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1 INTRODUCTION 

Knowledge of structural behavior is essential for designing lighter constructions without 

affecting their safety and quality standards. Lack of levels and characteristics of dynamic 

response, for example, can lead to system failure during repetitive loading application, due to 

the accumulation of structural damage. Thus, it becomes necessary to use more complex 

theories, such as nonlinear formulations, avoiding simplifications in the process of 

analysis/design. 

Plastic analysis of steel structures enhances several benefits compared to the elastic’s, 

because one of the most important characteristics of this material, the ductility  ability to 

withstand large deformations before breaking  is fully considered. This allows for force 

redistribution after the yielding limit of some structural member’s cross section has been 

achieved. This property also promotes the absorption of energy, which becomes extremely 

important in structures subjected to seismic excitations [1]. 

Most studies on inelastic analysis rely on the plastic-zone method (or plasticity distributed) 

or the plastic hinge method (concentrated plasticity or lumped model). The basic difference 

between them is the refinement degree used to represent the structural member plastification. 

In the plastic-zone method, the structure is discretized into finite elements and the 

cross-sections of these elements are subdivided into many fibers. The second-order effects 

and residual stresses can be considered directly in the analysis. Due to the high degree of 

refinement, the analyses made with this method are treated as close-to-accurate solutions. 

However, as it has a high computational cost, the plastic-zone approach is used more for 

simulation of simple structures that can serve as a calibration for other models and numerical 

formulations. Few works are found in this line of research directly related to dynamic 

analysis. Among these are: Kant and Marur [2], Mamaghani et al. [3], and Thai and Kim [4]. 
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In contrast, the plastic hinge approach, which assumes the effects of plasticity concentrated 

at hinge points located at the ends of the elements, can be classified as an elastic-plastic hinge 

model or a refined-plastic hinge model. The first one, used in this work, is the simplest way to 

consider the inelastic effects in structural analysis. The element remains in an elastic regime 

until the plastic resistance of the cross-section is achieved by forming a plastic hinge. The 

residual stress effects are not considered. In the refined-plastic hinge model, on the contrary, 

the process of cross-section plastification can be accompanied and the residual stresses can be 

considered. By providing an approximate representation of the member behavior in relation to 

the plastic-zone approach, computationally, the plastic hinge models become significantly less 

expensive and more applied ([5] – [10]). 

The computational system for advanced structural analysis CS‐ASA [10] is used in this 

work. The main characteristic of this computational tool is the accomplishment of the 

nonlinear static and dynamic analyses of steel plane framed structures. In these analyses, the 

geometric nonlinearity or second‐order effects can be simulated, as well as those introduced 

by considering semi‐rigid connections, and steel inelasticity. The introduction of all these 

nonlinear effects in the numerical models and formulations makes it possible to establish the 

stability and strength limit of the structural system in a direct manner, without the necessity to 

separately verify each member’s capacity [11]. For this article, a routine able to simulate the 

nonlinear cyclic behavior of the material was implemented in the CS-ASA system. Basically, 

this model is a natural extension of those already implemented in CS-ASA for the static case 

and can be found in detail in Silva [10]. Therefore, the numerical formulation adopted 

considers two sources of nonlinearities: the geometric, which includes structural displacement 

effects, and the physical, caused by the steel’s inelasticity. The methods of Newmark 

(integration process) and Newton-Raphson (iteration process) are used for solving the 

nonlinear equations of motion. This numerical methodology is discussed throughout the work. 

Some examples considering the nonlinear inelastic time-history response of planar steel 

frames will be discussed at the end of the work. 

2 FINITE ELEMENT FORMULATION 

This section presents the finite element formulation used in the study of the inelastic 

behavior of steel structures. This formulation, as already highlighted, follows the plastic hinge 

approach, and the effect of the material yielding is considered in the finite element force-

displacement constitutive relationship. Initially, some assumptions should be made. The 

inelastic behavior is restricted to the ends of the element (nodal points) that will simulate the 

plastic hinges. The length of these plastic hinges will be null and its deformation is constituted 

only by inelastic rotation. Once the plastic hinge is formed, the inner forces in cross-section 

must respect the plastic resistance surface (full yield surface of the section). 

