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Our society is generating an increasing amount of data at an unprecedented scale, variety, and speed.
This also applies to numerous research areas, such as genomics, high energy physics, and astronomy,
for which large-scale data processing has become crucial. However, there is still a gap between the
traditional scientific computing ecosystem and big data analytics tools and frameworks. On the one
hand, high performance computing (HPC) programming models lack productivity, and do not provide
means for processing large amounts of data in a simple manner. On the other hand, existing big
data processing tools have performance issues in HPC environments, and are not general-purpose.
In this paper, we propose and evaluate PyCOMPSs, a task-based programming model for Python, as
an excellent solution for distributed big data processing in HPC infrastructures. Among other useful
features, PyCOMPSs offers a highly productive general-purpose programming model, is infrastructure-
agnostic, and provides transparent data management with support for distributed storage systems.
We show how two machine learning algorithms (Cascade SVM and K-means) can be developed with
PyCOMPSs, and evaluate PyCOMPSs’ productivity based on these algorithms. Additionally, we evaluate
PyCOMPSs performance on an HPC cluster using up to 1,536 cores and 320 million input vectors. Our
results show that PyCOMPSs achieves similar performance and scalability to MPI in HPC infrastructures,
while providing a much more productive interface that allows the easy development of data analytics

algorithms.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The amount of data that society as a whole generates is grow-
ing extremely fast. It is expected that by 2020, the amount of
useful data will be of more than 16 zettabytes (i.e., 16 - 10'2
GB) [1]. Extracting useful information from this big data can
have an enormous impact on many societal activities, such as
healthcare [2], manufacturing [3], or city planning [4]. In addition
to this, analyzing large amounts of data is becoming crucial in
numerous research areas, such as biology [5], astronomy [6], or
high energy physics [7] among many others [8,9].

The process of extracting useful information from large
amounts of data is also known as big data analytics (BDA) [10].
BDA involves transforming the data using various operations,
such as sorting, aggregating, or filtering [11]; as well as using
machine learning algorithms to obtain new information and to
discover patterns in data [12,13]. Key challenges in BDA in-
clude representing heterogeneous data efficiently, eliminating
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data redundancies, storing large amounts of data in an scalable
and fault-tolerant manner, building scalable algorithms, trans-
mitting large quantities of data efficiently, and visualizing high
dimensional data [9,14]. These challenges have motivated the
appearance of several BDA especialized tools [10,15], such as data
oriented programming models, like MapReduce [16] and Apache
Spark [11]; NoSQL databases like Apache Cassandra [17]; and
distributed file systems such as the Hadoop file system [18].
Although BDA has become crucial in many scientific fields,
traditional scientific computing tools do not provide means for
efficient BDA. In addition to this, existing BDA tools are not
designed for traditional scientific computing facilities, such as
high performance computing (HPC) clusters [10]. This gap between
BDA and HPC is especially severe in programming models [10].
On the one hand, scientific computing programming models such
as OpenMP [19] and Message Passing Interface (MPI) implemen-
tations [20] are not oriented for data management, and lack the
productivity required for fast development of BDA algorithms. On
the other hand, existing BDA frameworks [11,16] are not com-
patible with some HPC components, like batch queue systems,
and thus require increased integration efforts to be deployed in
HPC clusters [21]. This creates the need for a general-purpose
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programming model to write and execute BDA algorithms in HPC
infrastructures with minimal developer effort.

In this paper, we propose and evaluate PyCOMPSs [22] as an
approach for bridging the gap between BDA and HPC program-
ming models. PyCOMPSs is a task-based programming model that
can be used to easily build and execute parallel Python applica-
tions. On the one hand, PyCOMPSs offers a more productive API
than traditional scientific computing programming models like
MPI and OpenMP. On the other hand, unlike existing BDA tools
like Spark, PyCOMPSs is completely compatible with HPC infras-
tructures. Moreover, PyCOMPSs allows developers to write new
distributed machine learning or BDA algorithms from scratch, as
well as to parallelize their existing Python codes. This means that
PyCOMPSs is not tied to a specific class of algorithms, and has a
much lower risk of becoming obsolete than current distributed
machine learning libraries. Finally, PyCOMPSs has the advantage
of being based on Python, which provides great productivity, and
is one of the most popular programming languages among data
scientists [23].

The main contributions of this paper are: (i) we demonstrate
how BDA algorithms can be easily developed in PyCOMPSs; (ii)
we show how these algorithms can be deployed and executed
in an HPC scenario with PyCOMPSs; and (iii) we evaluate the
productivity and performance of PyCOMPSs for BDA in HPC in-
frastructures. As part of this evaluation, we compare PyCOMPSs
with MPIL.

In Section 2, we summarize the related work, highlight the
limitations of existing approaches for BDA in HPC infrastructures,
and explain how PyCOMPSs overcomes these limitations. In Sec-
tion 3, we describe PyCOMPSs programming model, and discuss
the features that make PyCOMPSs ideal for BDA in HPC infras-
tructures. In Section 4, we present the PyCOMPSs implementation
of two well-known machine learning algorithms: Cascade SVM
and K-means. In Section 5, we compare the code complexity
of these implementations with the same algorithms in MPL In
Section 6, we compare the performance of PyCOMPSs and MPI,
and in Section 7 we present our conclusions.

2. Related work

A widely used distributed programming paradigm for HPC
clusters is the Message Passing Interface (MPI) [20]. Although
MPI can be used to build machine learning and data analytics
algorithms [24-26], it requires developers to manually handle
communications, data transfers, and load balancing. In contrast,
PyCOMPSs automatically manages all these aspects in a trans-
parent way, and offers a much simpler programming model that
abstracts the developer from the parallelization details.

