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Abstract. A phenomenological modelling approach has been developed, based on some 
salient physical effects regarding void growth vs. plastic straining, to describe the transition 
behaviour between dense metal plasticity and micro-porous metal plasticity. Considering that 
void germination requires a certain amount of plastic deformation, a ‘primary’ hole nucleation 
criterion has been proposed, as well as a statistical law governing the ‘secondary’ hole 
kinetics. In a consistent way, the hole nucleation criterion accounts for the accelerating effects 
of stress triaxiality and, conversely, the delaying effects of temperature and strain rate. In this 
work, a modification of the GTN model has also been proposed, overcoming its inability to 
predict damage growth and fracture for zero and low triaxiality, shear-dominated 
deformations. In this respect the kinematic mean stress related shift mechanism has been 
introduced and quantified in the expression of the GTN plastic potential, enabling thus the 
damage growth under shear and under small negative triaxialities. The 3D constitutive 
equations have been implemented as user material in the engineering finite element 
computation code Abaqus®. Numerical simulations have been conducted considering a single 
finite element under simple shear on one hand and a notched cylindrical sample under remote 
uniaxial tensile loading on the other hand. The numerical results show clearly the influence of 
the hole nucleation criterion related constants on the damage and further failure of the 
material.  
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1 INTRODUCTION 
Several authors have attempted to describe the consequences of micro-voiding induced 

damage on the bulk material behaviour. These consequences are double: a progressive loss of 
the overall properties of the bulk material and the appearance, in addition to the isochoric 
plastic deformation due to dislocation glide in the matrix material, of an inelastic dilatancy 
due to void growth. In order to describe this second effect in the context of standard material, 
BERG [1] proposed a pressure dependent plastic potential, assuming that a critical mean 
triaxial stress (hydrostatic stress) is required to activate the void expansion. In this approach, 
only a loading path involving a mean triaxial stress greater than this critical mean triaxial 
stress produces void growth and related dilatancy. It is noteworthy that the latter may be 
accompanied by plastic deformation (under moderate mean triaxial stress) or not (under high 
mean triaxial stress). Based on a micromechanical analysis, GURSON [2] developed a plastic 
potential for slightly porous and perfectly plastic metals accounting explicitly for the 
concentration of voids and hydrostatic stress. TVERGAARD AND NEEDLEMAN [3] modified 
GURSON’s model in order to take notably into account isotropic strain hardening and strain 
rate effects. The so-called GTN (for GURSON-TVERGAARD-NEEDLEMAN) model is widely 
used by the community of researchers dealing with ductile damage. Using the rate type 
formulation coupled with physical concepts, PERZYNA [4] developed an elliptic plastic 
potential taking into consideration cooperative effects of void growth, strain rate sensitivity 
and heating. 

These approaches all suppose initially the presence of micro voids, or equivalently assume 
mostly that void expansion starting and plastic deformation occurrence are concomitant. It is 
clear that such a hypothesis is not supported physically, because cavity nucleation requires a 
certain amount of plastic deformation. Furthermore, by construction, the plastic potentials 
proposed by BERG, GURSON-TVERGAARD-NEEDLEMAN and PERZYNA are not able to describe 
dilatancy and related cavity growth under shear loading, implying that according to their 
approaches shear loading cannot lead sole to fracture. 
This work aims at facing up to these deficiencies concerning notably the lack of a physically 
satisfying description of the transition from dense metal plasticity to micro-porous metal 
plasticity and the incapacity of describing void growth under shear. 

