THE ART oF DISGRETE AND
APPLIED MATHEMATICS

@creative
commons

ISSN 2590-9770

The Art of Discrete and Applied Mathematics 1 (2018) #P2.07
https://doi.org/10.26493/2590-9770.1219.034
(Also available at http://adam-journal.eu)

An alternate description of a (¢ + 1, 8)-cage

Marien Abreu *

Dipartimento di Matematica Informatica ed Economia,
Universita degli Studi della Basilicata,
Viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy

Gabriela Araujo-Pardo f
Instituto de Matemdticas, Universidad Nacional Autonoma de México,
Meéxico D. F., México
Camino Balbuena
Departament de Matemdtica Aplicada Ill, Universitat Politecnica de Catalunya,
Campus Nord, Edifici C2, C/ Jordi Girona 1 i 3 E-08034, Barcelona, Spain
Domenico Labbate *

Dipartimento di Matematica Informatica ed Economia,
Universita degli Studi della Basilicata,
Viale dell’Ateneo Lucano 10, I-85100 Potenza, Italy

Received 15 November 2017, accepted 4 June 2018, published online 23 July 2019

Abstract

Let ¢ > 2 be a prime power. In this note we present an alternate description of the
known (g + 1, 8)-cages which has allowed us to construct small (k, g)—graphs for k =
q — 1,q and g = 7, 8 in other papers on this same topic.
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1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges are
considered. Unless otherwise stated, we follow the book by Bondy and Murty [14] for
terminology and notation.

Let G be a graph with vertex set V = V(G) and edge set E = E(G). The girth of G
is the number g = g(G) of edges in a shortest cycle. For every v € V, Ng(v) denotes the
neighbourhood of v, i.e. the set of all vertices adjacent to v, and Ng[v] = Ng(v) U {v} is

the closed neighbourhood of v. The degree of a vertex v € V is the cardinality of Ng(v).
Let S C V(G), then we denote by N (S) = Uses Na(s)— S and by Ng[S] = SUNg(S).

A graph is called regular if all its vertices have the same degree. A (k, g)-graph is a
k-regular graph with girth g. Erd8s and Sachs [15] proved the existence of (k, g)-graphs
for all values of k and g provided that £ > 2. Since then most work carried out has focused
on constructing a smallest (k, g)-graph (cf. e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 18,

, 21, 221). A (k, g)-cage is a k-regular graph with girth g having the smallest possible
number of vertices. Cages have been intensely studied since they were introduced by Tutte
[25] in 1947. More details about constructions of cages can be found in the recent survey
by Exoo and Jajcay [17].

In this note we are interested in (k, 8)-cages. Counting the number of vertices in the
distance partition with respect to an edge yields the following lower bound on the order of
a (k, 8)-cage:

no(k,8) = 2(1+ (k — 1) + (k — 1)* + (k — 1)?). (1.1)

A (k, 8)-cage with ng(k, 8) vertices is called a Moore (k, 8)-graph (cf. [14]). These
graphs have been constructed as the incidence graphs of generalized quadrangles Q(4, q)
and W (q) [12, 17, 24], which are known to exist for g a prime power and k = ¢ + 1 and
no example is known when &£ — 1 is not a prime power (cf. [11, 13, 19, 27]). Since they
are incidence graphs, these cages are bipartite and have diameter 4. Recall also that if ¢ is
even, (4, q) is isomorphic to the dual of W (q) and viceversa. Hence, the corresponding
(¢ + 1, 8)-cages are isomorphic.

In this note we present an alternate description of the known (¢+1, 8)-cages with ¢ > 2
a prime power as follows:

Definition 1.1. Let I, be a finite field with ¢ > 2 a prime power and o be a symbol
not belonging to F,. Let I'; = I';[Wy, W1] denote a bipartite graph with vertex sets
Wi = F2U{(0,b,¢)s, (0,0,¢)i : byc € Fe} U{(0,0,0)i},i = 0,1, and edge set defined
as follows:

Foralla,b,c € IF,

Nr,((a,b,¢)1) = {(w, aw +b, a®w+2ab+c)o: w € Fg} U{(0,a,¢)o};
Nr, ((0,0,0)1) = {(¢,;b,w)o : w € Fg} U{(e, 0,¢)o};

Nr,((0,0,¢)1) = {(e: ¢, w)o w € Fg} U (e 0,0)0};

Nr,((e, 0,001) = {(¢, 0, w)o - w € Fy} U{(0, 0, 0)0}-
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Or equivalently,

Foralli,j,k € I,

Nr, ((i,4,k)o) = {(w, j — wi, w?i — 2wj + k)1 : w € Fg} U{(0,5,9)1}
Nr,((0:7,k)0) = {(j,w, k)1 : w € Fg} U{(0,0,5)1}

Nr,((0;0,k)0) = {(0,w, k)1 : w € F} U{(0,0,0)1};

Nr,((0,0,0)0) = {(0,0,w)1 : w € Fg} U{(0,0,0)1}

Note that g is just a symbol not belonging to I, and no arithmetical operation will be
performed with it.

