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Abstract. A 3D meso-scale model for failure of heterogeneous quasi-brittle materials is
presented. At such scale, concrete can be represented as an heterogenous material with
two phases, where aggregates are included within the concrete. The model problem of
heterogeneous materials that is adressed in detail here is based, on the one hand, on
FE models with embedded discontinuities and, on the other hand, on a morphological
representation using Gaussian or Gaussian related random field excursion sets.

1 Introduction

In view of the growing complexity of macroscopic models of concrete like materials, the
question of multi-scale observation became relevant. It clearly appears that macroscopic
behaviours of such material (cracking, creep. . . ) take their origin at smaller scales (meso-
scopic, microscopic. . . ). The framework presented here is to be seen in this context, and
especially in a sequenced way (as opposed to integrated one [1]) where the macroscopic
behaviour comes from a mesoscopic description of the material. At this particular scale,
concrete must be represented as heterogenous materials. Therefore, both mechanical and
geometrical properties have to be represented by the framework.

This communication first present a morphological modeling framework for heterogenous
materials. A concrete like material described as a two-phase material is considered here,
where inclusions (aggregates) are included within a matrix (cement past and sand). The
idea behind this morphological model is to yield the phases from random field excursion
sets. Moreover, adding more phases in order to extend possibilities of representation
is possible by adding excursion sets. If the framework deals with correlated Gaussian
or Gaussian related random field (such as the chi-square distribution - χ2), an analytic
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formulae links the random field characteristics with geometrical and topological quantities
(volume, surface area, Euler Characteristic...) of the underlying excursion set. This
link has been recently made in [2] giving the possibility of controlling the excursion set
characteristics and applying it to represent material phase with chosen characteristics.
For a realistic modeling of a concrete like material, both in term of geometrical and
topological quantities, due the Gaussian case limitation, an application of the χ2 random
field is made. Both unidimensional Karhunen-Loève decomposition and turning-bands
projectional method are used to simulate three dimensional discrete correlated Gaussian
random fields.

Efforts of morphological modeling are here made within a multi-scale linear frame-
work using a FE model with embedded discondinuities [3]. In order to represent these
heterogeneities, those excursions are projected onto the FE mesh, thus defining a set
of discontinuities within the strain field interpolation (weak discontinuities [4]). These
kinematics enhancements lead to ”non-adapted” meshes in the sense of independence be-
tween heterogeneities morphology and the underlying FE mesh. Application of this linear
implementation is made for a simple hydration process model presented here.

Considering the non linear failure behaviour, weak discontinuities are completed with
a set of strong (displacement field) discontinuities within the framework of local enhance-
ment [5]. Those discontinuities allow for a simple and accurate representation of the
meso-scale cracks. The macroscopic response of this model is shown for a simple tension
test.

2 Random field generation

As the whole morphological framework is based on Gaussian (or Gaussian related)
correlated random field, efforts have to be made in the numerical implementation of their
generation. This part explains two methods used to generate realisations of such fields.
First the Karhunen-Loève decomposition [6] and then the turning bands projection [7].
Through this paper, we shall call γ(x, w) a Gaussian random field over a parameter space
M (which shall always be taken here to be a bounded region of RN) which takes values
in R. It is assumed that γ has mean zero, variance σ2 and is isotropic and stationnary
with a Gaussian covariance function defined as C(x, y) = C(‖x − y‖) = E{γ(x)γ(y)} =
σ2e−‖x−y‖/Lc where Lc is the correlation length.

The orthogonal decomposition of Gaussian correlated random fields theory stipulates
[8] that mean zero Gaussian field with continuous covariance function (such as C) can be
written as follows

γ(x, w) =

∞
∑

n=1

ϕn(x)ξn(w), (1)

where ξn(w) are zero mean, unit variance Gaussian random variables, and ϕn(x) are
functions on M determined by the covariance function C. It is worth noting that eq.(1)
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allows for stochastic - w - and spatial -x - variables separation. Therefore, implementing
this framework comes to put the effort in the determination of the spatial functions ϕn(x).