The principle of the modelling approach involving non-concomitant damage incipience 
with respect to plastic straining is described in Sect.2. The constitutive equations for an 
elastic-viscoplastic material undergoing the combined effects of the two stage damage 
formation (void nucleation) mechanism, the mean stress kinematic shift related to ductile 
damage growth, isotropic hardening, thermal softening, are detailed in Sect.3. The complete 
model has been implemented as user material in the engineering finite element computation 
code Abaqus® and some numerical simulations have been conducted for a single 
representative volume element (RVE) and a laboratory sample submitted to a remote uniaxial 
tensile loading. The numerical results are shown in Sect.4. 
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2 BASIC CONCEPTS AND PRELIMINARY CONSIDERATIONS 

2.1 Principle of the sound/damaged or dense/micro-porous behavior transition 
In the present approach, based in part on the concepts suggested by DRAGON AND OHJI [5], 

the metallic material is initially supposed to be exempt of micro-voids. Subjected to a 
monotonic loading involving a positive or null stress triaxiality, it behaves elastic-
(visco)plastically. As soon as the condition for the germination of a given volume fraction f0
of micro voids, involving the equivalent plastic strain κ , plastic strain rate κ , temperature T
and stress triaxiality ST, is satisfied, the material behaviour becomes pressure dependent. 
Consecutive damage accompanying plastic yielding may be described then using e.g. GTN 
and PERZYNA micro-porous plasticity oriented models. The quantity f0 represents thus a 
characteristic micro-porosity initiation bunch; its occurrence does not exclude further, 
secondary, delayed nucleation (see Sect.3.3). According to Fig.1, where the surfaces 00 =Φ
and 0

0
=Φ I  represent the limits of elastic domain of the sound material and of the hole non-

nucleation domain respectively, this approach is able to reproduce qualitatively the 
accelerating effects of the stress triaxiality ( )meq pST /σ−=  on the hole germination. 

 a) b) 
Figure 1: Principle of the approach. a) Initial and current elastic domains for the sound material and hole 

nucleation locus – b) Illustration of various loading paths; LP1: hole germination without plastic deformation; 
LP2: hole germination for a finite amount of plastic deformation (κ2) linked to the current stress triaxiality (ST2); 

LP3: hole germination for a finite amount of plastic deformation (κ3> κ2) linked to the current stress triaxiality 
(ST3<ST2) - σeq and pm represent the equivalent stress and the pressure, respectively. 

2.2 The hypothesis of a kinematical mean stress shift 
It is known that viscoplastic deformation may cause brittle-like micro-damage in metals, as 

observed notably in creep where micro-voids and micro-cracks initiate along the grain 
boundaries. At an advanced stage of deformation, a material may thus contain defects 
potentially at the origin of brittle fracture (in the sense mentioned above) and defects 
potentially at the origin of ductile fracture (in the current sense). In such a material, there are 
thus two sources of damage induced softening, the latter being described via e.g. GTN and 
PERZYNA micro-porous plasticity oriented models. We are here describing the consequences 
of the former by introducing an effective micro porosity related softening mechanism, acting 
as a kinematic-like mean stress drop resulting in a shift of the yield locus centre towards 

σeq

-pm

Φ0(0)=0 

ΦΙo(f0)=0 

Φ0(κ)=0 

σeq

-pm

Φ0(0)=0 

ΦΙo(f0)=0 

Φ0(κ2)=0 
Φ0(κ3)=0 

LP1

LP2
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negative stress triaxiality values. Though a like shift may require more sophisticated analysis 
involving e.g. damage/plasticity-induced anisotropy , here, however, the purpose is limited to 
a modification of the GTN model. From a practical viewpoint, let denote as 

( ) 0,...;, =Φ fpmeqσ  the yield surface of a material with a micro-void concentration f. The 
translation of the yield function Φ  of the amount –pr under the micro-crack induced softening 
effects leads to consider the new plastic potential and corresponding yield locus 

( ) 0,...;,, =Φ fpp rmeqG σ , such that ( ) ( ),...;,,...;,, fppfpp rmeqrmeqG +Φ=Φ σσ . The 
principle is illustrated in Fig.2. 

Figure 2: Shift of the micro-porous potential with kinematic mean stress 

This paper aims at proposing a multi-surface approach based model accounting for the 
aforementioned effects. 

3 CONSTITUTIVE EQUATIONS 
The elastic/viscoplastic model involving two stage void nucleation mechanism and void 

growth related hardening/softening effects is detailed in the present section. 

