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Abstract. In the present paper, a fully coupled numerical model is developed for the hydro-
mechanical analysis of deforming, progressively fracturing porous media interacting with the flow 
of two immiscible, compressible wetting and non-wetting pore fluids. The governing equations 
involving the coupled two-phase fluid flow and deformation processes in partially saturated 
porous media containing cohesive cracks are derived within the framework of the generalized 
Biot theory. The displacement of the solid phase, the pressure of the wetting phase and the 
capillary pressure are taken as the primary unknowns of the three-phase formulation. A softening 
cohesive law is employed to describe the nonlinear behavior of the material in the fracture process 
zone. In order to account for the flux of the two fluid phases through the fracture faces, the mass 
balance equation for each flowing fluid inside the fully damaged zone and the cohesive zone is 
averaged over its cross section. The resulting equations provide mass couplings to the standard 
equations of the multiphase system. The effect of cracking and therefore change of porosity on the 
permeability of the damaged zone is also taken into account. To arrive at the discrete equations, 
the extended finite element method (XFEM) is utilized to discretize the weak form of the balance 
equations of mass and linear momentum in spatial domain along with the Generalized Newmark 
scheme for time domain discretization. By exploiting the partition of unity property of finite 
element shape functions, the evolving cohesive crack is simulated independently of the underlying 
finite element mesh and without continuous remeshing of the domain as the crack grows by 
adding enriched degrees of freedom to nodes whose support is bisected by the crack. For the 
numerical solution, the unconditionally stable direct time-stepping procedure is applied to solve 
the resulting system of strongly coupled non-linear algebraic equations using a Newton-Raphson 
iterative procedure. Finally, numerical simulations are presented to demonstrate the capability of 
the proposed method and the significant influence of the hydro-mechanical coupling between the 
continuum porous medium and the discontinuity on the results.  
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1 INTRODUCTION 

The present paper focuses on the hydro-mechanical modeling of two-phase fluid flow in 
deforming, partially saturated porous media containing propagating cohesive cracks, which has 
practical applications in a broad range of engineering areas. In the literature, the topic of fluid 
flow in fractured/fracturing porous media has been dealt with in different ways: in [1] a numerical 
procedure for the simulation of hydraulically-driven fracture propagation in poroelastic materials 
has been presented combining the finite element method with the finite difference method, in [2] 
the problem of hydraulic cohesive crack growth in fully saturated porous media has been solved 
using the finite element method with mesh adaptation, in [3] a hydro-mechanical formulation for 
fully saturated geomaterials with pre-existing discontinuities has been presented based on the 
finite element method with zero-thickness interface elements, and the subject of fluid flow in 
fractured fully saturated systems and in fracturing unsaturated systems with passive gas phase has 
been treated in [4] and [5], respectively, using the extended finite element method, which is now 
extended to three-phase porous media. The three-phase numerical model developed here is based 
upon the mechanics of deformable porous media on the basis of the generalization of the Biot 
theory in conjunction with the cohesive fracture mechanics, which provides a suitable framework 
to describe the coupled hydro-mechanical and fracture mechanisms occurring in fracturing, 
multiphase porous media. In such multiphase systems, the coupling between the flow of the 
wetting and non-wetting phases in the pore spaces of the continuous porous medium and the 
discontinuity, the deformation of the solid phase, the fluid exchange between the discontinuity 
and the surrounding porous medium and the possible development of the discontinuity across 
which the cohesive tractions are transmitted is usually strong, which demands the fully coupled 
treatment of the problem. In the formulation presented herein, all these components are brought 
together to thoroughly simulate the deforming, partially saturated porous medium behavior in the 
presence of geomechanical discontinuities, thus exhibiting fluid flow, deformation and fracture 
processes properly. 

The extended finite element method combined with the cohesive crack model yields an 
efficient approach to simulate the cohesive crack propagation [6-8]. In fracturing, partially 
saturated porous media, the crack growth occurs as the progressive decay of the cohesive tractions 
transferred across the fracture process zone and the imposition of the mean pore pressure onto the 
crack faces by means of the pore fluids within the crack. The tractions acting on the fracture faces 
give rise to the mechanical coupling between the fracture and the medium surrounding the 
fracture. Besides, the flux of the two fluid phases through the fracture borders leads to the mass 
transfer coupling, which is a subject of great interest in hydraulic fracturing.  

2 THE PHYSICAL MODEL 
The pores of the solid skeleton in the partially saturated porous medium are assumed to be 

filled up partly with water  and partly with gas . Thus, degrees of saturation of the liquid 
phase  and the gaseous phase  always sum to unity, i.e. . The capillary pressure 
between the two fluid phases is defined as .