The most prominent framework for BDA is Apache Spark [11].
Spark is based on the idea of resilient distributed datasets (RDD),
which are distributed data structures that can be operated in
parallel. Spark provides a productive programming model that
can be used to write many BDA algorithms using a relatively small
set of operations on RDDs, such as map, reduce, and filter. Addi-
tionally, Spark keeps data in memory when possible for speeding
up accesses. The disadvantages of Spark are that it is difficult to
deploy on HPC clusters [21], shows poor performance in certain
scenarios [27,28], and enforces a specific program abstraction on
developers.

A recent framework related to Spark is PiCo [29]. PiCo unifies
batch and stream data access models, and defines programs as
sequences of parallel operations over data. Like in Spark, these
operations are predefined in PiCo’s API. Compared to Spark, PiCo
provides analogous productivity by offering a similar set of oper-
ations, while achieving performance improvements in HPC infras-
tructures, both in terms of execution time and memory footprint.

Contrary to Spark and PiCo, PyCOMPSs does not enforce a spe-
cific program abstraction or API on developers. With PyCOMPSs,
developers can build parallel programs with an arbitrary struc-
ture using only a small set of annotations. PyCOMPSs has more
expressive power than Spark and PiCo, and does not require users
to re-think their problem to tailor it to a specific structure.

The High Performance Analytics Toolkit (HPAT) [27] is a BDA
framework specifically designed for HPC infrastructures. HPAT
is based on the parallelization of vector operations, which are
common in many machine learning algorithms. HPAT provides
an API for data access, and then is able to automatically par-
allelize matrix-vector and matrix-matrix operations carried out
on loaded data. More precisely, HPAT generates MPI/C++ code
from high level algorithm definitions in Julia and Python. In this
way, HPAT provides high productivity and MPI/C++ comparable
performance on HPC clusters without enforcing a specific API on
developers like Spark and PiCo.

HPAT is more similar to PyCOMPSs in the sense that it auto-
matically detects the parallelism of applications through code an-
notations. However, HPAT only detects parallelism in vector oper-
ations, while PyCOMPSs can be used to parallelize any algorithm
that can be expressed as a collection of tasks.

Swift/T [30] is a programming language and distributed run-
time that allows the execution of parallel workflows on dis-
tributed platforms, including HPC clusters. Swift/T’s distributed
design provides great scalability, both in number of parallel tasks
and computational resources. Swift/T applications are written in
Swift language, and the distributed execution is driven by MPI.
PyCOMPSs is different to Swift/T in that it does not require devel-
opers to learn a new programming language. Instead, users just
need to insert simple code annotations on their regular Python
applications.

Other existing BDA frameworks, like JS4Cloud [31], are es-
pecially designed for cloud infrastructures, and their integration
with HPC clusters is unclear.

Compared to existing approaches, PyCOMPSs provides the best
trade-off between flexibility, productivity, and performance. Py-
COMPSs offers a highly productive programming model that does
not force developers to accommodate their problem to a specific
API, or to learn a new programming language. Additionally, Py-
COMPSs supports distributed storage systems, and can execute
in multiple platforms and architectures.

3. PyCOMPSs overview

PyCOMPSs [22] is a task-based programming model that makes
the development of parallel and distributed Python applications
easier. PyCOMPSs consists of two main parts: programming model
and runtime. The programming model provides a series of simple
annotations that developers can use to define potential par-
allelism in their applications. The runtime analyzes these an-
notations at execution time, and distributes the computation
automatically among the available resources. The main compo-
nent of PyCOMPSs’ programming model is the task annotation,
which defines units of computation that can be executed re-
motely. Since PyCOMPSs’ runtime is written in Java, Python
syntax is provided through a binding.

3.1. Programming model

PyCOMPSs applications are regular Python applications with
certain annotations that help the runtime to exploit parallelism.
PyCOMPSs applications consist of two parts: main sequential
code and task definitions. The main sequential code is the entry
point of the application, while task definitions are just annotated
functions. To mark a function as a task in Python, we employ the
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def main:
2 s =0

for i in range(10):
s += multiply(i, i)

~

@task(numl1=IN, num2=IN, returns=int)
s def multiply(numl, num2):
9 return numl * num2

Fig. 1. Example PyCOMPSs application.

@task decorator as shown in Fig. 1. The @task decorator can
be applied to any kind of function, including class methods, and
annotated functions can be used as regular functions in the main
code of the application.

The @task annotation can take various arguments. The only
mandatory arguments are the direction of the task parameters
and the type of the returned value. Task parameters can be
primitive types, such as integers and floats, files, and serializable
objects. This includes objects from widely used libraries such as
NumPy and scikit-learn [32]. The direction argument defines if
a parameter is read-only, write-only, or both, and thus can take
three values for regular Python objects: IN, OUT, and INOUT; and
three values for files: FILE, FILE_QUT, or FILE_INOUT. If not
specified, the parameter is assumed to be IN. PyCOMPSs also
supports the use of *args and **kwargs as input parameters
for tasks.

PyCOMPSs’ programming model also provides the @openmp,
@mpi, and @binary decorators. These can be used to create tasks
that run different types of binaries. In addition to this, hardware
and software requirements for tasks can be defined using the
@constraint decorator. In this manner, tasks can be forced to be
scheduled in a particular type of resource, such as a GPU. Finally,
PyCOMPSs also provides a minimal API to insert synchronization
points. This can be done with a function called compss_wait_on.

The simplicity of PyCOMPSs’ programming model allows for
fast development of data analytics algorithms in a highly pro-
ductive language that is widely used in the scientific community,
and that is surrounded by a large ecosystem of mathematical
libraries [32,33]. Moreover, any existing Python application can
be easily parallelized by just including some annotations in the
code.