Consider then the finite element shown in Figure 1. The beam-column element presented 

has fictitious section springs attached at its ends. These springs are imagined to have a 

bending stiffness Ss, which can be defined based on a state parameter ψ (this state parameter 

monitors the cross-section yielding process and will be discussed in the next subsection). The 

element force-displacement relationship on the co-rotational local system, considering the 

cross-section material yielding effect, can be written as [10]:  
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Inelastic behavior
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Figure 1: Beam-column finite element with fictitious section springs 
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, or, c c c∆ = ∆f K u  (1) 

with ( )( )si ii sj jj ij jiS k S k k kβ = + + − . 

In Eq. (1), the subscribes i and j are related to the element ends, and the subscript c 

indicates the coordinate system used; E is the Young’s modulus; A is the cross-section area; L 

is the element length; ∆P, ∆M, ∆δ and ∆θ are, respectively, the axial force, the bending 

moment, the nodal axial deformation and nodal rotation increments, and are represented in 

Figure 1. The coefficients of the matrix Kc, besides simulating the section’s material 

plastification at each end of the element, also considers the second-order effects  for 

relatively large displacements, the lateral deflection of a member can generate additional 

bending moments because of the presence of axial force. In this case, the terms kii, kjj, kij and 

kji involved in the simulation are: 

 ( )4 2 15 4ii jjk k EI L PL PI AL= = + +  and ( )2 30 2ij jik k EI L PL PI AL= = − +  (2) 

where I represents the moment of inertia. 

With the increase of axial force on a section with a plastic hinge already formed, the 

section resistance may become smaller than the internal forces acting on it. Then, a change in 

the force-displacement relationship of the element (Eq. 1) will be required so that the 

section’s plastic resistance is not violated. This change can be expressed by the following 

equation: 

 1 1

2 2

00 0

0 0

0 0
i i i

j j j

P EA L
M C K

M C K

∆ ∆δ            ∆ ∆θ ζ= +           ∆ ∆θ ζ      

, or, c ch c ps∆ = ∆ + ∆f K u f  (3) 

where the parameter vector ∆fps defines the correction of the internal forces. The other matrix 

Kch coefficients are presented in Table 1 according to the element end where the plastic hinge 

is formed. In this table, δMpr is the modification to translate the section moment M to the 

interaction surface (resistance or full yield surface), maintaining the axial force P fixed. 

Details of this change and the process to transform Eqs. (1) and (3) into the global coordinate 

system, later obtaining the structural system internal forces vector Fi and stiffness matrix K, 

can be found in Silva [10].  

The section resistance surface adopted here will be presented in the following subsection, 

which also discusses the numerical procedure used to simulate the material’s nonlinear 

behavior. 
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Table 1: Parameters in Eq. (3) 

Plastic hinge 
Parameters 

C1 C2 ζ1 ζ2 

End i 0 1 δMpri δMpri(kc(3,2)/kc(2,2)) 

End i 1 0 δMprj(kc(2,3)/kc(3,3)) δMprj 

Ends i and j 0 0 δMpri δMprj 

( ) ( ) ( ) ( )1 2,2 2,3 3,2 3,3c c c cK k k k k= − and ( ) ( ) ( ) ( )2 3,3 2,3 3,2 2,2c c c cK k k k k= −  

kc(m,n) is the term corresponding to the row m and the column n in Kc (see Eq. 1) 

2.1 Cyclic plasticity model 

Steel inelasticity is the yielding process of the fibers causing changes in cross-section 

stress distribution when acting forces increase. Under loading/unloading conditions, the steel 

can be idealized as an elastic-perfectly plastic material and its constitutive tension-

deformation relationship in this case is illustrated graphically in Figure 2a. It is assumed that 

the plastification occurs when the stress reaches the yield stress σy. After that, an increase in 

loading causes increase in axial deformation without, however, increasing the stress. In this 

model, the material’s permanent deformation appears after the unloading. Load relief makes 

the material return to the elastic state, remaining, however, with a residual deformation. 