3.1 Constitutive equations of the sound material 
The internal variable procedure has been followed to model the material behaviour. The 

instantaneous state of the material is described via the HELMHOLTZ free energy ( )κε ,; eTΨ , 

whose arguments are the absolute temperature T, the elastic strain tensor eε , and the isotropic 
strain hardening variable κ. Let us consider the following additive decomposition of Ψ : 

( ) ( ) ( ) ( )κεκε ;;,; TTTT sT
e

r
e Ψ+Ψ+Ψ=Ψ (1) 

σeq

-pm

Φ(σeq , pm ; f…)=0 

ΦG(σeq, pm, pr ; f…)=0 

-pr
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where ( )e
r T ε;Ψ  is the recoverable part, ( )TTΨ  the purely thermal part, and ( )κ;TsΨ  the 

stored part. The rotational derivatives considered in the following are GREEN-NAGHDI

derivatives, see GREEN AND NAGHDI [6]. Moreover, the tensor eε represents here a spatial, 

generally small, elastic strain measure, namely ee Vln=ε , eV  representing pure elastic 
stretching resulting from the relevant multiplicative decomposition of the deformation 
gradient F .The expressions of the various contributions in (1) are given by 

( ) ( )
( )

( ) ( ) ( )











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∆−+=Ψ

TghT

TTTT
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TKTrTrT

s

T

e
T

eeee
r

κκρ

ρρ
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;

;
2

:
2

;

0
2

0

2
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where λ and µ represent LAMÉ elastic coefficients, K is the bulk modulus ( )3/2µλ +=K . 
The quantities αT, ρ and C represent the thermal dilatation coefficient, the mass density and 
the specific heat, respectively. In (23), ( )κh  represents the stored energy of cold work and 

( )Tg  the thermal softening function. The set of thermodynamic forces connected to the state 
variables is given by 
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where σ  represent the CAUCHY stress tensor, s entropy and r isotropic hardening force. The 
viscoplastic yielding of the material under consideration is supposed to be well described by 
the plastic potential 

01~ 2
0 =−=Φ eqσ  ; 

y

eq
eq σ

σ
σ =~  ; vpyy σσσ += (4) 

where the quantities yσ  and vpσ  in (43) are the rate independent and rate dependent 
contributions to the yield stress yσ . The rate independent contribution yσ  in (43) incorporates 
the combined effects of strain hardening, via a VOCE type law, and thermal softening, via a 
power law: 
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( )[ ] ( )TghRy κσ '0 += ; ( ) ( )[ ]βκκ kRh −−= ∞ exp1'  ; ( )
m

meltT
TTg 








−= 1  (5) 

where ( )β,,,0 kRR ∞  are isotropic hardening related constants and ( )mTmelt ,  thermal softening 
related constants, with Tmelt the melting point. With (5), the rate independent contribution yσ
in (43) and the isotropic hardening force r in (33) take thus the form 

( )[ ]{ }





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
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m

meltT
TkRr 1exp1 βκ (6) 

The tensile/compressive asymmetry in the plastic behaviour is here considered as a 
thermally activated mechanism involving the mean stress. The strain rate induced overstress 

vpσ  in (43) is consequently expressed by 

n

B

ma
vp Tk

pVY
/1

exp 















= κσ   (7) 

where (Y,n) are viscosity related constants and (Va,kB) behaviour asymmetry related constants, 
with 3βha VV = , Vh being a constant, β Burgers vector magnitude (β=2.5Å), kB BOLTZMANN

constant (kB=1.3804.10-23J/K). The sound material satisfies the conditions of standard 
materials in the irreversible thermodynamics sense. Applying the normality rule yields 

nd pDp
0

0 ε
σ

=
∂
Φ∂

Λ=  ; 












σ
σ

Λ=
σ∂
Φ∂

Λ=ε  ; pDpp dd 0:
3
2 εκ  ==  ; 0≥Λ (8) 

where Λ represents the viscoplastic multiplier. Finally, heating during any adiabatic processes 
is supposed to proceed predominantly from dissipation, see LONGERE AND DRAGON [7] for 
further details, yielding 