3.2. Runtime

PyCOMPSs’ runtime follows a master-worker approach. The
master process executes the main code of the application, and
distributes computational work to a series of remote workers.
Fig. 2 presents a diagram of the execution of a PyCOMPSs appli-
cation.

The master process intercepts calls to annotated functions and
inserts tasks in a data dependency graph instead of executing
the function code. The master infers data dependencies from
the direction of the task parameters, where write-after-write
and write-after-read dependencies are avoided using renaming.
Inserting tasks into the dependency graph is an asynchronous
process, that is, objects returned by tasks are treated as fu-
ture objects in the main code of the application. The master
process can retrieve the actual value of task results by calling
compss_wait_on(object). This call waits for task completion
and retrieves the object from the remote node.

In parallel with the task generation process, the master sched-
ules tasks as they become dependency-free in the dependency

graph. By default, PyCOMPSs uses a first-in-first-out scheduling
policy that maximizes data locality. After scheduling a task, the
master ensures that necessary data is transferred to the worker
node. Transfers can happen between the master and the workers,
and between different workers. Objects are serialized and writ-
ten to disk to transfer them between different memory spaces.
Apart from this, PyCOMPSs can be configured to use distributed
file systems or distributed storage systems like Redis [34] and
dataClay [35]. In the case of distributed file systems, the master
assumes that workers have access to all files, and does not trans-
fer them. In the case of distributed storage systems, PyCOMPSs
supports storing objects in memory to reduce the overhead of
disk accesses. This can speedup data analytics applications that
apply sequences of transformations to multiple data in parallel.

PyCOMPSs’ runtime provides fault-tolerance through task re-
submission and rescheduling. In addition to this, PyCOMPSs offers
live monitoring, and supports generating post-mortem execution
Paraver [36] traces.

Finally, PyCOMPSs is infrastructure-agnostic, that is, PyCOMPSs
applications can run in different infrastructures without source
code modifications. This includes clouds, clusters, grids, and con-
tainerized platforms. To achieve this, PyCOMPSs supports com-
munication with numerous resource managers, from Slurm [37]
to Apache Mesos [38]. In addition to this, PyCOMPSs supports
heterogeneous architectures, including GPUs and FPGAs [39].

PyCOMPSs’ design makes it an excellent solution for BDA in
HPC clusters. On the one hand, PyCOMPSs’ dynamic task schedul-
ing maximizes resource utilization in the presence of load im-
balance. This is relevant for data parallel applications where
processing time depends on the nature of the data. Other execu-
tion frameworks that allocate work statically, like MPI, achieve
less resource usage in these scenarios. On the other hand, Py-
COMPSs serializes data to disk unless a distributed storage system
is used. This can be less efficient than keeping data in memory,
but allows PyCOMPSs to handle much larger datasets than other
memory-oriented frameworks like Spark.

4. Data analytics with PyCOMPSs

In this section, we show how data analytics algorithms can be
easily developed with PyCOMPSs. More precisely, we implement
two well-known machine learning algorithms: K-means [40] and
Cascade Support Vector Machines (C-SVM) [41]. K-means is a
clustering algorithm, while C-SVM is a parallel version of the
support vector machine algorithm for classification [42]. For each
algorithm, we first give a brief description, and then explain their
implementation.’

4.1. K-means

The goal of clustering algorithms is to partition a set of n input
vectors into groups or clusters, maximizing the similarity of the
vectors of the same group with respect to other groups. Different
similarity (or distance) functions end up producing a wide variety
of clustering models. K-means is an iterative centroid model. This
means that clusters are represented by a single vector, which is
called the cluster center. The idea behind K-means is to start with
a predefined number of random centers, and then refine them in
a series of iterations. In the most general case, K-means employs
the squared Euclidean distance as similarity measure.

Each iteration of the algorithm consists of two steps: assign-
ment and update. In the assignment step, every vector is assigned
to its nearest center. This assignation defines the vector label. In

1 Source codes with sample data available at https://github.com/bsc-wdc/
pycompss_bda.
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Fig. 2. PyCOMPSs task life-cycle.

the update step, the set of centers is refined via some kind of
operation. In the most common case, new centers are obtained
by computing the mean of the elements with the same label.
These two steps alternate for a fixed number of iterations or
until convergence (i.e., when the update step does not produce
a significant change in the set of centers).

The K-means algorithm has two main drawbacks: first, the
algorithm may stop at local optimums, and thus it highly relies
on the random initialization of the centers; second, the number
of clusters needs to be defined a priori, but it is unknown in many
cases. Despite this, K-means remains a very popular clustering
algorithm for various reasons. On the one hand, K-means results
are stable enough for analyzing datasets and to summarize their
main characteristics. On the other hand, clustering is an NP-hard
problem and K-means is a highly efficient algorithm, with 6(m-n)
complexity, where m is the amount of centers and n the amount
of input vectors.

The K-means implementation in PyCOMPSs consists of three
tasks: generate_fragment, cluster_points_sum, and
merge_reduce_task. The generate_fragment task generates
a random set of vectors, and is used to generate the input dataset
in a distributed manner. Alternatively, the K-means application
also supports generating a random dataset in the main code
of the application, and then distributing partitions among the
workers. The generate_fragment task could be easily modified
to read the input dataset from a file. Nevertheless, using a random
dataset does not affect the performance of the algorithm.

