to create an 
architectural space with a circular courtyard and two archways.  

 
The pavilion has a span of approx. 9 x 12m at 5m height. The catenoid creates a circular 

courtyard, embracing one of the green islands on site. Two archways allow circulation to 
connect the campus to the conference rooms (Fig. 8). At the time of submission of this paper, 
we are working with sponsors to develop a finance and construction strategy.  

 

 

Figure 8 : The Asymptotic Pavilion is located at the central campus of the TUM. It is fitted to the specific site 
requirments of this green courtyard.  

5 CONSTRUCTION 

5.1 Strained grid 
Our construction process follows the reference of Frei Otto`s strained gridshells. This 

paradigm utilizes elastic deformation to create a doubly-curved lattice structure from straight 
wooden laths 12. 

 

In our method, we fabricate flat strips of timber or steel and subsequently bend them into 
their spatial geometry. As asymptotic curves admit no normal curvature, no bending around 
the y-axis of the profiles is necessary during assembly. Subsequently, the grid can be 
constructed from straight lamellas orientated perpendicular to the surface. The geodesic 
curvature results in bending around the z-axis. The geodesic torsion results in twisting of the 
lamellas (around their x-axis). When choosing the profiles, the section modulus and thickness 

183



Eike Schling, Denis Hitrec, Jonas Schikore and Rainer Barthel 

 7 

need to be adjusted to the maximum twist and minimal bending radii in order to keep 
deformation elastic. At the same time, the profiles need to provide enough stiffness to resist 
buckling under compression loads. These opposing factors can be solved by introducing two 
layers of lamellas. Each layer is sufficiently slender to easily be bent and twisted into its target 
geometry. Once the final geometry is installed, the two layers are coupled with a shear block 
in regular intervals to increase the overall stiffness similar to a Vierendeel truss. This 
technique was applied in the construction of two prototypes, first in timber and then in steel, 
each with an approx. 4 x 4m span (Fig. 9, 10). 

5.2 Timber prototype – spatial construction 
For the timber prototype, the two asymptotic directions were constructed on separate levels 

out of 4mm poplar plywood. This allowed for the use of continuous, uninterrupted profiles 
(Fig. 9, bottom). The upper and lower level were connected with a square stud, enforcing the 
orthogonal intersection angle. This rigid connection could only be fitted if all elements are 
curved in their final spatial geometry. Consequently, this prototype had to be erected spatially 
using framework and edge beams as temporary supports. The height of the planar edge 
profiles was determined by their intersection angle with the lamellas, creating a dominant 
frame (Fig. 9, top). 

 
 

 
 

 
 

Figure 9: Timber prototype. The lamellas are doubled and coupled to allow for low bending radii and high 
stiffness. Image: (Eike Schling) 
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5.3 Steel prototype – elastic erection 
The steel prototype was built from straight, 1.5mm steel strips. Both asymptotic directions 

interlock flush on one level. Therefore, the lamellas have a double slot at every intersection 
(Fig. 10, top).  Due to a slot tolerance, the joints were able to rotate by up to 60 degrees. This 
made it possible to assemble the grid flat on a hexagonal scaffolding. The structure was then 
“eased down” and “pushed up” simultaneously and thus transformed into its spatial geometry 
(Fig. 10, middle) 13. During the deformation process, a pair of orthogonal, star-shaped washers 
were tightened with a bolt at every node, enforcing the 90-degree intersection angle.  

Once the final geometry was reached, the edges were fitted by attaching steel strips on top 
and bottom. The edge-beam locks the shape in its final geometry, generates stiffness and 
provides attachments for the future diagonal bracing and façade. (Fig. 10, bottom).   
 

 

 

 

Figure 10: Steel prototype. Top: The grid is built from straight and flat steel strips. A double slot allows to 
interlock both directions in one level. Middle: Assembly process showing the elastic transformation from flat to 

curved geometry. Bottom: The final geometry is fixed via tangential edge strips. 
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6 STRUCTURAL ANALYSIS 

6.1 Load-Bearing Behavior 
We observed a hybrid load-bearing behavior of two competing mechanisms; a grillage and 

a gridshell. 
The profiles are oriented normal to the surface. Due to the bending stiffness in their strong 

axis, the grid is able to act as a beam grillage. This is needed to account for the local planarity 
of asymptotic networks (due to their vanishing normal curvature) and to stabilize open edges. 
At the same time, the strips form a doubly-curved network. Bracing the quadrilateral network 
with diagonal cables and supporting it horizontally activates the form-active behavior of a 
gridshell.  

Which of the two mechanism dominates, depends on the overall shape, the grid layout 
(direction, orthotropy, density and curvature), stiffness ratios (bending and axial stiffness), 
loads and constraints. These factors were taken into account, when designing both the 
pavilion and prototypes, in order to promote a shell like behavior. 

The elastic erection process, results in restraint (residual) stresses inside the curved and 
twisted grid elements. When using suitable section dimensions, the initial bending moments 
stay low and have minor effects on the global behavior.  

