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Marièn Abreu ∗

Dipartimento di Matematica Informatica ed Economia,
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Instituto de Matemáticas, Universidad Nacional Autónoma de México,
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Abstract

Let q ≥ 2 be a prime power. In this note we present an alternate description of the
known (q + 1, 8)-cages which has allowed us to construct small (k, g)–graphs for k =
q − 1, q and g = 7, 8 in other papers on this same topic.
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1 Introduction

Throughout this paper, only undirected simple graphs without loops or multiple edges are
considered. Unless otherwise stated, we follow the book by Bondy and Murty [14] for
terminology and notation.

Let G be a graph with vertex set V = V (G) and edge set E = E(G). The girth of G
is the number g = g(G) of edges in a shortest cycle. For every v ∈ V , NG(v) denotes the
neighbourhood of v, i.e. the set of all vertices adjacent to v, and NG[v] = NG(v) ∪ {v} is
the closed neighbourhood of v. The degree of a vertex v ∈ V is the cardinality of NG(v).
Let S ⊂ V (G), then we denote byNG(S) = ∪s∈SNG(s)−S and byNG[S] = S∪NG(S).

A graph is called regular if all its vertices have the same degree. A (k, g)-graph is a
k-regular graph with girth g. Erdős and Sachs [15] proved the existence of (k, g)-graphs
for all values of k and g provided that k ≥ 2. Since then most work carried out has focused
on constructing a smallest (k, g)-graph (cf. e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 16, 18,
20, 21, 22]). A (k, g)-cage is a k-regular graph with girth g having the smallest possible
number of vertices. Cages have been intensely studied since they were introduced by Tutte
[25] in 1947. More details about constructions of cages can be found in the recent survey
by Exoo and Jajcay [17].

In this note we are interested in (k, 8)-cages. Counting the number of vertices in the
distance partition with respect to an edge yields the following lower bound on the order of
a (k, 8)-cage:

n0(k, 8) = 2(1 + (k − 1) + (k − 1)2 + (k − 1)3). (1.1)

A (k, 8)-cage with n0(k, 8) vertices is called a Moore (k, 8)-graph (cf. [14]). These
graphs have been constructed as the incidence graphs of generalized quadrangles Q(4, q)
and W (q) [12, 17, 24], which are known to exist for q a prime power and k = q + 1 and
no example is known when k − 1 is not a prime power (cf. [11, 13, 19, 27]). Since they
are incidence graphs, these cages are bipartite and have diameter 4. Recall also that if q is
even, Q(4, q) is isomorphic to the dual of W (q) and viceversa. Hence, the corresponding
(q + 1, 8)-cages are isomorphic.

In this note we present an alternate description of the known (q+1, 8)-cages with q ≥ 2
a prime power as follows:

Definition 1.1. Let Fq be a finite field with q ≥ 2 a prime power and % be a symbol
not belonging to Fq . Let Γq = Γq[W0,W1] denote a bipartite graph with vertex sets
Wi = F3

q ∪ {(%, b, c)i, (%, %, c)i : b, c ∈ Fq} ∪ {(%, %, %)i}, i = 0, 1, and edge set defined
as follows:

For all a, b, c ∈ Fq

NΓq
((a, b, c)1) = {(w, aw + b, a2w + 2ab+ c)0 : w ∈ Fq} ∪ {(%, a, c)0};

NΓq
((%, b, c)1) = {(c, b, w)0 : w ∈ Fq} ∪ {(%, %, c)0};

NΓq
((%, %, c)1) = {(%, c, w)0 : w ∈ Fq} ∪ {(%, %, %)0};

NΓq
((%, %, %)1) = {(%, %, w)0 : w ∈ Fq} ∪ {(%, %, %)0}.
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Or equivalently,

For all i, j, k ∈ Fq

NΓq
((i, j, k)0) = {(w, j − wi, w2i− 2wj + k)1 : w ∈ Fq} ∪ {(%, j, i)1}

NΓq
((%, j, k)0) = {(j, w, k)1 : w ∈ Fq} ∪ {(%, %, j)1}

NΓq
((%, %, k)0) = {(%, w, k)1 : w ∈ Fq} ∪ {(%, %, %)1};

NΓq
((%, %, %)0) = {(%, %, w)1 : w ∈ Fq} ∪ {(%, %, %)1}.

Note that % is just a symbol not belonging to Fq and no arithmetical operation will be
performed with it.

Theorem 1.2. The graph Γq given in Definition 1.1 is a Moore (q + 1, 8)-graph for each
prime power q ≥ 2.

The proof of the above theorem shows that the graph Γq described in Definition 1.1 is
in fact a labelling for a (q + 1, 8)-cage, for each prime power q ≥ 2. We need to settle
this alternate description because it is used in [2, 3, 4] to construct small (k, g)-graphs for
k = q − 1, q and g = 7, 8.