Models that directly simulate the stress-strain relationship are usually applied in 

methodologies based on the plastic-zone method. In this work, the cross-section plasticity 

state, in the same situation, is characterized by the elastic-perfectly plastic model expressed, 

however, in the moment-curvature relationship as shown in Figure 2b. It is worth clarifying 

that the potential benefits from the material hardening (strain-hardening) and the Bauschinger 

effect [6] are ignored in this model. 
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(a) Tension-deformation relation (b) Moment-curvature relation 

Figure 2: Elastic-perfectly plastic constitutive material hysteretic model 

Figure 2b illustrates the section’s behavior during the loading-unloading process through 

its moment-curvature relationship. The section’s material remains elastic along the line 0A 
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under loading conditions. When the plastic moment is reached, Mp = Zσy, Z being the module 

plastic, a plastic hinge is formed and no additional moment can be resisted. So, with the 

increase in loading, and this section already yielded, the exceeded moment will be 

redistributed to adjacent members. As a result, the path continues along the horizontal line 

AB. When unloading occurs at B, the direction of rotation is reversed and the section returns 

to the elastic state, but with a residual deformation. In this case, the curve follows the line BC 

parallel to the virgin slope 0A. If reloaded at point C, the path will move along CB up to reach 

again the plastic moment Mp, and continue along the line BD. With the unloading at point D, 

the path DEF will be followed where the line EF indicates that the negative plastic moment 

(-Mp) has been reached. 

The full yield surface, defining the boundary where the material ceases to behave 

elastically and becomes plastic, will be evaluated from internal acting forces and geometrical 

characteristics of the finite element cross-section. The structure’s resistance limit can be 

achieved with the development of a plastic mechanism, which is the consequence of a number 

of plastic hinges formed. If a structural element is subjected to the combined action of 

bending moment and axial force, its moment capacity Mp is reduced [10]. This influence is 

seen through the full yield surface defined by equations: 

 ( ) ( )( )2 2
2fpr f f w yD tM B t td −= + − η σ  

, para η ≤ d/2 (4a) 

 ( )2 2
2pr f yM BD = − η σ  

, para d/2< η ≤ d/2 + tf (4b) 

with: 

 ( )2 y wtP ση = , para η ≤ d/2 (5a) 

 ( ) ( )2 2y w y fP t d B d− σ ση = + , para d/2< η ≤ d/2 + tf (5b) 

 

 

 

 

 

 

The interaction equations between the axial force and bending moment follow the 

requirements of BS 5950 [12] and are valid for the I or H profiles. The full yield surface for 

the profile W470x74 is exemplified in Figure 3. The axial force and bending moment are 

parameterized, respectively, by axial yield limit, Py = Aσy, and the plastic moment Mp. 

Figure 3 shows how the terms Bf, tf, D, tw and d are defined, which characterize the profile’s 

web and flange dimensions and appear in Eqs. (4) and (5). 
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Figure 3: Reduced plastic moment capacity of I-shaped cross-section under axial load 
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Admitting the material to have elastic-perfectly plastic behavior, it is assumed that a given 

cross-section remains in elastic regime until its plastic resistance is reached. To accompany 

the stiffness loss of the cross-section during the loading/unloading process, a dimensionless 

parameter ψ is adopted. Thus, the development of plasticity in the structure’s cross-section 

members is reflected in the section spring stiffness at the edge of the element, which when 

using ψ, is defined by equation: 

 
6

1
s

EI
S

L

ψ
=

− ψ
 (6) 

It is considered that ψ has the value “1” when the material is in elastic regime, i.e., while 

the section bending moment does not reach the reduced plastic moment Mpr. In this case, 

using (6), the section remains rigid (Ss → ∞), with the plastic rotation null. On the other hand, 

with the section yielding (M = Mpr), ψ reduces to “0” and the section stiffness becomes null 

(Ss → 0), simulating the plastic hinge formation. 