Theorem 1.2. The graph T, given in Definition 1.1 is a Moore (q + 1,8)-graph for each
prime power q > 2.

The proof of the above theorem shows that the graph I';, described in Definition 1.1 is
in fact a labelling for a (¢ + 1, 8)-cage, for each prime power ¢ > 2. We need to settle
this alternate description because it is used in [2, 3, 4] to construct small (k, g)-graphs for
k=q—1,gandg=7,8.

2 Proof of Theorem 1.2
2.1 Preliminaries: the graphs H, and B,

In order to prove Theorem 1.2 we will first define two g-regular bipartite graphs H,; and B,
(cf. Definitions 2.1 and 2.4). The graph H, was also introduced by Lazebnik, Ustimenko
and Woldar [20] with a different formulation.

Definition 2.1. Let F, be a finite field with ¢ > 2. Let H, = H,[Uy, U;] be a bipartite
graph with vertex set U, = Ff’l r =0, 1, and edge set E(H,) defined as follows:

Forall a,b,c € IF,
Nu,((a,b,¢)1) = {(w, aw+b, a*w+c)g : w € Fy}.

Note that throughout the proofs equalities and operations are intended in F,,.

Lemma 2.2. Let H, be the graph from Definition 2.1. For any given a € F, the vertices
in the set {(a,b,c)1 : b,c € F,} are mutually at distance at least four. And, for any given
i € Fy, the vertices in the set {(i, j,k)o : j, k € Fq} are mutually at distance at least four.

Proof. Suppose that there exists a path of length two between distinct vertices of the form
(a,b,¢)1 (w, ], k)o (a,b',¢')1 in Hy. By Definition 2.1, j = aw +b = aw + b and k =
a’w + c = a’w + ¢. Combining the equations we get b = b’ and ¢ = ¢’ which implies that
(a,b,c)1 = (a,b, )1 contradicting the assumption that the path has length two. Similarly
suppose that there exists a path of length two (4, j,k)o (a,b,¢)1 (4,5, k")o. Reasoning as
before, we obtain j = ai + b = j', and k = a?i + ¢ = k' yielding (i, j, k)o = (3,5, k")o
which is a contradiction. O

Proposition 2.3. The graph H, from Definition 2.1 is q-regular, bipartite, of girth 8 and
order 2¢°.
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Proof. For ¢ = 2 it can be checked that Hy consists of two disjoint cycles of length 8.
Thus we assume that ¢ > 3. Clearly H, has order 2¢> and every vertex of Uy has degree ¢.
Let (z,y, z)o € Up. By definition of H,,

Nu,((z,y,2)0) = {(a, y—ar, z—a’x), :a € Fq}. 2.1

Hence every vertex of Uy has also degree g and H, is g-regular. Next, let us prove that H,
has no cycles of length smaller than 8. Otherwise suppose that there exists in H, a cycle

Caty2 = (ao, bo, co)1 (zo, Yo, 20)o (a1,b1,c1)1 - (@, Ys, 2t)o (@0, bo, co)1

of length 2t + 2 with t € {1,2}. By Lemma 2.2, a), # ag+1 and xp, # 21 (subscripts
being taken modulo ¢ + 1). Then

Yk = apT + by = a1k +bpgp1, k=0,...,¢,

2 2
2 = apTp +Ck = A 1Tk + Cpr1, k=0,...,1,

subscripts k being taken modulo ¢ + 1. Summing all these equalities we get

-
|
—

(ar, — apq1)xr = (a0 — ap)ze, t=1,2;

(2.2)

B
LI

(ai — aiﬂ)xk = (a% — af)xt, t=1,2.

e
I
<

If t = 1, then (2.2) leads to (ap — a1)(z1 — x9) = 0. System (2.2) gives xg = z1 = X2
which is a contradiction to Lemma 2.2. This means that H, has no squares so that we may
assume that t = 2. The coefficient matrix of (2.2) has a Vandermonde determinant, i.e.

a; —ag ag—a it

1—ap Qo — G2

2_ .2 2 2l =01 Go a2| = H (a; — ag).
a1 —ap Ay — a3 2 2

2 i
aj Gag as 0<k<j<2

This determinant is different from zero because by Lemma 2.2, aj, 1 # ay, (the subscripts
being taken modulo 3). Using Cramer’s rule to solve it we obtain x1 = xg = x5 which is
a contradiction to Lemma 2.2.