( ) 0: ≥−=−= κσκσρ  rrdTC eq
p (9) 

3.2 Constitutive equations of the damaged material 
Considering slightly porous metals, we are assuming a weak damage-plasticity state 

coupling and strong damage-plasticity kinetic couplings, allowing us for assuming that the 
state potential (1)-(2) and the forces (3) still hold during the damage process considered 
herein. We are indeed focusing our attention on the damage-plasticity coupling intervening at 
the level of the yield condition, as it is mostly done when modelling micro-porous metal 
behaviour, see e.g. [2] – it must be noted that accounting for damage-plasticity state coupling 
does not imply significant changes in the present methodology. As an application of the 
hypothesis of a kinematical mean stress shift, see Sect.2.2, a modified version of the GTN 
model is proposed. Consider thus the following modified GTN potential: 
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( ) ( ) 01~~
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where (q1, q2, q3) are material constants. Let define now the ‘cleavage strength’ cleavσ  as being 
the critical value of the mean stress mm p−=σ  at the incipience of void growth under equi-
triaxial stress. For the GTN model ( )0=rp , the so-defined ‘cleavage strength’ cleavσ  is 
expressed by 



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


 +
=

fq
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qy
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2 2
1
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Considering low values of f ( )1<<f  yields 

[ ] 0ln1
3
2

1
2

≥−≈ fq
q ycleav σσ (12)

In a first approximation, we are considering the kinematic pressure pr in a close form: 

[ ] 0ln 1 ≤= fqbpr (13)

with b assumed as being a positive constant. After [1], the normality rule applies to the 
damaged material: 

δεεδ
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where the distortional and dilatational parts, namely pD
Gε  and pM

Gε , respectively, of the 
inelastic strain rate pd  are given by 
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The evolution law of the isotropic hardening variable κ is deduced from the equality of the 
macroscopic plastic work rate with the microscopic one, see [2]: 

( ) y

pM
Gm

pD
Geq

f
p
σ

εεσ
κ

−
−

=
1


 (16)

Adiabatic heating is accordingly evaluated from 

0: ≥−−=−= pM
Gm

pD
Geq

p prrdTC εκεσκσρ  (17)

The porosity rate f  is decomposed into a contribution due to growth of existing defects 
and a contribution due to the formation of new defects, see (181). The former, namely gf , is 
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deduced from the classical hypothesis of matrix incompressibility, see (182), whereas the 
latter, namely nf , is the subject of the following sub section: 

ng fff  +=  ; ( ) ( ) pM
G

p
g fdTrff ε −=−= 11  ; ( ) 00 ff g = (18)

3.3 Micro void nucleation criterion and kinetics law 
The hole nucleation criterion describes the conditions for which a specific volume fraction 

of ‘primary’ voids f0 instantaneously germinates. A ‘secondary’ void initiation kinetic law is 
also proposed. 

‘Primary’ micro void nucleation criterion 
To ensure the instantaneous transition between dense metal plasticity and micro-porous 

metal plasticity, the hole nucleation criterion 
0IΦ  is proposed in a form close to the micro-

porous metal potential (10): 

( ) ( ) 01ˆˆ
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3cosh2ˆ 2

03201
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 +−+=Φ fqppqfq rmI σ

c

y

σ
σ

σ =ˆ  ; 
c

m
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=ˆ  ; 

c

r
r
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=ˆ
(19)

Hole nucleation (19) is clearly controlled by the stress triaxiality. In order to describe the 
delaying effects of the strain rate and the temperature in the hole nucleation process, we are 
assuming the following expression for the critical stress cσ  : 

vpIc σσσ +=  ; ( )∞+= RRI 0ασ (20)

The expression of the equivalent plastic strain at ‘primary’ hole nucleation ( )00 fκκ =  may 
be explicitly deduced from (13) and (19) as: 
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The plastic strain at ‘primary’ hole nucleation 0κ  in (21) is drawn in Fig.3 as a function of 
the stress triaxiality for various values of temperature and strain rate. The graphs in Fig.3 
show clearly that the hole nucleation criterion given in (19) is able to reproduce, at least 
qualitatively, the accelerating effects of stress triaxiality and the delaying effects of 
temperature, see Fig.3.a, and strain rate, see Fig.3.b. 