The code for the cluster_points_sum task can be seen in
Fig. 3. This task gets a list of vectors (fragment_ponts) and a list
of centers, computes the nearest center of every vector (line 5),
and then adds up and counts the vectors that belong to each cen-
ter (line 8). This step is parallelized by dividing the input dataset
into multiple partitions, and running one cluster_points_sum
task per partition. Each of these tasks return a Python dictionary
(i.e., a key-value structure) with center identifiers as keys, and
a tuple of the number of vectors and the sum of these vectors
as values. The algorithm then performs a parallel reduction using
the merge_reduce_task task. In this way, the amount of paral-
lelism is maximized as the computation of the new centers can
start as soon as the distance computations of each partition finish.

Fig. 4 shows the code of the merge_reduce_task task. This
task takes a variable number of input dictionaries (returned by
cluster_points_sum tasks), and merges them into a new dic-
tionary. The algorithm performs the merging process in parallel
by creating an inverted tree of merge_reduce_task tasks until
a single dictionary remains.

The main code of the K-means application is presented in
Fig. 5. Variable X represents the input dataset. In the case of
generating the input dataset in the master process, X contains
a list of the partitions. In the case of generating the input data in

a distributed manner using a number of generate_fragment
tasks, X contains a list of future objects that represent these
partitions. The application starts by generating random cen-
ters (line 3). Then, the application iterates until a fixed num-
ber of iterations or until convergence (line 7). In each itera-
tion, the application computes the partial sums of each par-
tition given the current centers (line 11-12). To achieve this,
the application spawns a cluster_points_sum task for each
partition (line 12). Then, the application merges together the
result of the cluster_points_sum tasks in a reduction pro-
cess (line 14). The merge_reduce function iteratively calls the
merge_reduce_task task until a single dictionary of centers,
number of vectors, and sum of these vectors is left. Finally, the
application divides the sum of the vectors by the number of
vectors to get the new mean of each center (line 16).

Note that the sum of vectors of each partition is processed in
parallel, and that the reduction process accumulates these sums
also in a distributed manner. Synchronization only occurs at the
end of the iteration to get the final sum of vectors (line 15). In
this manner, the application never transfers vectors, but means
and center identifiers. This helps to reduce communication costs,
especially in large datasets.

4.2. Cascade support vector machines

As said before, C-SVM is a parallel version of support vector
machines (SVM), a widely used classification algorithm. The ob-
jective of a classification algorithm is to build a decision function
from a set of input vectors that belong to a specific category.
Then, this decision function can be used to categorize other
vectors whose category is unknown. The process of building the
decision function is called training, and the process of categorizing
unknown vectors is called prediction. Different categories are also
known as labels, and vector dimensions are called features. In
the case of SVM, the decision function is a function of a subset
of the input vectors, which are called the support vectors. The
SVM algorithm finds the subset of the input vectors that better
represent the categories in the input dataset, which are typically
two. Finding the support vectors of a given dataset is a quadratic
optimization problem.

The main idea behind the C-SVM algorithm is to split the set of
input vectors into N partitions, and then find the support vectors
of each partition in parallel to obtain N sets of support vectors.
These N sets of support vectors are then combined together in
groups, yielding N /A sets, where A is the size of the groups. These
N/A sets are trained again in parallel to obtain N/A new sets
of support vectors. This merging process is repeated, forming a
reduction tree, until a single set of support vectors remains. This
finishes one iteration of the algorithm. The final set of support
vectors is then combined with the initial N partitions to start a
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| @task(returns=dict)

> def cluster_points_sum(fragment_points, centers, ind):
3 center2points = {c: [] for c¢ in range(0, len(centers))}
A for x in enumerate(fragment_points):

5 closest_center = ...

# get the nearest center

6 center2points[closest_center] .append(x[0] + ind)
7 # add up and count vectors of each center
8 return partial_sum(fragment_points, center2points, ind)

Fig. 3. Code of cluster_points_sum task.

Q@task(returns=dict)

> def merge_reduce_task(*data):

reduce_value = data[0]

for i in range(l, len(data)):

# merge data

6 reduce_value = reduce_centers(reduce_value, datal[i])

7 return reduce_value

Fig. 4. Code of the merge_reduce_task task.

1 def kmeans_frag(X, num_points, num_centers, dimensions, epsilon,
max_iterations, num_fragments, seed):

2 size = int(num_points / num_fragments)

3 mu = init_centers_random(dimensions, num_centers, seed)

A oldmu = []
5 it =0

7 while not has_converged(mu, oldmu, epsilon, it, max_iterations):

8 oldmu = mu
9 partialResult = []

11 for £ in range(num_fragments):
12 partialResult.append(cluster_points_sum(X[f], mu, f * size))

14 mu = merge_reduce(partialResult, chunk=50)

15 mu = compss_wait_on(mu)
16 mu = [mulc][1] / mulc][0] for ¢ in mu]
17 it += 1

19 return (it, mu)

Fig. 5. K-means iteration code in PyCOMPSs.

new iteration. The algorithm stops when a fixed number of iter-
ations is reached, or until convergence (i.e., when the final set of
support vectors does not change significantly in two consecutive
iterations). Fig. 6 shows a diagram of the training process when
A = 2, that is, sets of support vectors are merged two by two in
an inverted binary tree.

The training process of C-SVM can be easily expressed as a
workflow of tasks, where each task performs the training of a
subset of vectors and passes the resulting support vectors to
the next task. This makes C-SVM a good candidate for being
parallelized with PyCOMPSs. Our C-SVM implementation in Py-
COMPSs consists of two tasks: read_partition and train. The
read_partition task reads one partition of the input dataset
from disk, and the train task merges together a variable num-
ber of sets of vectors and carries out the training process that
yields a new set of support vectors. train tasks can receive a
variable number of input arguments thanks to the *args feature.

For building a decision function, train tasks use scikit-learn, a
widely used machine learning library for Python.