The stress relation is expressed by introducing the concept of the modified effective stress  

(1)

in which  is the total stress vector,  is the modified effective stress vector,  is the identity 
vector,  denotes the mean pore pressure applied by the porous fluids on the solid skeleton, which 
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is given by the averaging technique � � ���� � ����, and � is the Biot constant. The 
constitutive equation of the solid phase in the continuum medium surrounding the crack is 
expressed by an incrementally linear modified effective stress-strain relationship 

���� � � �� (2)

where � represents the tangential constitutive matrix of the continuum.  
The non-linear behavior of the fracturing material in the cohesive zone is governed by a 

traction-separation law relating the cohesive tractions to the relative displacements 

�� � ������� (3)

where �� is the cohesive traction transmitted across the fracture process zone and ��� is defined 
as the relative displacement vector at the discontinuity. In quasi-brittle materials, as soon as the 
failure limit of the material is exceeded, the cohesive zone develops in which the material exhibits 
a softening behavior. Linearization of the cohesive relation (3) results in  

��� � � ���� (4)

in which � represents the tangential modulus matrix of the discontinuity to be used in the iterative 
solution procedure, obtained from the relation � � ∂�� ∂���⁄ .

3 GOVERNING EQUATIONS 

3.1 Strong form 
In what follows, the equations specifying the problem are written in terms of the displacement 

of the solid phase, the pressure of the wetting phase and the capillary pressure. For a more 
detailed presentation of the governing equations see Ref. [9].  

The linear momentum balance equation for the porous medium can be written as 

� � � � �� � ��� � � (5)

where ��  is the acceleration vector of the solid phase, � is the body force vector, � is the average 
density of the multiphase system defined as � � �1 � ���� � ������ � �����, in which � stands 
for the porosity of the porous medium. 

The continuity equations for the flow of wetting and non-wetting phase fluids through the 
deforming, isothermal porous medium can be written as 

 
1

���
 ��� �

1
���

��� � � �� �� � �� �� � � �� �� � � �

1
���

 ��� �
1

���
��� � � ���� �� � �� �� � � �

(6)

where ��  is the solid velocity vector, and �� � and �� � are the Darcy velocity vectors of the two 
flowing fluids. The compressibility coefficients are defined as 

1
���

�
� � �

��
�

���

��
�

���

��

1
���

�
� � �

��
��1 � ��� � ��

���

���
� �

���

��

(7)
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in which �� and �� are the bulk moduli of the porous fluids. 
The Darcy relation for pore fluid flow can be written as 

�� � � ������� � ���� � �� �� � � �� � (8)

where �� and �� are the permeability matrices of the porous medium to the pore fluids, which 
are generally evaluated by the following expression 

�� � �
���
��

� � �� �
(9)

in which � denotes the intrinsic permeability matrix of the porous medium, which is simply 
replaced by a scalar value � for the isotropic medium,���� is the relative permeability coefficient 
of the fluid, and �� denotes the dynamic viscosity of the fluid. 

The permeability inside the fracture, i.e. the fully damaged zone and the micro-cracked zone, is 
strongly influenced by the change in the pore spaces of the solid skeleton as a result of cracking 
and micro-cracking processes. To this end, the pore fluid flow within the fracture is modeled by 
means of Darcy law with porosity dependent permeability, in which the dependence of the 
fracture permeability on the porosity is incorporated into the formulation via the coefficient ���

��� � �
������
��

� � �� �
(10)

The following relation based on Ref. [10] is assigned to ���

������� � 1���� � ��� �
6��� � ��
��� � ����

(11)

where �� and � are the current and the initial porosity of the fracture material, respectively.  

Figure 1: Boundary conditions of the body Ω involving the geomechanical discontinuity Γ�
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3.2 Weak form 

To develop the equations, the two-dimensional domain Ω bounded by the boundary Γ is 
considered. As depicted in Fig. 1, the domain contains the geomechanical discontinuity Γ�.

The weak form of the equilibrium equation for the multiphase system is given by 

� ��� � � dΩ
Ω

� � ��� ��  dΩ
Ω

� � ���� ��� � ������ dΓ
��

� � �� �� dΓ
��

� � ��� � dΩ
Ω

(12)

which must hold for any kinematically admissible test function for the solid phase displacement 
�, satisfying the homogenized essential boundary condition. 