‘Secondary’ micro void formation kinetics law 
In the present approach, the formation of ‘secondary’ voids, in addition to the ‘primary’ 

voids whose germination is controlled by the above criterion, is postulated. These ‘secondary’ 
voids include micro-voids of the same nature of the ‘primary’ voids but nucleating later, as 
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well as nano-voids germinating between macro-voids and being consequently at the origin of 
the coalescence by localised shearing. In agreement with this definition, the ‘secondary’ void 
nucleation kinetics is supposed to be controlled by the rate of hardening, see (221) below. This 
hypothesis is consistent with the fact that hole germination requires a certain amount of 
plastic deformation. Based on the works by MOLINARI AND WRIGHT [8], the kinetic law for 
secondary nucleation is assumed to be well described by a WEIBULL type distribution 
function, see (222): 

yn Bf σ =  ; ( )p
I

p

I
c

pfB
00

exp
1

sup Φ−Φ=
−

σ
 ; ( ) 00 =nf (22)

where p is a constant (p=2) and where supf  represents the upper bound of the nucleated 

‘secondary’ void volume fraction. .  represents MCCAULAY brackets.  
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Plastic strain at hole nucleation vs.stress triaxiality

+ 120°C
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a) α=0.65 ; b=115MPa ; f0=10-4 ; κ =102s-1
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0.20
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0 1 2 3 4 5 6
Plastic strain at hole nucleation vs.stress triaxiality

100 s-1
 10 s-1
  1 s-1

b) α=0.65 ; b=115MPa ; f0=10-4 ; T0=20°C

Figure 3: Influence of temperature a) and strain rate b) on the plastic strain at hole nucleation 

4 NUMERICAL SIMULATIONS AND CONFRONTATION WITH EXPERIMENTS 
The model detailed in Sect.3 was implemented as user material (Vumat) in the engineering 

finite element computation code Abaqus®. The numerical integration is conducted in the 
GREEN-NAGHDI rotating frame using the classical return mapping procedure combined with 
the NEWTON-RAPHSON solving algorithm, see ARAVAS [9]. The thermal dilatation is supposed 
to be negligible in the present approach. Adiabatic conditions are furthermore assumed to be 
valid for plastic equivalent strain rate κ  greater than 1s-1. In addition, failure is supposed to 
occur as soon as the porosity reaches the critical value fr, leading numerically to the erosion of 
the concerned finite element. Some numerical simulations employing Abaqus® were 
conducted considering a cube under shear as well as notched structures under tension. 

4.1 Case of a cube under simple shear 
We are here considering a RVE submitted to a simple shearing in order to verify the ability 

of the model of Sect.3 to describe the consequences on the material behaviour of cavity 
growth under shear loading. From the numerical viewpoint, the RVE is represented by a 
single finite element C3D8R. The upper side is submitted to a tangential displacement at a 
constant velocity of 2.3m/s (leading to a plastic equivalent strain rate slightly greater than 1s-
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1) while the lower side is constrained. The set of material constants is reported in Table 1. 
Shear stress-shear strain and porosity-shear strain curves are shown in Fig.4 for various values 
b entering the expression of the kinematic pressure softening pr, see (13). 

Table 1: Micro-porous model related constants for the numerical simulation of a cube under simple shear 

q1 q2 q3 f0 α b (MPa) fsup fr

1 1 1 10-3 0.65 / 16.10-2 1. 