The Karhunen-Loève decomposition is based on the previous orthogonal decomposi-
tion. It allows us to determine these spatial functions ϕn(x) for simple compact M in
R

N . Demonstration can be found in [9] that they can be determined by first solving the
following eigenvalues problem (known as Fredholm problem):

∫

M

C(x, y)ψ(y)dy = λψ(x) (2)

where λ and ψ are respectively the eigenvalues and eigenvector and then by setting
ϕn(x) =

√
λnψn(x). Theoretically, an infinite sum is needed to define the exact random

field in eq.(1). For the numerical implementation made here, a Finite Element Method is
used to solve a discretized Fredholm problem. Therefore, using a finite set of eigenvalues
and eigenvectors, the following troncated Karhunen-Loève decomposition eq.(3) defines
an approximative realization of the underlying random field.

γ(x, w) =
m

∑

n=1

√

λnξn(w)ψn(x). (3)

The fact that stochastic and spatial variables are still separated is an essential result
for any numerical implementation. Indeed, once the m couples {λn;ψn} of a certain
correlated random field are determined, the generation of a realization comes to generate
a set of independent Gaussian variables (which only requires a random number generator).
Moreover, the same couples can be used to produce any other realizations of the same
field.

The precision of this method, involving full squared matrix eigenvalues problem, is
quickly limitated by the memory storage when one deals with multi-dimensional random
fields of large size. The turning bands projectional method has been developped by Math-
eron [7] in order to reduce the amount of numerical ressources. The idea is to generate
several one-dimensional realizations of random fields to produce a multi-dimensional one.
The algorithm below explains this projectional method with details.

Let M be the discreted multi-dimensional bounded region where the final realization
will be created. Several lines have to be generated (we shall call L their number) with
one arbitrary intersection point 0 and an uniform distribution of directions over the unit
ball (see Fig.1).

Let z(ζ, wi), i = 1..L be the L realizations of a one-dimensional correlated random field
generated over the L lines. For each point N on M , the value of the multi-dimensional
realization is the average of the one-dimensional realization values at the projection of N
on each line i:

γ(N,w) =
1

√
L

L
∑

i=1

z(ζNi
, wi) (4)
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Figure 1: Schematic representation of the turning band method (from [10])

In this paper, the application of the method is made for three-dimensional random
fields. The key of this method is the link between the three-dimensional covariance func-
tion C and the equivalent one-dimensional covariance function C1 we need to generate
the L realizations. Let C(r) be as above (with r = ‖x− y‖). Following [7] we have

C1(r) =
d

dr
(rC(r)) = σ2

(

1−
2r2

L2
c

)

e−r2/L2
c (5)

3 Excursion Set

We call an excursion set the morphology of a subset of a bounded region defined by
thresholding a realization of a random field. It allows us to create a set of random shapes.
Let γ be a realization of γ(x, w) : M ⊂ R

N → R define as above and u ∈ R a chosen
threshold. The underlying excursion set Au is defined by the points of M where the values
of γ are above u (eq.(6)).

Au ≡ Au(γ,M) � {x ∈ M : γ(x) ≥ u} (6)

This principle, applied for M ∈ R is shown on Fig.2.
In our case, random fields will be yield in a three dimensional space (M ⊂ R

3) and
therefore define three-dimensional excursion sets. The two excursions represented in Fig.3
are made from the same realization with two different threshold values. It is clear that, by
changing this value, a large range of varied morphologies can be generated. This exemple
shows that “low” values of u produce excursions mainly made of handles with high volume
fraction, giving a “sponge” like topology (Fig.3(a)), whereas “high” values of u produce
excursion made of several connected components with a lower volume fraction (Fig.3(b)).