3 SOLUTION PROCEDURE FOR THE TRANSIENT INELASTIC PROBLEM 

The equilibrium equation that governs the nonlinear dynamic response of a structural 

system can be obtained using the Virtual Displacement Principle (VDP). Considering that, 

besides the restoration tensions provoked by structural deformation and external forces, the 

structural system is also submitted to inertial and dissipated forces. The equation to obtain the 

equilibrium of the elements in this system, at time t + ∆t, can be expressed as [13]: 

 
t t t

T
ij ij k k k k k ek

V V V

dV d d dV d d dV d fτ δε + ρ δ + µ δ = δ∫ ∫ ∫     (7) 

where τij represents the Cauchy tensor in equilibrium with external excitation fek; δεij are the 

virtual Green-Lagrange deformation components corresponding to random arbitrary 

displacements δdk, which are cinematically compatible with the boundary conditions; ρ is the 

density or the volumetric mass (mass per volume unit), and µ is the viscous damping 

coefficient of the material. To determine the equilibrium configuration of the structure in 

t + ∆t, the updated Lagrangian referential is used. In this case, the configuration in instant t is 

used as the reference for analysis. 

According to the usual finite element procedures, establishing the deformation field and 

displacement of the elements in function of the nodal displacements and using Eq. (7), it is 

possible to obtain, in a discretized form, the following matrix equation: 

 ( )i rt+ + = λMU CU F F   (8) 

in which M and C are the mass and damping matrices, respectively; U, U  and U , represent 

the displacement, velocity and acceleration vectors, respectively, of the structural system; Fi 

is the internal force vector; Fr is the vector that defines the direction of the external excitation; 

and λ establishes the intensity and direction of the load in a determined instant t. 

In a nonlinear structural study, as is done herein, the stiffness matrix should be constantly 

updated to capture the state of equilibrium influenced by second order effects (P-∆ and P−δ) 

and inelasticity of the material. Afterwards, it becomes necessary to use an incremental-
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iterative solver strategy. For this, a numerical procedure, which combines the methods of 

Newmark and Newton-Raphson, is used here to obtain a nonlinear dynamic response of the 

structural system. The computational steps necessary to achieve this objective are detailed in 

Table 2. Analyzing the numerical procedures adopted, see that the members’ plasticity is 

assessed at the end of each iterative cycle; and the technique described in Section 2 is used for 

simulating the material nonlinear behavior when the structure is subjected to a cyclic loading. 

The computational algorithm is summarized in Table 3. 

Table 2: Numerical strategy for nonlinear transient analysis 

1. Input the material and geometric properties of the frame, and obtain the force vector Fr 

2. Start the initial displacement, velocity and acceleration vectors 0 0,  U U and 0U  

3. Select the time step ∆t 

4. FOR EACH TIME STEP t + ∆t 

4a. Derive the tangent stiffness, mass and damping matrices: K, M, and C 

4b. Using Newmark parameters β and γ, calculate the constants: 

( )2
0 1a t= β∆ ; ( )1a t= γ β∆ ; ( )2 1a t= β∆ ; ( )3 1 12a = −β ; 4 1a = γ β − ; 

( )( )5 12a t= ∆ γ −β ; 6 0a a= ; 7 2a a= − ; 8 3a a= − ; ( )9 1a t= ∆ − γ ; 10a t= α∆  

4c. Form the effective stiffness matrix: 0 1
ˆ a a= + +K K M C  

4d. Calculate: ( ) ( ) ( )2 3 4 5
ˆ t t t t tt t

r ia a a a+∆= λ + + + + −F F M U U C U U F     

4e. Solve for displacement increments: 0ˆ ˆ∆ =K U F  

5. NEWTON-RAPHSON ITERATION: k = 1, 2, 3,... 
5a. Evaluate the approximation of the acceleration, velocities and displacements: 