2 Proof of Theorem 1.2
2.1 Preliminaries: the graphs Hq and Bq

In order to prove Theorem 1.2 we will first define two q-regular bipartite graphsHq andBq

(cf. Definitions 2.1 and 2.4). The graph Hq was also introduced by Lazebnik, Ustimenko
and Woldar [20] with a different formulation.

Definition 2.1. Let Fq be a finite field with q ≥ 2. Let Hq = Hq[U0, U1] be a bipartite
graph with vertex set Ur = F3

q , r = 0, 1, and edge set E(Hq) defined as follows:

For all a, b, c ∈ Fq

NHq ((a, b, c)1) = {(w, aw + b, a2w + c)0 : w ∈ Fq}.

Note that throughout the proofs equalities and operations are intended in Fq .

Lemma 2.2. Let Hq be the graph from Definition 2.1. For any given a ∈ Fq , the vertices
in the set {(a, b, c)1 : b, c ∈ Fq} are mutually at distance at least four. And, for any given
i ∈ Fq , the vertices in the set {(i, j, k)0 : j, k ∈ Fq} are mutually at distance at least four.

Proof. Suppose that there exists a path of length two between distinct vertices of the form
(a, b, c)1 (w, j, k)0 (a, b′, c′)1 in Hq . By Definition 2.1, j = aw + b = aw + b′ and k =
a2w+ c = a2w+ c′. Combining the equations we get b = b′ and c = c′ which implies that
(a, b, c)1 = (a, b′, c′)1 contradicting the assumption that the path has length two. Similarly
suppose that there exists a path of length two (i, j, k)0 (a, b, c)1 (i, j′, k′)0. Reasoning as
before, we obtain j = ai + b = j′, and k = a2i + c = k′ yielding (i, j, k)0 = (i, j′, k′)0

which is a contradiction.

Proposition 2.3. The graph Hq from Definition 2.1 is q-regular, bipartite, of girth 8 and
order 2q3.
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Proof. For q = 2 it can be checked that H2 consists of two disjoint cycles of length 8.
Thus we assume that q ≥ 3. Clearly Hq has order 2q3 and every vertex of U1 has degree q.
Let (x, y, z)0 ∈ U0. By definition of Hq ,

NHq ((x, y, z)0) =
{

(a, y − ax, z − a2x)1 : a ∈ Fq

}
. (2.1)

Hence every vertex of U0 has also degree q and Hq is q-regular. Next, let us prove that Hq

has no cycles of length smaller than 8. Otherwise suppose that there exists in Hq a cycle

C2t+2 = (a0, b0, c0)1 (x0, y0, z0)0 (a1, b1, c1)1 · · · (xt, yt, zt)0 (a0, b0, c0)1

of length 2t + 2 with t ∈ {1, 2}. By Lemma 2.2, ak 6= ak+1 and xk 6= xk+1 (subscripts
being taken modulo t+ 1). Then

yk = akxk + bk = ak+1xk + bk+1, k = 0, . . . , t,

zk = a2
kxk + ck = a2

k+1xk + ck+1, k = 0, . . . , t,

subscripts k being taken modulo t+ 1. Summing all these equalities we get

t−1∑
k=0

(ak − ak+1)xk = (a0 − at)xt, t = 1, 2;

t−1∑
k=0

(a2
k − a2

k+1)xk = (a2
0 − a2

t )xt, t = 1, 2.

(2.2)

If t = 1, then (2.2) leads to (a0 − a1)(x1 − x0) = 0. System (2.2) gives x0 = x1 = x2

which is a contradiction to Lemma 2.2. This means that Hq has no squares so that we may
assume that t = 2. The coefficient matrix of (2.2) has a Vandermonde determinant, i.e.

∣∣∣∣a1 − a0 a0 − a2

a2
1 − a2

0 a2
0 − a2

2

∣∣∣∣ =

∣∣∣∣∣∣
1 1 1
a1 a0 a2

a2
1 a2

0 a2
2

∣∣∣∣∣∣ =
∏

0≤k<j≤2

(aj − ak).

This determinant is different from zero because by Lemma 2.2, ak+1 6= ak (the subscripts
being taken modulo 3). Using Cramer’s rule to solve it we obtain x1 = x0 = x2 which is
a contradiction to Lemma 2.2.

Hence, Hq has girth at least 8. Furthermore, when q ≥ 3 the minimum number of
vertices of a q-regular bipartite graph of girth greater than 8 must be greater than 2q3. Thus
we conclude that the girth of Hq is exactly 8.

Next, we will make use of the following induced subgraph Bq of Γq .