Fig. 7 shows the iteration code of the C-SVM implementa-
tion in PyCOMPSs. The _cascade_iteration function (line 1)
performs one iteration of the algorithm. This function is called
iteratively until a fixed number of iterations or until conver-
gence. The argument partitions is a list of future objects
resulting from the read_partition tasks. We assume that the
input dataset is divided in a collection of files, and run one
read_partition task per file.

The first section of the iteration (lines 5-7) spawns a train
task for each partition, and stores the results in the list q (line 7).
These train tasks correspond to the first layer of the iteration,
and train each partition merged with the support vectors of
the previous iteration (line 6). In the case of the first iteration,
feedback is empty. This means that data will be a list of support
vectors in the first iteration and two lists of support vectors in
the remaining iterations. The fact that data is a list of objects of
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Fig. 6. Diagram of the C-SVM training process for A = 2 extracted from Graf
et al. [41]. The support vectors obtained in one iteration (SV15) are combined
with the input data for the next iteration.

SVi5 >

unknown size is expressed with the * symbol. After this section,
q contains a list of future objects that represent sets of support
vectors.

In the second section of the iteration (lines 10-14), the al-
gorithm performs the reduction process. For this, we remove
self._cascade_arity number of elements from q (lines 11-
12), and spawn a train task that merges and trains these
elements (line 14). The support vectors returned by this task
are inserted in q again, and the process is repeated until q
contains self._cascade_arity elements or less. Thus,
self._cascade_arity controls the arity of the reduction pro-
cess.

The final section of the iteration (line 17) consists of spawn-
ing the last train task, and synchronizing using the compss_
wait_on method. This synchronization is required to get the
actual result of the last train task and check the convergence.
Note that the code is completely equivalent to a sequential im-
plementation of C-SVM except for the compss_wait_on call and
the @task annotation.

Fig. 8 shows the definition of the train task. This task simply
merges together the variable number of input lists received, and
carries out the training process using scikit-learn’s SVC class.

5. Productivity evaluation

In this section, we estimate the productivity of PyCOMPSs by
evaluating how complex are the implementations described in
Section 4. Towards this, we compare the PyCOMPSs implemen-
tations to equivalent codes in MPI written with mpidpy [43], a
Python wrapper for different back-end MPI versions. The MPI
codes are available online, together with an script to compute
the metrics used in our productivity evaluation. We compare
PyCOMPSs to MPI because MPI is the most prominent general-
purpose distributed programming model that can be used effec-
tively to run data analytics algorithms in HPC clusters.

5.1. MPI implementations

We have implemented the MPI version of K-means as similar
to the PyCOMPSs implementation as possible to minimize their
accidental complexity [44]. However, the MPI version uses a sin-
gle function instead of two to compute the distances and partial
means of each cluster. The MPI version does not have a dedicated
merge_reduce function because MPI provides the native func-
tions reduce and allreduce. Using allreduce, we can add the
partial results and send them to each processes, where we divide
them by the total number of processes to compute the final mean
(or center).

Both K-means versions generate the input dataset randomly
at run time, and both versions support generating the data in
two ways: centralized generation, where a single process (i.e., the
master) generates all the data and sends a partition to each
worker; and distributed generation, where each worker generates
a partition of the input data. In the case of MPI, centralized
generation is much more complex because it requires more com-
munications, and cannot be used with large datasets because
the indices of the partitions become larger than the maximum
number that can be transferred (a 32-bit integer in C). We have

def _cascade_iteration(self, partitions, feedback):

2 q =1

# first layer

for partition in partitioms:
[partition, feedback])

6 data = filter (None,

7 q.append(train(False, *data, **self.

9 # reduction
1 while len(q) > self.
11 data = ql[:self.
12 del q[:self.

14 q.append(train(False, *data, **self.

16 # last layer
17 final =

19 # check convergence

22 return final[:-1]

compss_wait_on(train(True, *q, **xself.

_clf_params))

_cascade_arity:
_cascade_arityl]
_cascade_arityl]

_clf_params))

_clf_params))

Fig. 7. C-SVM iteration code in PyCOMPSs.
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not implemented workarounds to this issue, as this would further
increase the complexity of the MPI implementation.

The MPI version of C-SVM [25] differs significantly from the
PyCOMPSs version due to MPI programming style and limitations.
Nevertheless, both versions employ the same scikit-learn class
to train the sets of support vectors in the reduction process.
The main differences between the two versions are that the MPI
implementation can only run on a power of two number of
processes, that the number of partitions must be equal to the
number of processes, and that the reduction is always performed
in a binary tree (i.e., arity of two). Moreover, due to the difficulty
in handling different processes, the layers of the reduction in
the MPI version are synchronous. This means that all tasks in a
layer need to finish before starting the next layer. Conversely, the
simplicity of PyCOMPSs’ programming model allows our imple-
mentation to use an arbitrary number of processes, partitions,
and arity in the reduction process. In addition to this, since
PyCOMPSs handles load balancing in a transparent manner, tasks
can start executing as soon as their dependencies are available,
and synchronization only happens at the end of each iteration.
Implementing C-SVM in MPI with the same characteristics as in
PyCOMPSs would require a significant development effort, and
would produce a much more complex code.

5.2. Evaluation metrics

There are many different proposals to estimate the complexity,
development and maintenance effort of a program, such as the
Constructive Cost Model (COCOMO) [45]. However, most of these
models are designed to guide the development effort in large
software projects, and might give misleading results with small
applications of less than 1,000 lines of code. For this reason, we
have employed three simple software metrics in our evaluation:
source lines of code (SLOC) [46], Cyclomatic complexity [47], and
NPath [48] complexity. Each of these metrics provides different
insight about the complexity of the codes.