Hence, H, has girth at least 8. Furthermore, when ¢ > 3 the minimum number of
vertices of a g-regular bipartite graph of girth greater than 8 must be greater than 2¢>. Thus
we conclude that the girth of H, is exactly 8. O

Next, we will make use of the following induced subgraph B, of T',,.

Definition 2.4. Let B, = B,[Vy, V1] be a bipartite graph with vertex set V; = F3,i =0, 1,
and edge set E(B,) defined as follows:

Forall a,b,c € IFy,
Ng,((a,b,¢)1) = {(j, aj + b, a®j + 2ab+c)o : j € Fy}.

Lemma 2.5. The graph B, is isomorphic to the graph H .
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Proof. Let H be the bipartite graph from Definition 2.1. Since the map o: B, — H,
defined by o((a, b, ¢)1) = (a,b,2ab+c); and o((x,y, 2)0) = (z,y, 2)o is an isomorphism,
the result holds. O

Hence, the graph B, is also g-regular, bipartite, of girth 8 and order 2¢>.
In what follows, we will obtain the graph I'; from the graph B, by adding some new
vertices and edges. We need a preliminary lemma.

Lemma 2.6. Let B, be the graph from Definition 2.4. Then the following hold:

(i) The vertices in the set {(a,b,c)1 : b,c € Fq} are mutually at distance at least four
foralla € Fy.

(ii) The vertices in the set {(i, j, k)o : j,k € Fq} are mutually at distance at least four
foralli € F,.

(iii) The q vertices of the set {(x,y, j)o : j € Fq} are mutually at distance at least six for
all z,y € F,.

Proof. The proof of items (i) and (ii) is almost identical to that of Lemma 2.2.
(iii): By (ii), the vertices in {(z,y, j)o : j € F,} are mutually at distance at least four.
Suppose by contradiction that B, contains the following path of length four:

(l’, Y, ])0 (a‘7 b, C)l (xlv ylaj/)o (a‘/a b/7 Cl)l (l’, Y, j//)Oa for some j// # j
Theny = ax+b = a’z+b andy’ = ax’+b = a’2'+V'. It follows that (a—a)(z—2') = 0,
which is a contradiction since, by the previous statements, a # a’ and x # 2. O
2.2 The conclusion

Figure 1 shows a spanning tree of I'; with the vertices labelled according to Definition 1.1.
Note that the lower level of such a tree corresponds to the set of vertices of B,.

(0,001 (0,0, 0)0

Figure 1: Spanning tree of I';.

We are now ready to prove Theorem 1.2:
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Proof of Theorem 1.2. Let B = B,[Vy, V{] be the bipartite graph obtained from B, =
B,[Vo, V1] by adding ¢* new vertices to V; labeled (g,b,¢)1, b,c € F, (e, V/ = V1 U
{(0,b,¢)1 : b,c € Fy}), and new edges NB(/Z((,Q, b,c)1) = {(¢,b,5)0 : § € Fy} (see
Figure 1). Then B} has |V/|+|Vy| = 2¢*+ ¢ vertices, every vertex of V; has degree ¢+ 1,
and every vertex of V] has still degree ¢. Note that the girth of B(’I is 8 by Lemma 2.6(iii).
The statements from Lemma 2.6 still partially hold in B/, as stated in the following claim.

Claim 1. For any given a € F, U {p}, the vertices of the set {(a,b,c)1 : b,c € F,} are
mutually at distance at least four in B(’Z.

Proof. For a = p, itis clear from Lemma 2.6(i), since the new vertices do not change the
distance among the vertices in the set {(a,b,c); : b,c € F,}. For a = p, the vertices
in the set {(a,b,c)1 : b,c € Fy} are mutually at distance at least four since each vertex
of the form (¢, j, k)¢ has exactly one neighbour in this set, so the result follows from the
bipartition of By. O

Claim 2. Forall a € F, U {0} and for all c € Fy, the q vertices of the set {(a,t,c)1 : t €
F,} are mutually at distance at least 6 in By,

Proof. By Claim 1, for all a € F, U {p} the ¢ vertices of {(a,t,¢)1 : t € F,} are mutually
at distance at least 4 in B(’]. Suppose that there exists in B; the following path of length
four:

(avta C)l (x,yv Z)O (a/ﬂt/7cl)1 (x/ay/v Z/)O (avt//a C)l’ for some ¢” # L.

