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Abstract. This paper introduces a general class of neuron models,
accepting heterogeneousinputs in the form of mixtures of continuous
(crisp or fuzzy) numbers, linguistic information, and discrete (either
ordinal or nominal) quantities, with provision also for missing infor-
mation. Their internal stimulation is based on an explicit similarity
relation between the input and weight tuples (which are also hetero-
geneous). The framework is comprehensive and several models can
be derived as instances –in particular, two of the commonly used
models are shown to compute a specific similarity function provided
all inputs are real-valued and complete. An example family of models
defined by composition of a Gower-based similarity with a sigmoid
function is shown to lead to network designs (Heterogeneous Neu-
ral Networks) capable of learning from non-trivial data sets with a
remarkable effectiveness, comparable to that of classical models.

1 INTRODUCTION

Artificial Neural Networks (ANN) [1] have been successfully applied
to a variety of fields –specially to Pattern Recognition– and constitute
a class of models amenable to learn non-trivial tasks from represen-
tative samples. When exposed to a supervised training process, they
build an internal representation of the underlying target function by
combining certain parameterized base functions (PBF), either in lo-
cal models as in Radial Basis Function ANN (RBF) or making up a
global model as in the MultiLayer Perceptron (MLP). In both cases,
the network relies in the representation capacity of the PBF (that is,
of the neuron model) as the cornerstone for a good approximation.

A marked shortcoming of the neuron models existent in the litera-
ture is the difficulty of adding prior knowledge (either of the problem
to be solved or of the data themselves) to the model; a neuron is used
as a mapping from R

n to R. For such a blind processing element,
part of the task is to find a structure in the data, to transform it from
a raw form (possibly in a space of high dimension, only here and
there covered by example cases) to a new space (the hidden space,
or space spanned by the hidden units) in such a way that the problem
is simpler when projected to it. The same processing is repeated for
all the subsequent hidden layers. This is true at least for the most
widespread PBF: that used in the MLP –basically a scalar product
between the input and weight vectors plus an offset, followed by a
squashingfunction– and that used in RBF –a distance metric followed
by a localized response function. The task of the hidden layer(s) is to
find a new, more convenient representation for the problem given the
data representation chosen, a crucial factor for a successful learning
process that can have a great impact on generalization ability [2].

The appealingly simple and general “physical similarity” compu-
tation performed by a neuron working on scalar product or Euclidean
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distance has already been put in doubt as being so general or concep-
tually right in all situations [3]. The term physical similarity is coined
to reflect the fact that this measure interprets the collection of input
variables, whatever they are meant to represent, as the coordinates of
a point in n-dimensional Euclidean space. Patterns �x that are similar
to a neuron with weight vector �w i (becausethe inner product �x � �w i is
high or jj�x� �w ijj is low2) need not be similar in the eyes of the user.
The learning task consists precisely on this: to show the network what
is the actual similarity relation. If this knowledge (assumed relevant)
is supplied to a neural network or included in its design, it will not
have to be discovered. In theory, ANN design follows the principle:

Principle 1.1 Similar patterns should yield similar outputs.

However, what “similar patterns” means is problem-dependent,
and only in counted occasions will coincide with the fixed interpre-
tation of similarity that the network is going to perform. There is a
more basic principle [1] to be satisfied:

Principle 1.2 Similar patterns should have similar representations.

The fulfillment of this principle easies the fulfillment of the former,
although it does not directly imply it, because neuron models will
make use of their own fixed physical measure on the representations.
The transformation to another representation form in which patterns
requiring similar problem responses are indeed similar to one another
for the network is performed, in theory, by the hidden layer(s) in
multilayer networks (Fig. 1). Quoting [3]:

“... if we use a sequence of such transformations [the hidden layers],
each involving certain non-linearities ... we can entirely rearrange the
similarity relations among the original input vectors.”

This view is conceptually right and task-independent. In practice, it
may be that for complex transformations several layers are needed, or
very many neurons per layer if the maximum number of hidden layers
is restricted to one. This gives support to a more precise formulation
of neuron models as similarity computing devices, so that if more
information is implanted into its design –at least for the input layer–
capturing better the required similarity in the input space, the task of
computing the required transformations may be simpler to learn.
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Figure 1. A Neural Network as a similarity transformer: The similarities in
each space should be such that: i� sI�i� i�� captures the original likeness sP

in pattern space, and ii� sI�i� i��� sH�h� h��� sO�o� o��.

� These quantities are functionally related for normalized vectors.