Source lines of code is an estimation of the complexity of a given
code by counting its number of lines of code. We use the most
common definition of physical SLOC, which is the number of text
lines of the program excluding comments.

Cyclomatic complexity is the number of linearly independent
paths in a given code snippet. This represents the number of
fundamental circuits in the code’s flow-graph representation. Cy-
clomatic complexity is computed as the total number of logical
conditions, such as if and while statements, plus one.

NPath complexity is the number of acyclic execution paths
through a code snippet, and addresses some of the issues and
limitations of Cyclomatic complexity [49]. NPath complexity is
computed using the code control flow graph, where nodes are
basic blocks of code or branching points, and edges represent
possible execution flows. NPath complexity can be thought of as
the number of possible execution combinations of a code snippet.
Thus, from a code testing point of view, NPath defines the number
of tests required to cover all possible outcomes.

SLOC gives a general idea of the complexity of an applica-
tion as long codes are usually more complex than short codes.
However, SLOC is highly affected by formatting and code style.
In order to minimize this effect, we have computed SLOC using
cloc? tool after formatting the algorithms with pycodestyle.> Nev-
ertheless, small size differences between programs are typically
not relevant.

2 https://github.com/AlDanial/cloc.
3 https://pypi.org/project/pycodestyle/.

Qtask(returns=tuple)
> def train(return_classifier, *args, *xkwargs):
# merge args

clf = SVC(random_state=1, **kwargs)
. clf .fit (X, y)

9 # return results

Fig. 8. Definition of train task.

Cyclomatic complexity has the advantage that it is not affected
by code formatting, and that it is less sensitive to code style.
However, Cyclomatic complexity has also received significant
criticism [49]. The main limitation of Cyclomatic complexity is
that n nested if statements have the same complexity as n inde-
pendent if statements. Even though the nested statements pro-
duce an exponential number of paths (2"), while the independent
statements produce a linear number of paths (2n). Nevertheless,
we decided to include Cyclomatic complexity in our evaluation
because it is still used by many tools (e.g., SonarQube?), and
because the assumption that more control flow statements imply
more complex programs is true in many cases.

NPath complexity was proposed to overcome the limitations
of Cyclomatic complexity. NPath takes into account the nesting
level of the code and provides, among other things, a bound for
the minimum number of tests required for having a 100% code
coverage. Usually, NPath complexity is considered low between
1 and 4, moderate between 5 and 7, high between 8 and 10,
and extreme when higher than 10. NPath complexity is a critical
metric in software development as testing can be as important
as the development process itself. This is especially true in the
HPC field, where programs run on large clusters for long periods
of time, and buggy or untested code may result in the waste
of computational resources. To compute Cyclomatic and NPath
complexities we have employed sourced Babelfish tools.”

Finally, it is worth noting that all these metrics measure se-
quential complexity. They do not take into account parallel com-
plexity issues. In PyCOMPSs, the user only needs to deal with
sequential complexity because parallelism is handled by the run-
time. Conversely, in MPI applications, users need to deal with
both types of complexity.

5.3. Results

Table 1 shows the complexities of each implementation of the
algorithms. We see that PyCOMPSs implementations report con-
sistently better complexities than the MPI versions. All metrics
have been computed leaving out the main method because we
consider that the initialization and general orchestration are not
part of the application itself. We compute SLOC and Cyclomatic
complexity on the whole source code of the algorithms. However,
NPath complexity is computed for each function, and thus we
report maximum and mean value. To better understand this mean
value, we also report the total number of functions and the sum
of the NPath complexity of all functions.

Both K-means implementations have similar SLOC value as the
application is short and has little communication. While the MPI

4 https://www.sonarqube.org/.
5 https://github.com/bblfsh/tools.
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Table 1
Complexity metrics for the implementations of C-SVM and K-means using MPI
and PyCOMPSs.

K-means C-SVM

MPI PyCOMPSs MPI PyCOMPSs
SLOC 138 118 625 192
Cyclomatic 20 20 108 23
NPath: max 10 6 34 4
NPath: average 35 29 4.9 25
- NPath: sum 39 35 270 35
- Number of methods 11 12 55 14

version requires more lines for handling communications, the
PyCOMPSs version requires more lines to handle the reduction.
In contrast, the MPI version of C-SVM is more than three times
longer than the PyCOMPSs version (625 vs. 192). This is because
the C-SVM algorithm has a lot of non-symmetric communications
during the reduction, and handling these communications with
MPI is complex.

Both K-means implementations also have similar Cyclomatic
complexity. Again, this is because there are not many commu-
nications in K-means, and the logic of the PyCOMPSs reduction
compensates for the additional MPI communication management.
In the case of C-SVM, however, the MPI version has a much higher
Cyclomatic complexity than the PyCOMPSs implementation (108
vs. 23). This is because MPI needs to control which processes
are used in every layer of the reduction. This requires a lot
of conditional statements, and results in over four times more
logical statements than in the PyCOMPSs version.

The method with higher NPath complexity in the MPI ver-
sion of K-means (10) is the main loop that updates the new
centers and sends them for the next iteration. This method or-
chestrates the initialization of the centers, the broadcasting of
the partial sums, and the processes that compute the centers
in each iteration. This results in an extremely complex method
that requires at least ten test cases. Conversely, the equivalent
method in PyCOMPSs has an NPath complexity of 5 because it
does not need to handle communications. The method with the
higher NPath complexity in the PyCOMPSs version of K-means is
cluster_points_sum (6). On average, the MPI functions have
a slightly higher NPath complexity (3.5) than the PyCOMPSs
functions (2.9).