Ifa=op,thenz =2 =c,y=1t19y =t"anda’ # obyClaim 1. Theny = o'z + ¢ =
a'z’ +t =y yielding that t = ¢” which is a contradiction. Therefore a # . If ' = o,
thenz =2’ =c andy =3y =+t'. Thusy = ax +t = ax’ +t"" = 3/ yielding that ¢t = ¢”
which is a contradiction. Hence we may assume that a’ # g and a # a’ by Claim 1. In this
case we have:

y=axr+t=adz+t;
y/:ax/+t/l:a/lx/+t/;

2z =a’z + 2at + ¢ = a*z + 2d't’' + ¢;

2 =a*2 +2at" +c=ad?x’ +2d't + .
Thus,

(a—d)(z—2")=t"—1t; (2.3)
(a* —a?)(x —2') = 2a(t" —1). 2.4)

If ¢ is even, (2.4) leads to x = z’ and (2.3) leads to ¢/ = t which is a contradiction with
our assumption. Thus assume ¢ is odd. If a + a’ = 0, then (2.4) gives 2a(t” —t) = 0, so
that a = 0 yielding that ' = 0 (because a + @’ = 0) which is again a contradiction. If
a+ a’ # 0, multiplying equation (2.3) by a + a’ and subtracting both equations we obtain
(2a — (a+ a'))(t” —t) = 0. Then a = o' because ¢ # ¢, which is a contradiction to
Claim 1. Therefore, Claim 2 holds. O
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Let B] = B//[Vy, V{] be the graph obtained from B; = B [Vy, V{] by adding ¢* + ¢
new vertices to Vp labeled (o, a, ¢)o, a € FqU{o}, ¢ € Fy, and new edges N ((0,a, ¢)o) =
{(a,t,¢)1 : t € Fy} (see Figure 1). Then B has [V/| + V| = 2¢° + 2¢° + q vertices
such that every vertex has degree ¢ + 1 except the new added vertices which have degree
q. Moreover the girth of B/ is 8 by Claim 2.

Claim 3. Forall a € Fy U {o}, the g vertices of the set {(0,a, j)o : j € Fq} are mutually
at distance at least 6 in By

Proof. Clearly these g vertices are mutually at distance at least 4 in Bfl’ . Suppose that there
exists in By the following path of length four:

(«Qaavj)o (a7b7j)1 (9573/,2)0 (avbl7j/)1 (Qaavj/)m for some j/ 7&]

If a = pthen x = j = j’ which is a contradiction. Therefore a # o. In this case
y = ax+b = ax+b’ which implies that b = b’. Hence z = a?x+2ab+j = a’z+2ab’ +7’
yielding that 7 = j’ which is again a contradiction. O

Let B = B[V}, V{'] be the graph obtained from B by adding ¢ + 1 new vertices to
V{ labeled (g, 0,a)1, a € Fy U {0}, and new edges Np: (0, 0,a)1 = {(¢0,a,c)o : ¢ € Fy},
see Figure 1. Then B] has |V/'| + |V{| = 2¢* + 2¢® + 2q + 1 vertices such that every
vertex has degree ¢ + 1 except the new added vertices which have degree q. Moreover the
girth of Bg " is 8 by Claim 3 and clearly these ¢ + 1 new vertices are mutually at distance 6.
Finally, the graph I'; is obtained by adding to B(’I” another new vertex labeled (o, o, 0)o and
edges N, ((0,0,0)0) = {(0, 0,i)1 : i € Fq U{o}}. The graph 'y has 2(¢* 4+ ¢*> + ¢ + 1)
vertices, it is (¢ + 1)-regular and has girth 8, so by the uniqueness of a (¢ + 1, 8)-cage (see
e.g. [29]), T, is indeed a (g + 1, 8) Moore graph. O

Remark 2.7. Coordinatizations of classical generalized quadrangles Q(4,¢q) and W (q)
in four dimensions are discussed in [23, 26, 28]. The alternate description of a Moore
(¢ + 1, 8)-graph given in Theorem 1.2 in three dimensions is equivalent to this coordinati-
zation.
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