In principle, a feed-forward ANN can represent any mapping to a
desired degree of accuracy in a high-dimensional space. In practice,
a pre-processing scheme is often applied to the data samples to ease
the task. Attention is specially put on continuous variables, usually
(linearly) scaled to the unit interval or to zero-mean, unit standard
deviation. This has beneficial effects by avoiding excessively high
(absolute) weight values, and constitutes a rough means to equal the
initial impact of variables.

In many important domains from the real world, objects are de-
scribed by a mixture of continuous and discrete variables, usually
containing missing information and characterized by an underlying
vagueness, uncertainty or imprecision. For example, in the well-
known UCI repository [4] over half of the problems contain explicitly
declared nominal attributes, let alone other discrete types or fuzzy
information, usually unreported. This heterogeneous information has
to be encoded (or better, cast) in the form of real-valued quantities,
although in most cases there is enough domain knowledge to design
a more specific measure. Without the aim of being exhaustive, the
commonly used methods [5, 2] are the following:

Ordinal variables coded as real-valued or using a thermometer.
Nominal variables coded using a 1-out-of-c or c-1 representation.
Missing information is difficult to handle, specially when the lost

parts are of significant size. It can be either removed (the entire
case) or “filled in” with the mean, median, nearest neighbour or
by adding another input equal to one only if the value is absent.
Statistical approaches need to make assumptions about or model
the input distribution itself [2], or are computationally intensive[6].

Vagueness and uncertainty are considerations usually put aside.

These encodings being intuitive, it is not clear what is the pre-
cise effect on network performance, because of the change in input
distribution, the increase (sometimes acute) in dimension and other
subtler mathematical effects derived from imposing an artificial order
or extending one to an infinite continuum. In the ANN paradigm, the
inherent difficulty of the learning task can be exacerbated by hav-
ing the network to discover the new correlations that stem from an
structured increase in the number of inputs. In all these situations,
the data (and with them, the problem itself) are being adapted to the
neuron model (or, worse, to the learning algorithm), and not other-
wise, as would seem more plausible. A reasonable solution –and the
one followed in this work– is to have, on the one hand, a normalized
neuron computation, instead of normalizing the inputs and, on the
other, the neuron computation is explicitly defined in the form of a
heterogeneous similarity measure.

2 SIMILARITY MEASURES

Let us represent patterns belonging to a space X (of which nothing
is assumed, apart that X �� �) as a vector �xi of n components,
where each componentxij represents the value of a particular feature
(descriptive variable) aj for object i, from a predefined set of features
A � fa�� a�� � � � � ang. A similarity measure is a unique number
expressing how “like” two given objects are, given only the features
in A [7]. Let us denote by sij the similarity between �xi and �xj , that
is, s � X �X � R

� � f�g and sij � s��xi� �xj�.

Definition 2.1 A similarity measure fulfills the following properties:

1. Non-negativity. sij � � 	�xi� �xj 
 X
2. Symmetry. sij � sji 	�xi� �xj 
 X
3. Boundedness. There is a maximum similarity: that of an object

with itself. �smax 
R
� � sij � smax 	�xi� �xj 
 X

4. Minimality (Reflexivity in the strong sense).

sij � smax  �xi � �xj 	�xi� �xj 
 X

5. Semantics. The semantics of sij � sik is that object i is more
similar to object j than is to object k.

A possible (arbitrary) value is to have smax � �. If, in property
(4.), we replace the  by �, so that two different objects can be
assigned smax –as if they were the same object– then we obtain
a pseudo-similarity measure. The way different partial similarities
should be combined to give an overall score is an elusive topic. An
aggregation operator fulfills also a semantic role, as a a means to
express functional or psychological aspects of similarity. Note that
its definition is made easier by the fact that the partial values are, by
definition, normalized. For z 
R�n 
 N� and an operator T , let:

zn�T � �

��
�

z if n � �
T �z� z� � � � � z� �z �

n times

� if n � � (1)

Definition 2.2 Consider a collection of n quantities, grouped as a
vector �s � fs�� s�� � � � � sng� si 
 ��� smax��R.A similarity aggre-
gation operator is a function 	s � ��� smax�

n� ��� smax�, fulfilling:

i) Minimality. 	s��s���� �i � si����	i � si���� 	s��s���.
ii) Symmetry. 	s��s� � 	s����s�� for any ���s� permutation of �s.
iii) Monotonicity. 	s��s� � 	s��s