Incorporating Darcy law, the weak form of the continuity equation of flow for each of the fluid 
phases is given by 

� ��
1

���
��� dΩ

Ω
� � ��

1
���

��� dΩ
Ω

� � ��� �� �� dΩ
Ω

� � ��� � ��� ��� � ��� dΩ
Ω

� � �� ��� � ��� dΩ
Ω

� � ����� � ����� ��� � ��  dΩ
Ω

� � ������ � ���� dΓ
��

� � ����� � ����� ���� � dΩ
Ω

� � �� ��� dΓ
���

� � �� ��� dΓ
���� ���

� � �� �� �� �� dΓ
���� ���

� ��
1

���
��� dΩ

Ω
� � ��

1
���

��� dΩ
Ω

� � ��� �1 � ��� �� ��  dΩ
Ω

� � �� ��� � ��� dΩ
Ω

� � �� ��� � ��� dΩ
Ω

� � ���� ��� � ��  dΩ
Ω

� � �� ��� dΓ
��

� � ���� ���� � dΩ
Ω

� � �� ��� dΓ
���

(13)

which must hold for any kinematically admissible test function for the wetting phase pressure ��
and the capillary pressure ��, respectively, each disappearing on the boundary portion where the 
corresponding essential boundary condition is imposed. ��� and ��� are the leakage fluxes of the 
two pore fluids along the fracture toward the surrounding porous medium, which implies that 
there exists a discontinuity in the normal flow of the pore fluids across Γ�. In order to arrive at a 
relation for the leakage flux of the pore fluids into the medium surrounding the discontinuity, the 
flow continuity equation for each flowing fluid inside the fracture is averaged over its cross 
section. Following this, the leakage terms appearing in the weak form of the wetting and non-
wetting fluid flow continuity equations of the continuum medium are respectively obtained as 

��� � ��� � ���
1

���
��� � ��

1
���

��� � ��� �
∂�� ��

∂�� � � � ��� ���

��� 
∂

∂�� ���� ��
∂��

∂�� � ������ � ��� ������ (14)
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∂��
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(15)

in which the notation ��� ������ represents the difference between the corresponding values at 
the two fracture faces and ��� � ������� 2⁄  is specified as the average of the corresponding 
values at the discontinuity faces. 

4 DISCRETIZATION OF THE GOVERNING EQUATIONS AND SOLUTION 
PROCEDURE FOR THE DISCRETIZED SYSTEM 

In order to account for the displacement jump across the fracture, the displacement field should 
be discontinuous. In addition, to take into account each fluid flow jump normal to the fracture, it 
is required that the water pressure and also the capillary pressure field be continuous, while their 
corresponding gradient normal to the fracture be discontinuous. 

Thus, the extended finite element approximation of the displacement field is written as 

���� � �� � � ������ �����
���

� � ������
1
2 ����

��� � ���
����� ������

������

(16)

where ������ is the standard finite element shape function of node �, � is the set of all nodes in 
the mesh, and ���� is the set of enriched nodes defined as the set of nodes in the mesh whose 
support is bisected by the discontinuity. To ensure that the displacement jump is zero at the 
discontinuity tip, the nodes belonging to the element edge on which the discontinuity tip lies are 
not enriched. ����� and ����t� are the standard and enriched degrees of freedom, respectively. The 
discontinuous function ���

��� is taken as the sign function centered on the line of the 
discontinuity Γ�, i.e. ���

��� � ����������, in which ���� is the level set function. 
Symbolically, the enriched finite element approximation of the displacement field in Eq. (16) 

can be written in the following form 

���� � �� � ����� ���� � ��
������ ����� (17)

in which ����� is the matrix of the standard shape functions, and ��
������ is referred to as the 

matrix of the enriched shape functions. ���� is the vector of the standard displacement degrees of 
freedom, and ����� is the vector of the enriched displacement degrees of freedom. 

The water pressure as well as the capillary pressure is approximated as  

��
��� � �� � � ������� ������

���

� � ������� ����
��� � ���

����� ���� �������
������

 (18)

where ������� are the standard finite element shape functions. Nodes in ���� have their support 
bisected by the discontinuity. It is essential that the leakage flux vanish at the discontinuity tip. 
This is assured by requiring that the nodes on the element edge with which the discontinuity tip 
coincides not be enriched. ������ and ������� are the standard and enriched pressure degrees of 
freedom, respectively. ���

��� is the distance function, i.e. ���
��� � |����|. ���� is a weight 
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function with compact support given by 

���� � � �������
������

� � �� � (19)

It is noted that the multiplication with ���� causes the weighted enrichment function to vary 
continuously between the standard enrichment function and zero in the elements whose some 
nodes are in the enriched nodal set, reproducing the standard enrichment function in the elements 
whose all nodes are in the enriched nodal set. The enriched formulation in Eq. (18) has the form 
of the enrichment function in common with the modified formulation in [11,12], but the nodes 
chosen for enrichment conform with those of the standard one. 