In order to provide a global description of the resulting morphology, the Lipschitz-
Killing curvatures, hereafter LKCs, are choosen. In a N -dimensional space N + 1 LKCs
can be defined where each can be thought of measures of the ”j-dimensional sizes” of
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γ

x

u

Au M

Figure 2: Schematic representation of a one-dimensional excursion set Au

(a) “Low” threshold - sponge
topology

(b) “High” threshold - meatball
topology

Figure 3: Effect of threshold value on tri-dimensional excursion topology

Au. In our three-dimensional case, the four LKCs, denoted by Lj, j = 0..3, provide both
geometrical - L1, L2, L3 - and topological - L0 - descriptions of the morphology Au. They
are defined by:

- L3(Au) is the three dimensional volume of Au.

- L2(Au) is half the surface area of Au.

- L1(Au) is twice the caliper diameter of Au.

- L0(Au) is the Euler characteristic of Au, which contrary to the other LKCs is a
topological measure. In three-dimension, it can be calculated by:

L0(Au) = #{connected components in Au}−#{“handles” in Au}+#{“holes” in Au}

For exemple, a ball or a cube are topologicaly identical (Euler characteristic L0 = 1)
but differ from a hollow ball (L0 = 2) or a ring torus (L0 = 0).
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Following [2], a probabilistic link has been made between excursion set properties and
random field thresholding parameters giving an explicit formulae for the expectation of
the LKCs - E {Li (Au (γ,M))}. It is not the purpose of this paper to give details on these
formulae, however, full proof and details can be found in [9]. The only idea one need
to remember to go through this paper is that this theory gives a new tool helping us to
predict all the geometrical and topological properties of an excursion set from the random
field characteristics and the threshold - σ, Lc, u -. These relations have been made explicit
for γ(x, w) as above on a cube M =

∏3
i=1[0;T ]:
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(7)

Fig.4(a) and Fig.4(b) represent respectively the Euler characteristic and the volume
fraction - directly linked with the fourth LKC by E{L3}(Au)/T

3 - of excursion sets of
γ(x, w) for u from −20 to 20.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-20 -15 -10 -5  0  5  10  15  20

V
o
lu

m
e 

fr
ac

ti
o
n
 [

-]

Threshold [-]

(a)

-80

-60

-40

-20

 0

 20

 40

 60

-20 -15 -10 -5  0  5  10  15  20

E
u
le

r 
C

ar
ac

te
ri

st
ic

 [
-]

Threshold [-]

(b)

Figure 4: LKCs of excursion sets of Gaussian random field in term of threshold values.

Expected values of LKCs provided by (7), + Numerical values calculated from one
realization of γ(x, w).

The constant decreasing shape of the volume fraction curve in term of u clearly reflects
the effect of the threshold level on the “size” of Au. Even if more peculiar, the Euler
characteristic curve shape reflects also easily the effect of the threshold on excursion sets
topology. For values of u lower than the lowest value of γ, the Euler characteristic is
the one of the full cube (L0 = 1). By increasing u, several holes appear, counting in
positive for the Euler characteristic (L0 > 1). Then, the expansion of the holes starts to
form handles which lead to a sponge like topology (L0 < 0). By increasing u even more,
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handles disappear forming a “meatball” like topology of connected components (L0 > 0).
Finally, the Euler characteristic decreases to L0 = 0 when no more connected components
remain.

From the comparison between theorical values and measures on one realization, we can
point out that the variability of the numerical generation is very low. Therefore, although
eq.(7) gives only expectations of LKCs, for this range of excursion sets we can assume
that V{Li(Au)} � 1.

So far, we have seen the effect of the threshold value on excursion sets. But one needs
to remember that, according to eq.(7), both variance and covariance length of γ(x, w)
affect the morphology as well. Understanding the full behaviour of these equations is a
key point for anyone who wants to make excursion set modeling.