Definition 2.4. Let Bq = Bq[V0, V1] be a bipartite graph with vertex set Vi = F3
q , i = 0, 1,

and edge set E(Bq) defined as follows:

For all a, b, c ∈ Fq

NBq
((a, b, c)1) = {(j, aj + b, a2j + 2ab+ c)0 : j ∈ Fq}.

Lemma 2.5. The graph Bq is isomorphic to the graph Hq .
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Proof. Let Hq be the bipartite graph from Definition 2.1. Since the map σ : Bq → Hq

defined by σ((a, b, c)1) = (a, b, 2ab+c)1 and σ((x, y, z)0) = (x, y, z)0 is an isomorphism,
the result holds.

Hence, the graph Bq is also q-regular, bipartite, of girth 8 and order 2q3.
In what follows, we will obtain the graph Γq from the graph Bq by adding some new

vertices and edges. We need a preliminary lemma.

Lemma 2.6. Let Bq be the graph from Definition 2.4. Then the following hold:

(i) The vertices in the set {(a, b, c)1 : b, c ∈ Fq} are mutually at distance at least four
for all a ∈ Fq .

(ii) The vertices in the set {(i, j, k)0 : j, k ∈ Fq} are mutually at distance at least four
for all i ∈ Fq .

(iii) The q vertices of the set {(x, y, j)0 : j ∈ Fq} are mutually at distance at least six for
all x, y ∈ Fq .

Proof. The proof of items (i) and (ii) is almost identical to that of Lemma 2.2.
(iii): By (ii), the vertices in {(x, y, j)0 : j ∈ Fq} are mutually at distance at least four.

Suppose by contradiction that Bq contains the following path of length four:

(x, y, j)0 (a, b, c)1 (x′, y′, j′)0 (a′, b′, c′)1 (x, y, j′′)0, for some j′′ 6= j.

Then y = ax+b = a′x+b′ and y′ = ax′+b = a′x′+b′. It follows that (a−a′)(x−x′) = 0,
which is a contradiction since, by the previous statements, a 6= a′ and x 6= x′.

2.2 The conclusion

Figure 1 shows a spanning tree of Γq with the vertices labelled according to Definition 1.1.
Note that the lower level of such a tree corresponds to the set of vertices of Bq .

(0, 0, 0)
0

(0, 0, w
)
0

(0, j, 0)
0

(0, j, w
)
0

(i, 0, 0)
0

(i, 0, w
)
0

(i, j, 0)
0

(i, j, w
)
0

(0, 0, 0)
1

(0, t, 0)
1

(0, 0, c)
1

(0, t, c)
1

(a, 0, 0)
1

(a, t, 0)
1

(a, 0, c)
1

(a, t, c)
1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

(%, 0, 0)1

(%, j, 0)1

(%, 0, i)1

(%, j, i)1

(%, 0, 0)0

(%, 0, c)0

(%, a, 0)0

(%, a, c)0

(%, %, 0)0

(%, %, i)0

(%, %, 0)1

(%, %, a)1

· · · · · · · · · · · ·

· · · · · ·

(%, %, %)1 (%, %, %)0

Figure 1: Spanning tree of Γq .

We are now ready to prove Theorem 1.2:
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Proof of Theorem 1.2. Let B′q = B′q[V0, V
′
1 ] be the bipartite graph obtained from Bq =

Bq[V0, V1] by adding q2 new vertices to V1 labeled (%, b, c)1, b, c ∈ Fq (i.e., V ′1 = V1 ∪
{(%, b, c)1 : b, c ∈ Fq}), and new edges NB′

q
((%, b, c)1) = {(c, b, j)0 : j ∈ Fq} (see

Figure 1). ThenB′q has |V ′1 |+ |V0| = 2q3 +q2 vertices, every vertex of V0 has degree q+1,
and every vertex of V ′1 has still degree q. Note that the girth of B′q is 8 by Lemma 2.6(iii).
The statements from Lemma 2.6 still partially hold in B′q , as stated in the following claim.

Claim 1. For any given a ∈ Fq ∪ {%}, the vertices of the set {(a, b, c)1 : b, c ∈ Fq} are
mutually at distance at least four in B′q .

Proof. For a = %, it is clear from Lemma 2.6(i), since the new vertices do not change the
distance among the vertices in the set {(a, b, c)1 : b, c ∈ Fq}. For a = %, the vertices
in the set {(a, b, c)1 : b, c ∈ Fq} are mutually at distance at least four since each vertex
of the form (i, j, k)0 has exactly one neighbour in this set, so the result follows from the
bipartition of B′q .

Claim 2. For all a ∈ Fq ∪ {%} and for all c ∈ Fq , the q vertices of the set {(a, t, c)1 : t ∈
Fq} are mutually at distance at least 6 in B′q .