Likewise, the enriched finite element approximation of the water pressure and capillary 
pressure fields in Eq. (18) can be rewritten as 

��
��� � �� � ���

��� ����� � ���
������ ������ � � �� � (20)

Following Bubnov–Galerkin, the discretized form of the equations defining the multiphase 
problem is reached 

����� � ������� � � �T���dΩ
Ω

� ����� � ���� ��� � ����� � ���̃��� � ��
���

����
T �� � �������� � � ������T���dΩ

Ω���
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��� � ���
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T  �� � ����
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�
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��� � ��
���
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�

�����
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�
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(21)

The above equation system is then discretized in time domain following the line of the well-
known Newmark scheme. To advance the solution in time, the link between the successive values 
of the unknown field variables at time ���� and the known field variables at time �� is established 
by applying GN22 and GN11 to the displacement and pressure variables, respectively, as 

�� ��� � �� ����� � ��� � �� �� � � �� �� �

�� ��� � �� ����� � ��� � �� �� � � �� �� �

��� ��� � �� ������ � ���� � �� ��� � � �� ��� �

��� ��� � �� ������ � ���� � �� ��� � � �� ��� �

������ � ��
�  � ��

��� � ��
�� � ��

�  ����                      � � �� �

���
�
��� � ��

�  � ���
��� � ���

�� � ��
� ���

�
� � � �� �

(22)
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in which �� � � ����⁄ , �� � � ���⁄ , �� � � ���⁄ , �� � � �⁄ � �, �� � � ��⁄ � �, �� �
���� ��⁄ � ��, ��� � � ���⁄  and ��� � � �⁄ � �. In these relations, �� � ���� � �� is the time 
increment, and �, � and � are the Newmark parameters. To guarantee the unconditional stability 
of the time integration procedure, the Newmark parameters must be chosen such that � � 0.�,
� � 0.���0.� � ���, and � � 0.�.

In order to resolve the system of fully coupled non-linear algebraic equations at each time step, 
the direct solution procedure is employed. In this numerical strategy, the discrete system of 
equations is solved at any specified time ���� applying the Newton–Raphson iterative algorithm 
to its residual form, ���� � �. By expanding the residual equations with the first-order truncated 
Taylor series, the following linear approximation for the non-linear system to be solved is reached 

�������� �
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�������
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where � is the well-known Jacobian matrix, defined as ������� �������⁄  in which � represents the 
vector of nodal unknowns, � � ��T ��T ��T ���T ��T ���T�T. By finding the solution of the 
linearized system of equations (23), i.e. the increment of the standard and enriched nodal degrees 
of freedom, the corresponding nodal unknowns are subsequently attained through the incremental 
relation �������� � ������ � ��������� .

5 NUMERICAL SIMULATION RESULTS 

The square plate with the edge crack of length 0.0��� lying along its symmetry axis is 
simulated. The length sides of the plate is 0.����. The plate is loaded in tension by two uniform 
vertical velocities with magnitude ��� � �.3� � �0������� applied in opposite directions to the 
top and bottom edges of the plate. It is assumed that the plate has impervious boundaries to both 
fluids. Initially, the fully saturated condition is supposed. In the cohesive zone, the linear 
softening cohesive law is applied The material properties of the partially saturated porous medium 
are listed in Table 1. For fracture analysis, the cohesive fracture parameters of the material are set 
as follows: the cohesive strength σ� � �.����� and the cohesive fracture energy �� � 9�����.

The constitutive relations for the water saturation as well as the water and gas relative 
permeabilities are assumed on the basis of the van Genuchten-Mualem (VGM) model 

�� � ��� � �� � ���� �� � �
��
����

�
� �����⁄

�
��

��� � ���� �⁄ �� � �� � ��
��� �⁄ �

�
�
�

��� � �� � ��� � �⁄ �� � ��
� �⁄ �

��

(24)

in which the residual water saturation ��� � 0, the empirical curve-fitting parameter � �
0.4396, the reference pressure ���� � ��.6����, and the effective water saturation �� is defined 
as �� � ��� � ���� �� � ����⁄ .
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The numerical analysis of the plate is performed employing the three-phase model as well as 
the passive gas phase assumption. In these modelings, a comparison is made between the 
numerical results obtained considering the full coupling, i.e. the mechanical and the mass transfer 
coupling between the crack and the surrounding porous medium, and disregarding the mass 
transfer coupling. In the latter case, the interfacial flux vectors in the system of equations to be 
solved are omitted. Subsequently, the water pressure and capillary pressure fields need not be 
enriched any longer. Thus, the crack is not identified as a discontinuity in the fluid flow normal to 
the crack. That is, in the case without the mass transfer coupling term, no distinction is made 
between the flow of the pore fluids in the crack and in the porous medium surrounding the crack. 