The graphs in Fig.4.a show the combined softening effects of adiabatic heating and cavity 
growth induced damage on the material behaviour – for the ETVP 
(ElasticThermoViscoPlastic/sound material) model adiabatic heating is solely responsible for 
the softening behaviour at large deformation. It is furthermore clearly visible that the loss of 
shear resistance of the damaged material is more significant for large values of b. As shown in 
Fig.4.b this softening effect is induced by cavity nucleation and growth. Cavity growth under 
shear loading has been made possible thanks to the introduction of the kinematic pressure 
softening mechanism governed by pr in the modified GTN model, see (10). 

a)
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Figure 4: Influence of kinematic pressure. Simple shear on a cube. 
a) Shear stress vs. shear strain. b) Volume fraction of holes vs. shear strain 

4.2 Case of notched cylindrical samples under tension: simulation vs. experiment 
This case deals with the tension of notched cylindrical specimens. The configurations with 

a notch radius value of 1.2mm (ST=1.15) and 6.2mm (ST=0.55) are considered here. Quasi-
static tests were performed at room temperature and at 5mm/min on these samples. 
Concerning numerical simulations, the spatial discretisation consisted in meshing one eighth 
of the samples using solid finite elements with reduced integration C3D8R, as shown in Fig.5. 
The vertical translation of the lower face nodes is constrained while a vertical velocity is 
imposed to the upper face nodes. The sample material behaviour is described via the model 
detailed in Sect.3 (Vumat). The material constant values are reported in Table 2. The time 
integration scheme is explicit. 

Experimental and numerical results are superposed in Fig.6 in the form of axial load-
extensometer displacement curves. These curves allow for studying the influence of various 
model constants on the onset of void growth induced damage and subsequent drop in load, 
namely that of e.g. the ratio α in (20), see Fig.6. The influence of the secondary nucleation 
upper bound fsup, and of the failure porosity fr was also studied but is not shown here. 
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a) b)
Figure 5: Meshing of the notched cylindrical samples; a) ST=0.55 b) ST=1.15 

Table 2: Microporous model related constants for the numerical simulation of notched samples under tension 

q1 q2 q3 f0 α b (MPa) fsup fr

1 1 1 10-3 / 115 0.03 0.2

Fig.6 clearly shows the effect of the critical stress σc via the ratio α, see (20), on the overall 
response of the notched round sample. Acting on the ‘primary’ void germination occurrence 
and on the ‘secondary’ void nucleation rate, see (20) and (222), the ratio α is consequently a 
key parameter in the model detailed in Sect.3. For early damage conditions, the ratio α value 
must be low, and for late damage conditions, the ratio α value must be large. Note that a large 
value of α provokes a progressive drop in load, contrarily to the brutal drop in load observed 
for a low value of α. According to Fig.6, the set α=0.75 - fsup=0.03 - fr=0.2 may be considered 
as satisfying for the material at stake. 
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Figure 6: Comparison model-experiment. Influence of the ratio α. Tensile test on notched cylindrical samples ; 

α= / - fsup=0.03 - fr=0.2 

5 CONCLUSIONS 
An elastic/viscoplastic model involving two stage void nucleation mechanism and void 

growth related hardening/softening effects has been put forward for a class of structural steels 
subjected to rapid loading conditions. 
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A phenomenological modelling approach has been developed, based on some salient 
physical effects regarding void growth vs. plastic straining, to describe the transition 
behaviour between dense metal plasticity and micro-porous metal plasticity. Considering that 
void germination requires a certain amount of plastic deformation, a ‘primary’ hole nucleation 
criterion has been proposed, as well as a statistical law governing the ‘secondary’ hole 
kinetics. In a consistent way, the hole nucleation criterion accounts for the accelerating effects 
of stress triaxiality and, conversely, the delaying effects of temperature and strain rate. In this 
work, a modification of the GTN model has also been proposed, overcoming its inability to 
predict damage growth and fracture for zero and low triaxiality, shear-dominated 
deformations. In this respect the kinematic mean stress related shift mechanism has been 
introduced and quantified in the expression of the GTN plastic potential, enabling thus the 
damage growth under shear and under small negative triaxialities. The 3D constitutive 
equations have been implemented as user material in the engineering finite element 
computation code Abaqus®. Numerical simulations have been conducted considering a single 
finite element under simple shear on one hand and a notched cylindrical sample under remote 
uniaxial tensile loading on the other hand. The numerical results show clearly the influence of 
the hole nucleation criterion related constants on the damage and further failure of the 
material. 
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