In the C-SVM case, the method with higher NPath complex-
ity of the MPI version (34) is the function that orchestrates
the cascade. The equivalent method in PyCOMPSs has a much
lower NPath complexity (4). This method contains little com-
munication in both versions, but it is 8.5 times less complex in
PyCOMPSs because creating the reduction requires a single loop
with no conditional statements (see Fig. 7). In contrast, the MPI
implementation needs to handle the information of which is the
current layer, and which subset of processes is going to process it.
On average, the PyCOMPSs version of C-SVM has half the NPath
complexity of the MPI version (2.5 vs. 4.9). However, the MPI im-
plementation contains several low complexity auxiliary methods
that help reduce its mean NPath complexity, and compensate for
other methods that are more complex. In total, the MPI version
has 8 methods with an NPath complexity of more than 10, and
two methods with a complexity of more than 30. PyCOMPSs has
around four times less functions, and an extremely low mean
NPath complexity (2.5), with all methods in the 1 to 4 interval.

We see that MPI implementations are significantly more com-
plex than PyCOMPSs implementations. This difference in com-
plexity grows with the application size because MPI needs to
handle each process independently. This requires additional con-
ditional statements, and leads to an exponential increase on the
number of possible execution paths. In contrast, the complexity

of PyCOMPSs applications remains low and stable regardless of
the application size, as PyCOMPSs handles all communication
automatically. Overall, MPI codes are much more difficult to test,
debug, and understand than PyCOMPSs codes.

6. Performance evaluation

In this section, we evaluate the execution performance of the
PyCOMPSs implementation of K-means and C-SVM, and we com-
pare this performance with the performance of the MPI version
of the codes. We use K-means and C-SVM because these are, re-
spectively, two of the most popular unsupervised and supervised
learning algorithms [50,51].

6.1. Testbed

We run our experiments in the MareNostrum 4 supercom-
puter.® MareNostrum 4 consists of 3,456 general purpose nodes,
where each node has two Intel Xeon Platinum 8160 24C at
2.1 GHz chips with 24 processors each. The nodes that we use
in our experiments have 96GB of memory, run Linux operat-
ing system, and are interconnected through an Intel Omni-Path
architecture.

6.2. K-means

We evaluate the performance of the K-means application by
analyzing execution times, strong scaling and weak scaling of
both implementations (MPI and PyCOMPSs). We employ the dis-
tributed generation mechanism explained in Section 4, and al-
ways use a number of partitions equal to the number of available
cores. To evaluate execution time and strong scalability, we run
both versions of the algorithm using 1 up to 32 MareNostrum 4
nodes (48 to 1,536 cores), a dataset of 100 million vectors with
50 dimensions, and 50 centers. To evaluate the weak scalability
of the implementations, we use a fixed problem size of 10 million
vectors with 50 dimensions per node. This means that in the
experiments with 32 nodes we use 320 million vectors. In all
cases, we run 6 iterations of the algorithm. Fig. 9 shows the
results obtained. For each experimental setting, we present the
average time of five executions.

As it can be seen in Figs. 9(a) and 9(b), PyCOMPSs achieves
similar execution time to MPI, and similar strong scalability with
up to 16 nodes (768 cores). However, PyCOMPSs suffers a small
drop in scalability caused by task scheduling overhead when
using 32 nodes. Fig. 9(c) shows the scalability when increasing
the input dataset proportionally with the available resources. In
the ideal case, execution time should remain constant. Again, we
see that PyCOMPSs achieves similar performance to MPI except
for a small decrease in scalability when using 32 nodes.

PyCOMPSs overhead when using 32 nodes is caused by the
scheduling of the cluster_points_sum tasks. K-means spawns
one of these tasks per partition at the beginning of every iter-
ation. Since we define one partition per core, this means that
in the experiments with 32 nodes, PyCOMPSs needs to schedule
1,536 cluster_points_sum tasks in a short period of time.
The delay between the scheduling of the first and the last of
these tasks is N; - T,, where N; is the number of tasks and
T, is the scheduling overhead per task. This delay is of around
12 s in the experiment with 32 nodes and 10 million vectors,
and of 17 s in the experiment with 32 nodes and 320 million
vectors. This means that PyCOMPSs introduces an overhead of
7.79 and 11.26 ms per task respectively. This overhead could
be reduced with a more efficient scheduler or by running the

6 https://[www.bsc.es/marenostrum
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Fig. 9. Performance results for strong and weak scaling of K-means in PyCOMPSs and MPIL.

Table 2

Summary of the datasets employed for the C-SVM performance evaluation.
Dataset Vectors Features Description
kdd99 4,898,431 121 Intrusion detection
mnist 60,000 780 Digit recognition
ijcnn 49,990 22 Text decoding

master process in a separate node. Nevertheless, the overhead
becomes less significant the longer cluster_points_sum tasks
are. Thus, PyCOMPSs scalability improves with the granularity of
the problem, which is defined by partition size, the number of
dimensions, and the number of centers. The drop in scalability in
Fig. 9(b) is caused by the low granularity of the tasks when using
more than 32 nodes.

6.3. Cascade-SVM

We evaluate the performance of the PyCOMPSs C-SVM im-
plementation using three publicly available datasets’ that are
summarized in Table 2. Before running the experiments, we pro-
cess the kdd99 dataset to convert categorical features to a one-hot
encoding, and we convert the mnist dataset to a binary problem
of round digits versus non-round digits [52].