The numerical analysis continues until the crack tip gets to the right-hand side of the plate. The 
simulation results are presented for the time step before the crack propagates through the whole 
plate. Fig. 2 exhibits the contours of the water pressure for different simulations. As can be seen, 
incorporating the mass transfer coupling term into the simulation results in high negative water 
pressures concentrated in the vicinity of the crack, which implies that the pore water is drawn into 
the crack. These effects can also be distinguished in the contours of the gas pressure shown in Fig. 
3, which result from the three-phase model. As observed in this figure, the negative pressures are 
greater in the case with full coupling than those without the mass transfer coupling. Moreover, it 
can be noticed that allowing for the interfacial flux along the crack leads to the considerable 
decrease of the gas pressure in the area surrounding the crack. This causes the pore gas to flow 
toward the crack. The gas pressure contours reveal that the values of the gas pressure, ignored in 
the model based on the assumption of the passive gas phase, can be as large as those of the water 
pressure. The impact of the incorporation of the mass transfer coupling on the results can further 
be evidenced by comparing the contours given in Figs. 4 and 5 representing the norm of the water 
pressure and gas pressure gradients, respectively. In accordance with what was observed before, 
pressure gradients with high values develop in the zone around the crack due to the mass transfer 
coupling. It also appears that the simulation in which all primary variables are enriched results in 
much higher values of the pressure gradient compared with those obtained without the water 
pressure and the capillary pressure enrichment. The results obtained with the passive gas phase 
assumption qualitatively correspond to those reported in Ref. [5]. 

Table 1: Material properties 

Young's modulus � � ����� GPa
Poisson's ratio � � ����
Biot's constant � � �
Initial porosity � � ���
Solid phase density �� � ���� �� m�⁄
Water density �� � ���� �� m�⁄
Air density �� � ��� �� m�⁄  
Bulk modulus of solid phase �� � ����� GPa
Bulk modulus of water �� � ��� GPa
Bulk modulus of air �� � ��� � ���� GPa 
Intrinsic permeability � � ���� � ����� m� 
Dynamic viscosity of water �� � � � ���� Pa s
Dynamic viscosity of air �� � � � ���� Pa s 
Atmospheric pressure ���� � � Pa



1536

Toktam Mohammadnejad and Amir Reza Khoei. 

10

(a)      (b)

(c)      (d)  
Figure 2: Water pressure (Pa) contours: (a) three-phase model with full coupling, (b) three-phase model without 
mass transfer coupling, (c) passive air phase model with full coupling and (d) passive air phase model without 

mass transfer coupling 

(a)      (b)
Figure 3: Gas pressure (Pa) contours: (a) three-phase model with full coupling and (b) three-phase model 

without mass transfer coupling 
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(a)      (b)

(c)      (d)  
Figure 4: Norm of the water pressure gradient (Pa/m) contours (logarithmic scale): (a) three-phase model with 

full coupling, (b) three-phase model without mass transfer coupling, (c) passive air phase model with full 
coupling and (d) passive air phase model without mass transfer coupling 

(a)      (b)
Figure 5: Norm of the gas pressure gradient (Pa/m) contours (logarithmic scale): (a) three-phase model with full 

coupling and (b) three-phase model without mass transfer coupling  
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6 CONCLUSIONS 

In this paper, a numerical model was developed to simulate the flow of wetting and non-
wetting pore fluids in progressively fracturing, partially saturated porous media in which the 
mechanical and the mass transfer coupling between the crack and the porous medium surrounding 
the crack were taken into account. For numerical simulation, the multiphase formulation was 
established based upon the linear momentum balance equation for the multiphase system and the 
flow continuity equation for each fluid phase. The cohesive crack concept was introduced, which 
gives the possibility to describe the non-linear behavior of the quasi-brittle material in the fracture 
process zone. In numerical modeling, the partition of unity property of finite element shape 
functions was exploited, which allows the local characteristic to be incorporated into the standard 
finite element approximation. The proposed method was successfully applied to the example 
involving a plate with a propagating cohesive crack, which puts in evidence the performance and 
applicability of the method. As illustrated in this example, the results are highly affected by 
inserting the discontinuity in the pressure normal derivative and thus considering the mass transfer 
coupling through the enrichment of the pressure field. In addition, it was verified that for a 
complete analysis of the problem the three-phase model is needed to be employed. 
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