( ) ( ) ( )1 1
0 2 3

t t t tk ka a a+∆ − −= ∆ − −U U U U   , ( ) ( ) ( )1 1
1 4 5

t t t tk ka a a+∆ − −= ∆ − −U U U U   , and 

( ) ( )1+t t k t k+∆ −= ∆U U U  

5b. Update the geometry of the frame 

5c. Evaluate the internal forces vector: ( ) ( ) ( )1 1t t tk k
i i

+∆ − −= + ∆F F K U  

5d. Form: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )11 1 1kt t k t t t t t t t tt t k k k
r i ps

−+∆ +∆ +∆ +∆ +∆+∆ − − −= λ − + + −R F M U C U F F    

5e. Solve for the corrected displacement increments 
( )ˆ k t t k+∆δ =K U R  

5f. Evaluate the corrected displacement increments: ( )1k kk −∆ = ∆ δU U U+  

5g. Check the convergence of the iteration process: 
k t k∆ ∆ ≤ ξU U U+ , where ξ is a tolerance factor         NO: Go to 5 

5h. Calculate the acceleration, velocities and displacements at time t + ∆t 
( )

0 2 3
t t k k t ta a a+∆ = ∆ − −U U U U   , ( )

1 4 5
t t k k t ta a a+∆ = ∆ − −U U U U    and 

( ) +t t k t k+∆ = ∆U U U  

6. FOR THE NEXT TIME STEP 

6a. Evaluate the internal forces vector: ( )t t t k
i i

+∆ = + ∆F F K U  

6b. Evaluate the plastification at the ends of the finite elements (see Table 4) 
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Table 3: Algorithm for modeling of section behavior under cyclic loading 

1. Consider the internal forces vectors 
(t+∆t)Fi and 

tFi  

2. FOR EACH FINITE ELEMENT 

3. FOR EACH NODAL POINT OF THE ELEMENT 

4. Consider the moments 
(t+∆t)

M  and 
t
M, and the axial force 

(t+∆t)
P at section  

5. Evaluate the incremental moment in this section: ∆M = 
(t+∆t)

M - 
t
M 

6. Consider the reduced plastic yield moment Mpr (see Eq. 4) 

7. If (M ·∆M ≥ 0) then           LOADING CONDITION  

If (|M| < |Mpr|): ψ = 1 and Ss = 10
10

 EI/L (rigid section – elastic behavior) 

If (|M| ≥ |Mpr|): ψ = 0 and Ss = 10
-10

 EI/L (plastic hinge – plastic behavior) 

8. If (M ·∆M < 0) then          UNLOADING CONDITION 

ψ = 1 and Ss = 10
10

 EI/L (rigid section – elastic behavior) 

9. Go to step 4 in Table 2 

4 NUMERICAL APPLICATIONS 

In this section, the methodology presented for nonlinear dynamic analysis is used to obtain 

the response of three planar structural systems with elastic-perfectly plastic material. All 

structures were also investigated by Chan and Chui [6] and their results are used for validation 

of the numerical strategy proposed. No viscous damping was considered and time increments 

of 10
-3

s were adopted in the numerical integration process. 

4.1 Toridis-Khozeimeh portal frame 

The simple portal frame with fixed ends shown in Figure 4, initially studied by Toridis and 

Khozeimeh [14] and subsequently by Marur and Kant [2], is the first example of this section. 

The steel profile masses of the structure members were multiplied by 625 and considered 

concentrated in the elements nodal points following the modeling made by the 

aforementioned authors. Three finite elements were used in the modeling of each of the three 

structural members. 
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Figure 4: Toridis-Khozeimeh portal frame: geometry and loading 
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A constant impact load equal to 444.82 kN is applied on top of the column on the left side 

of the frame, and the transient responses of this structure are presented in Figure 5. Figure 5a 

shows the horizontal displacement time-history at the point of application of the load for the 

perfectly elastic material; and Figure 5b presents the dynamic response considering the 

elastic-perfectly plastic material. Figure 5a also indicates the displacement obtained from the 

static elastic analysis, u = 3.97 cm, which represents half of the maximum amplitude obtained 

in dynamic analysis. Comparing the displacement time-histories for these studies, according 

to Figure 5b, it can be seen that the amplitudes begin diverting more significantly from 0.55s, 

due to the increase of plastic deformations. There is, moreover, a constant movement 

response. In this case, the material exhibits an elastic behavior but with a residual 

deformation. This is a feature of elastic-perfectly plastic model used on this work, and just as 

in the elastic model, it does not allow the dissipation of energy. 