We run the PyCOMPSs and MPI versions of C-SVM using a
varying number of nodes in MareNostrum. In this case, we use
up to 16 nodes because the scalability of C-SVM is limited by the
algorithm’s design. The PyCOMPSs version can set an arbitrary
number of partitions, and use an arbitrary number of cores.
However, the MPI version requires the number of partitions to
be equal to the number of processors, and this number to be
a power of two. For this reason, we run the experiments using
only 32 of the 48 cores per node. In the case of the PyCOMPSs
version, we run two sets of experiments. In the first set, we use

7 Available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/ and
http://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data.

a number of partitions equal to the number of cores to better
compare PyCOMPSs and MPL In the second set of experiments,
we use 512 partitions regardless of the number of cores to better
understand the strong scalability of the PyCOMPSs implementa-
tion. Fig. 10 shows the results obtained. We do not present weak
scaling results because we use publicly available datasets with
fixed size. “PyCOMPSs (C)” and “PyCOMPSs (V)" refer to the set
of experiments with constant and variable number of partitions
respectively. Execution time corresponds to five iterations of the
algorithm, speedup is computed using the time in one node as
baseline, and results are averaged over five executions. In the
training process we use an RBF kernel with C 10,000 and
y = 0.01.

As we can see, when using a variable number of partitions,
PyCOMPSs achieves similar performance to MPI, with small vari-
ations in the kdd99 and ijcnn datasets. In the particular case of
the kdd99 dataset, PyCOMPSs outperforms MPI both in execution
times and scalability. This means that PyCOMPSs introduces simi-
lar or less overhead than MPI in terms of communication and data
transfers, as computation time in both versions of the algorithm
is mainly driven by calls to the scikit-learn library.

The strong scaling speedup when using a constant number
of partitions in PyCOMPSs is similar for all datasets. Results are
slightly worse in the ijcnn case because this dataset has lower
granularity. Conversely, using a variable number of partitions
results in much lower scalability in all cases, both in PyCOMPSs
and MPL. This is caused by the relationship between partition
size and scikit-learn’s training time. Increasing the number of
partitions also increases the complexity of the C-SVM algorithm,
and generates overhead as more tasks and data transfers need to
be processed. At the same time, smaller partitions can be trained
faster. This creates a trade-off between management overhead
and training time that depends on the characteristics of the
dataset. In the case of the kdd99 dataset, partition size has a
strong impact on training time, that is, small partitions are pro-
cessed much faster than large partitions. This results in better
scalability because execution time decreases as the number of
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Fig. 10. Execution time and speedup of C-SVM in PyCOMPSs with variable and constant number of partitions (denoted with V and C), and MPI (RBF kernel with

C =10,000 and y = 0.01).

partitions increases. Conversely, in the case of the mnist and
ijcnn datasets, partition size does not have a strong impact on
training time. This results in poor scalability as increasing the
number of partitions also increases execution time due to task
and data management overhead. This trade-off affects both MPI
and PyCOMPSs because both versions employ scikit-learn.

Apart from the trade-off between partition size and number
of partitions, the C-SVM algorithm has limited scalability by de-
sign. The reduction process of each iteration accumulates support
vectors in the lower layers (see Fig. 6). This means that as the
reduction progresses, the parallelism decreases and the execution
time of layers increases. This results in load imbalance as the
lower layers are more computationally intensive, and in low
efficiency as the maximum parallelism is only exploited in the
first layer of every iteration.

6.4. Discussion

Our experiments show that PyCOMPSs achieves similar perfor-
mance and scalability to MPI in most cases, and that PyCOMPSs
outperforms MPI in certain situations. The experiments with K-
means show that the main limitation of PyCOMPSs is the task
scheduling overhead when there is a large number of ready tasks

and a large number of resources. In these cases, PyCOMPSs can
introduce an overhead of around 9 ms per task, which can result
in delays of 12 to 17 s when scheduling 1,536 tasks. However,
this overhead is negligible when processing large datasets with
high granularity.

In the experiments with C-SVM, PyCOMPSs introduces similar
communication overhead to MPI. However, PyCOMPSs achieves
slightly higher execution times than MPI with the ijcnn dataset
due to its low granularity. This is consistent with the behavior
observed with K-means, and suggests that PyCOMPSs typically
performs better with large applications and long tasks. Neverthe-
less, BDA applications that process large amounts of data typically
run for more than 4 min, and have medium to high granularity
tasks.

7. Conclusions

In this paper, we demonstrate how BDA algorithms can be
developed with PyCOMPSs, and how these algorithms can be
executed in an HPC environment. Moreover, we present a com-
prehensive evaluation of the PyCOMPSs programming model and
runtime. As part of this evaluation, we compare PyCOMPSs to MPI
from the point of view of their productivity and performance HPC
clusters.
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Our analysis shows that PyCOMPSs provides a much more
productive programming model than MPI. PyCOMPSs allows de-
velopers to write BDA algorithms with more functionality and
less complexity than MPI. More precisely, the analysis of the
NPath complexity shows that PyCOMPSs routines remain in the 1
to 4 complexity interval, while MPI codes can reach complexities
of more than 30. Moreover, MPI complexity grows extremely
fast with the size of the application. This makes PyCOMPSs an
excellent choice for developing large and complex BDA applica-
tions. In addition to this, our experimental evaluation shows that
PyCOMPSs achieves similar performance to MPI in HPC environ-
ments. These results are crucial, since MPI is one of the most
prominent HPC programming models, and is highly oriented to
performance. MPI outperforms PyCOMPSs in certain low gran-
ularity scenarios, but PyCOMPSs can achieve similar execution
times and scalability to MPI in most cases.

The work presented in this paper complements previous work
that compared the performance of COMPSs and Spark in HPC
environments [28]. We have shown that PyCOMPSs provides a
general-purpose programming model with the best trade-off in
terms of productivity, flexibility, and performance. In the future,
we plan to improve PyCOMPSs’ task scheduler and to further
experiment with data analytics algorithms in HPC environments.
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