4 Application of the modeling framework on concrete like material

The material is represented as an heterogeneous material with two phases. One phase
(aggregates) is represented by an excursion set of a correlated random field while its second
phase (concrete) is represented by its complementary. Therefore in this part, the effort
will be put in a “realistic” representation of the aggregates phase. We keep only three
relevant characteristics from the four LKCs: the volume fraction Vv, the volumic surface
area S and the number of agregates N which are respetively linked with L3, L2 and L0.
Thought Vv and S can be directly estimated, attention must be taken when it comes to
N . Indeed the Euler characteristic does not indicate the number of aggregates for every
topology. In our case, the “meatball” topology has to be targeted and it is only once we
assume that the excursion set is free from holes and handles that N can be estimated by
L0. In this specific kind of topology: N � #{connected components} = L0.

Once the three characteristics (N ,S, Vv) of the phase are set, the generation of the
underlying excursion set rely on finding a solution for (u, σ, Lc) that satisfy the following
system:







E{L3}(u, σ) = VvT
3

E{L2}(u, σ, Lc) = 1
2
ST 3

E{L0}(u, σ, Lc) = N
(8)

Due to the intrinsic non linearity of eq.(7), depending on the different values of (N ,S, Vv)
(especially for “meatball” topology - N � 1) the problem eq.(8) do not always have a
solution. For exemple, we can clearly see on Fig.4 that we can not expect N to be up-
per than 40 while keeping a “high” volume fraction (Vv > 40%). Which in our case of
concrete like material modeling leads to a major issue. So far, the more realistic solution
for “meatball” topology we get with this framework allows us to represent an aggregate
phase with a maximum of 15% volume fraction.

Until now, the framewok has been presented considering Gaussian random fields. But
estimation of LKCs for excursion set can also be worked out considering Gaussian related
fields. The application of this paper is made using a chi-square distribution with k degrees
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of freedom - χ2
k -. Realizations of such fields can be seen as sum of k independent squared

realizations of a correlated Gaussian random field. Let δ be a realization of such field and
γi, i = 1..k be k realizations of the Gaussian field γ(x, w) described above. We have :

δ =

k
∑

i=1

γ2
i (9)

Although similar to eq.(7), the use of a χ2
k distribution add the parameter k to the

system eq.(8). With such field, the nearest solution is found for k = 1 and enable us to
double the previous volume fraction Vvmax

≈ 30%. Fig.5 shows a two-dimensional slice of
excursions from a Gaussian realization and a χ2

1 made from the same realization. Fig.5(b),
being the excursion from the squared realization of the excursion Fig.5(a), shows clearly
that, for the same threshold, it is natural to expect the volume fraction to double between
excursions of Gaussian and χ2

1 random fields.

(a) Gaussian realization - γ (b) χ2
1 realization - δ = γ2

Figure 5: Comparison between Gaussian and χ2
1 excursion sets for the same threshold value.

The χ2
1 distribution remains the more suitable solution for meatball topology and high

volume fraction morphology we found.

5 FE model for heterogeneous material - Application to hydration process
modeling

The approach made here relies on a spatial truss, to model pattern of heterogeneities.
The choice of a not adapted meshing process is made here thus, the spatial positions of
nodes are not constrained by the morphology. Therefore, both gemetrical and mechanical
properties have to be handle inside some interface elements. These cut elements are split
into two parts, each having different elastic properties by enhancing them with strain
(weak) discontinuities [11]. An elementary enhancements method (E-FEM) method for
kinematic enhancement of Finite Element using the Hu-Washizu variational formulation is
used here. For example, if we consider a two-phase material (inclusions within a matrix),
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three sets of elements are needed: those entirely in the matrix, those entirely in the
inclusions, and those which are split between both (cut elements). To calculate these
elements repartition, a projection of the previous excursion set is made onto the truss.
In order to illustrate this linear framework, a simple hydration process of concrete like
material modeling has been implemented. Considering a simplistic version of the Powers
and Brownyard hydration model [12], with only three phases: unreacted cement, hydration
products (including gel water) and free water, the volume fraction of each one of them
can be calculated according to the following equations:















p = w/c
w/c+ρw/ρc

Vanh = (1− p)(1− α)
Vh = 2.12(1− p)α
Vw = 1− Vh − Vanh

(10)

where p is the initial porosity, α the hydration degree and Vanh , Vh, Vw respectively the
volume fractions of anhydrous cement, hydration products and water.