Proof. By Claim 1, for all a ∈ Fq ∪ {%} the q vertices of {(a, t, c)1 : t ∈ Fq} are mutually
at distance at least 4 in B′q . Suppose that there exists in B′q the following path of length
four:

(a, t, c)1 (x, y, z)0 (a′, t′, c′)1 (x′, y′, z′)0 (a, t′′, c)1, for some t′′ 6= t.

If a = %, then x = x′ = c, y = t, y′ = t′′ and a′ 6= % by Claim 1. Then y = a′x + t′ =
a′x′ + t′ = y′ yielding that t = t′′ which is a contradiction. Therefore a 6= %. If a′ = %,
then x = x′ = c′ and y = y′ = t′. Thus y = ax+ t = ax′ + t′′ = y′ yielding that t = t′′

which is a contradiction. Hence we may assume that a′ 6= % and a 6= a′ by Claim 1. In this
case we have:

y = ax+ t = a′x+ t′;

y′ = ax′ + t′′ = a′x′ + t′;

z = a2x+ 2at+ c = a′2x+ 2a′t′ + c′;

z′ = a2x′ + 2at′′ + c = a′2x′ + 2a′t′ + c′.

Thus,

(a− a′)(x− x′) = t′′ − t; (2.3)

(a2 − a′2)(x− x′) = 2a(t′′ − t). (2.4)

If q is even, (2.4) leads to x = x′ and (2.3) leads to t′′ = t which is a contradiction with
our assumption. Thus assume q is odd. If a + a′ = 0, then (2.4) gives 2a(t′′ − t) = 0, so
that a = 0 yielding that a′ = 0 (because a + a′ = 0) which is again a contradiction. If
a+ a′ 6= 0, multiplying equation (2.3) by a+ a′ and subtracting both equations we obtain
(2a − (a + a′))(t′′ − t) = 0. Then a = a′ because t′′ 6= t, which is a contradiction to
Claim 1. Therefore, Claim 2 holds.
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Let B′′q = B′′q [V ′0 , V
′
1 ] be the graph obtained from B′q = B′q[V0, V

′
1 ] by adding q2 + q

new vertices to V0 labeled (%, a, c)0, a ∈ Fq∪{%}, c ∈ Fq , and new edgesNB′′
q

((%, a, c)0) =

{(a, t, c)1 : t ∈ Fq} (see Figure 1). Then B′′q has |V ′1 | + |V ′0 | = 2q3 + 2q2 + q vertices
such that every vertex has degree q + 1 except the new added vertices which have degree
q. Moreover the girth of B′′q is 8 by Claim 2.

Claim 3. For all a ∈ Fq ∪ {%}, the q vertices of the set {(%, a, j)0 : j ∈ Fq} are mutually
at distance at least 6 in B′′q .

Proof. Clearly these q vertices are mutually at distance at least 4 in B′′q . Suppose that there
exists in B′′q the following path of length four:

(%, a, j)0 (a, b, j)1 (x, y, z)0 (a, b′, j′)1 (%, a, j′)0, for some j′ 6= j.

If a = % then x = j = j′ which is a contradiction. Therefore a 6= %. In this case
y = ax+b = ax+b′ which implies that b = b′. Hence z = a2x+2ab+j = a2x+2ab′+j′

yielding that j = j′ which is again a contradiction.

Let B′′′q = B′′′q [V ′0 , V
′′
1 ] be the graph obtained from B′′q by adding q+ 1 new vertices to

V ′1 labeled (%, %, a)1, a ∈ Fq ∪ {%}, and new edges NB′′′
q

(%, %, a)1 = {(%, a, c)0 : c ∈ Fq},
see Figure 1. Then B′′′q has |V ′′1 | + |V ′0 | = 2q3 + 2q2 + 2q + 1 vertices such that every
vertex has degree q + 1 except the new added vertices which have degree q. Moreover the
girth of B′′′q is 8 by Claim 3 and clearly these q+ 1 new vertices are mutually at distance 6.
Finally, the graph Γq is obtained by adding toB′′′q another new vertex labeled (%, %, %)0 and
edges NΓq

((%, %, %)0) = {(%, %, i)1 : i ∈ Fq ∪ {%}}. The graph Γq has 2(q3 + q2 + q + 1)
vertices, it is (q+ 1)-regular and has girth 8, so by the uniqueness of a (q+ 1, 8)-cage (see
e.g. [29]), Γq is indeed a (q + 1, 8) Moore graph.

Remark 2.7. Coordinatizations of classical generalized quadrangles Q(4, q) and W (q)
in four dimensions are discussed in [23, 26, 28]. The alternate description of a Moore
(q + 1, 8)-graph given in Theorem 1.2 in three dimensions is equivalent to this coordinati-
zation.
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