P(t), u
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(a) Elastic response (b) Elastoplastic response 

Figure 5: Time history of the horizontal displacement, u, on top of the frame 

4.2 Steel arch-shaped frame 

The structure shown in Figure 6 is now studied. The curved shape of this structure was 

obtained modeling it with six pieces of steel profile UB305x165x40 kg/m. Besides Chan and 

Chui [6], Lee et al. [5] also investigated the transient elastic-perfectly plastic response of the 

arch but using a bilinear plastic resistance surface.  

Six finite elements, each modeling of the steel parts, were adopted on discretization. The 

steel arch, which has fixed supports, is subjected to an vertical impact load P(t) applied at its 

top (the triangular decaying over time of this vertical load is showed in Figure 6). 

Gravitational loads of intensity 10 kN statically applied and a lumped mass of 0.5 kNs
2
/m 

attached to each node were also considered. The time histories of the vertical deflection at the 

arch top are illustrated in Figure 7. A permanent plastic deformation is observed, and the 

amplitude of displacement becomes virtually constant indicating that the structure remains in 

the elastic regime after 0.012s. 
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Figure 6: Arch-shaped frame: geometry and loading 
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Figure 7: Dynamic elastoplastic response of the arch under impact load 

4.3 Simple portal frame with initial geometric imperfection 

In the last analysis, attention is given to the yield stress effect on the structural response of 

a simple portal frame with pinned supports illustrated in Figure 8. An initial geometric 

imperfection ∆0 in columns was assumed. To predict a more realistic behavior of this 

structure, two heavy gravitational loads of 200 kN acting at the ends of the beam (or at the top 

of the columns) were considered. These loads induce axial forces in columns, and as a 

consequence, additional bending moments appear, reducing the stiffness of these members 

and structural system (P-Delta effect in the analysis). The beam and columns of the frame are 

made by hot-rolled steel profiles W8x48.  

The nonlinear transient frame responses considering the elastic and inelastic (elastoplastic) 

material behavior are illustrated in Figure 8. Yield stress equal to 235 MPa and 260 MPa were 

adopted in the elastoplastic analysis. Figure 8b shows the members’ sections plastic resistance 

surface considered. In Figures 8c and 8d can be observed that the magnitude of plastic 

deformation decreases with the increasing of the material yield stress. In the limit, i.e., for 

σy → ∞, the material would tend to present the elastic behavior, whose results are plotted in 

Figure 8a. 
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Figure 8: Simple portal frame with initial geometric imperfection: geometry and loading pattern 
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Figure 9: Dynamic elastic and inelastic responses of the simple portal frame 

5 FINAL REMARKS AND FUTURE RESEARCH 

This article described a numerical methodology for nonlinear dynamic analysis of steel 

frames. The main feature of the finite element formulation adopted is the consideration of the 

geometric nonlinear effects and the material elastic-perfectly plastic behavior. The plastic 

hinge model was used to evaluate the members’ section yielding. The steel section gradual 

yielding and residual stresses were not considered. Numerical examples presented 
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demonstrated the applicability of the numerical strategy proposed, and the good agreement 

between the results here obtained and those found in literature have validated such strategy. 

It is worth informing that future authors’ research should address the influence of the 

combined effects of geometric nonlinearity, steel inelasticity and semi-rigid connections on 

the nonlinear static and dynamic behavior of steel structures. In these studies, the refined 

plastic hinge model (with steel section gradual yielding), which enables the energy dissipation 

through the plastic hinges, will be adopted. 
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