However, compression of these curved elements increases the bending moment in their 
weak axis. The strategy of doubling and coupling lamellas (Section 5.1) is therefore essential 
to control local buckling. The buckling behavior is dependent on the grid size as well as the 
offset and coupling interval of parallel lamellas.  

6.2 FEM - Analysis 
The design for the Asymptotic Pavilion (Section 4.2) was analyzed based on the Finite 

Element Method. The parametric line geometry was modelled in Rhino/Grasshopper and 
exported to RFEM. Material and joints are based on the steel prototype as described in section 
5.3, including diagonal bracing and nondisplaceable supports. The grid nodes are considered 
rigid. To represent the weakening of the lamellas at the cross-nodes, the joints are modelled as 
plastic hinges. 

The final development of an FEM-Model 
requires some unusual strategies and is not yet 
fully completed. The model needs to consider 
high elastic deformations and their resulting 
residual stresses, as well as a system change 
due to the later coupling of parallel lamellas. 

The values of geodesic curvature and 
torsion are measured along each curve and 
transferred into strain loads, which are then 
applied as initial load case to the curved 
geometry. This strategy enables us to induce 
the residual stresses, without modelling the 
assembly process.  

7506.2

 Querschnitte
 1: Rechteck 2/120; Baustahl S 235
 2: Rechteck 2/120; Baustahl S 235
 3: Rechteck 2/60; Baustahl S 235
 4: Rechteck 2/60; Baustahl S 235
 5: H-2B 120/120/2; Baustahl S 235; 90.0 °

IsometrieLK 2: Zwang Einzellamelle2
Globale Verformungen u

Faktor für Verformungen: 1.00
Max u: 7506.2, Min u: 0.0 mm

Figure 11: Due to the induced strain loads, a sample 
lamella will straighten, when extracted from the grid. 
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To verify this method, a sample lamella is extracted from the grid. The applied loads 
straighten the lamella into its unstrained shape demonstrating correctness of the strain load 
values (Fig. 11).  

 
Figure 12, shows the surface stress of the final pavilion, including restraint and self-weight. 

The maximum stresses are mainly caused by the initial bending process and can be adjusted 
by changing the stiffness in the weak axis or changing the surface curvature. 
 

         
 
Figure 12: Surface stresses of the grid structure resulting from both the elastic erection process and self-weight. 

Due to intense twisting of the lamellas, we expect further stresses according to the theory 
of helix torsion14. These effects are not yet considered in the FEM analysis and need to be 
quantified in further calculations. 

6.3 Strain energy analysis 
To evaluate and quantify the structures behaviour, the balance of strain energy is observed 

under self-weight, excluding the initial restraint stresses. For this, the energy due to internal 
forces Mx, My, Mz and N are compared. My and Mt are attributed to a grillage-like behavior, N 
and Mz are cathegorized as a shell-like behaviour. The calculated energy ratio, indicates a 
dominating shell-like load-bearing behaviour. 

 
 

Figure 13: Formula for strain energy W14. Indicated below is the balance between Mx, My and Mz, N. 
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7 RESULTS 
We compared the geometric properties of three specific curve networks: geodesic curves, 

principle curvature lines and asymptotic curves, and identified that only asymptotic curves are 
able to combine the benefits of straight unrolling and orthogonal nodes. They can be formed 
from straight strips perpendicular to the underlying anticlastic surface. This way, they resist 
loads normal to the surface by bending in their strong axis. On minimal surfaces, asymptotic 
curves intersect at 90 degrees, which allows the use of identical nodes throughout the 
structure. The bisecting property with principle curvature networks offers further geometric 
advantages for substructure and façade. 

We developed a custom VBScript that can trace asymptotic curves on anticlastic surfaces 
with sufficient accuracy for design and construction, and implemented this method in a 
pavilion design for the Structural Membranes Conference  2017. 

Due to an initial deformation, both twisting (geodesic torsion) and bending (geodesic 
curvature) have to be considered when choosing profiles for this construction. We have 
presented a strategy of doubling and coupling the bent structural elements to achieve 
sufficient stiffness of the final grid. The findings were demonstrated in the realization of two 
prototypes: One in timber and one in steel, each with a span of 4 x 4m.  

We discussed the structural behavior based on two competing mechanism, a grillage and a 
gridshell and finally developed a workflow to compute the residual stress of the elastic 
erection process on the basis of the local geometric curvature and torsion, without simulating 
the assembly process. 

8 CONCLUSION 
An analytical approach to both geometry and material properties is required to achieve a 

symbiosis of form, structure and fabrication. Even though the design freedom is limited to the 
choice of boundary curves, there is a wide range of design solutions applicable to all scales 
and functions. The construction of asymptotic grids as strained grids offers advantages for 
both fabrication and assembly. Structurally, asymptotic gridshells show great potential, as 
they combine the benefits of upright sections with a doubly-curved grid. Hence, loads can be 
transferred locally via bending, and globally as a shell structure. 

We are continuing to investigate the structural behavior of strained asymptotic structures, 
comparing grid orientations, shapes and supports. Another ongoing development is the 
implementation of constructive details: This includes cable bracing and façade systems using 
planar quads, developable façade strips and membranes.  
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