(a) α = 0.1 (b) α = 0.5 (c) α = 1

Figure 6: Projection of excusion set shapes on FE truss for different hydration degrees.

water, hydration products, anydrous cement

As explained previously, thresholding a random field with a scalar allows to create a
two phase material. One can easily imagine, that a second threshold, with a different
value, will allow to create an additional phase, concentrical to the first one. Therefore,
setting two thresholds will allow us to create a three phase material. Thus, for different
hydration degrees, each phase’s volume fraction is known and can be linked to the random
field’s thresholds ui (equation eq.(7)). Eventually, the initial morphology is set up by one
threshold (two phases: water and unhydrated cement), and then, for a growing hydration
degree, two thresholds are calculated and applied to the random field, creating a three
phase material (water, unhydrated cement and hydration products).

Within this framework, macroscopic material characteristics like Young modulus can
be estimated over a given hydration degree with simple tension tests. The following

9



1548

E. Roubin, M. Bogdan and J.B. Colliat

characteristics have been chosen Eanh = 135 000 MPa, Eh = 25 000 MPa and Ew =
1 MPa.
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Figure 7: Young modulus of a concrete like material for different hydration degrees.

Fig.7 shows that the continuous growing of the macroscopic Young modulus over hy-
dration degree is well handled by this FE representation. A slight raising of the slope can
be seen after α = 0.4.

6 FE models with embedded discontinuities

In addition to the geometrical representation of heterogeneities, displacement (strong)
discontinuities are also introduced in the elements, in order to model a non-linear softening
response based on failure quasi-brittle. These discontinuities represent micro-cracks that
can occurs in both phases as well as at the interfaces (debonding). Details of this FE
numerical implementation can be found in [3].

A other simple tension test is presented here. Material properties are defined according
to Tab.1.

Table 1: Material properties

Matrix Inclusions Interface
E = 10GPa 70GPa −
σu = 3MPa − 3MPa
Gf = 11J/m2 − 11J/m2

Two remarks are worthy of attention. The first is that the interface is of rigid-brittle
type. The second is that we choosed for inclusions to remains in the linear elastic regime.
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(a) Displacement field and crack pat-
tern at last time step
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(b) Load vs imposed displacement

Figure 8: Results for simple tension

The cracking pattern is shown on Fig.8(a) where two zones are splited by a macroscopic
crack (represented by means of the broken elements). Fig.8(b) shows the macroscopic
load vs imposed displacement curve where three steps can be seen. First, a linear part
where no failure occurs. Then, with the apparition of several microscopic cracks, we can
observe a yield behaviour. Finaly, the softening part begin when the localisation of these
microscopic cracks creates a macrosopic one.

7 Concluding remarks

This communication presents a first attempt to create a sequential multi-scale frame-
work where morphology of heterogeneous material is defined by excursion sets of correlated
random fields. Though, efforts still have to be made in order to generate more realistic
morphologies, advantages have been shown through two examples. We can also add that
this framework is well adapted to other problematics related with concrete like materials
such as the effect of morphological variability on macroscopic behaviour. Indeed, the
use of both Karhunen-Loève decomposition and non-adapted meshes allows fast compu-
tations, limiting the growing amount of numerical ressources needed when dealing with
large sets of morphologies. Futhermore, being able to represent broken elements by means
of a strong discontinuity in the FE method allows calculations of permeability or diffusion
in such damaged materials [13].
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