�� whenever there exists a s i , � �
i � n such that si � s�i � 	j � � � j � n � j �� i � sj � s�j�

iv) Idempotency. For an (arbitrary) si, sni �	s� � si�	n � �. Note
that this specifically includes the boundary values snmax�	s� �
smax and �n�	s� � �. Idempotency implies sn��

i �	s� �
sni �	s��	n � �. A less restrictive condition is the relaxed idem-
potency: (a) Idempotency for boundary values (b) The terms
fsni �	s�gn�� forming a monotonic succession.

v) Cancellation law. 	s�fs�� s�g��	s�fs�� s�g�� s����s��s�.
vi) Continuity. 	s should be continuous in all its arguments so the

reactions to small changes in si are not “jumpy”. It also ensures
that all possible values of 	s��s� can in principle be generated,
that is, 	s � s 
 ��� smax� � ���s

� � s � 	s��s
���.

vii) Compensativeness.	s should be a Cauchy mean, i.e.,

min
i

si � 	s��s� � max
i

si

A Cauchy mean is such that a good (bad) score s i can be compen-
sated by a bad (good) score on another s j .

viii) If some components are missing, the value of 	s��s� is unaffected.

The last two conditions are a way of introducing a specific seman-
tics in the aggregation, and others should be possible. The adopted
semantics in the above definition expresses that:

1. Even small contributions can only add something in favour for the
overall measure;

2. The eventually missing pieces are regarded as ignorance and do
not contribute in favour nor against the overall measure.

Proposition 2.1 A measure s obtained from any such aggregation
operator s � 	s��s�, provided �s � fs�� � � � � sng are also similar-
ities si in Xi, fulfills the properties of Definition (2.1), making s a
similarity measure in X � X� �X� � � � ��Xn.



The following is a valid family of similarity aggregation functions:

	��s
�v� � f��
�

nX
i��

vif�si�

�
(2)

where f is a strictly increasing function f � ��� smax� � ��� smax�
such that f��� � � and f�smax� � smax, and

Pn

i�� vi � �, with
vi � �. Consider f�z� � zm�m 
 N�. Form � �we get a weighted
arithmetic mean, reducing to pure arithmetic average setting vi � �

n
.

Note that nothing is said about the linearity of the resulting mea-
sure. It is useful to introduce a class of functions that –regardless of
its linear or non-linear character– maintains the similarity properties.

Definition 2.3 A similarity keeping function (denoted �s) is a strictly
increasing continuous function �s � ��� smax� � ��� �smax�, �s��� �
�� �s�smax� � �smax � � and �� � �� 	x � � �s�x� � x.

These functions keep (strict) monotonicity when composed to an-
other (strictly) monotonic function and, since every strictly monotonic
function is injective, applied to a measure obtained by aggregation,
the original properties –of particular interest, �iii� vi�– are kept.

Proposition 2.2 Let s be a similarity function in X defined on
��� smax� and �s a similarity keeping function (either linear or non-
linear). Then �s � s is a similarity function in X .

The final piece for constructing general similarity measures is a
transformation operator to obtain a similarity out of a metric distance.
If the original distance is normalized, the definitions can be refined.

Definition 2.4 A similarity transforming function (denoted �s) is
a strictly decreasing monotonic and continuous function �s �
������ ��� smax� such that �s����smax and lim

z���
�s�z���.

Proposition 2.3 Let d be a distance function defined on X and �s a
similarity transforming function (either linear or non-linear). Then
s�x�y� � �s�d�x�y�� is a similarity function in X , for any x� y 
 X .

Proposition 2.4 Let �s� �s be two similarity keeping and transforming
functions. Then �s��s is a similarity transforming function in ��� �smax�.

Proposition 2.5 Let d � X � ��� dmax� be a normalized distance
on X and �s a similarity transforming function. For an �s such that
�s�dmax� � �, the function s�x� y� � �s�d�x� y�� is a similarity in X .

2.1 Heterogeneous similarity measures

All the similarity measures are defined such that smax � �, so to
allow a simpler and more general design of aggregation functions.

2.1.1 Ordinal variables

It is assumed that a linear order exists such that the values of the
variable form a total linearly ordered space. Let �O��� be an ordered
ordinal space and x� y 
 O , with the notation (j � j) for set cardinality.
An equality relation � is assumed so that a strict inequality:

x� � x � x� � x � ��x� � x�

is defined in the usual way. Define now � � O � ���m� � N� as

��x� � jx� 
 O � x� � xj �� x 
 O

Since the order� is linear, this is a bijection. Since every finite set is
well-ordered,O has a first (xf ) and a last element (xl), i.e., elements

such that � �x� 
 O � x� � xf and � �x� 
 O � xl � x�, respectively.
Therefore, ��xf � � �, ��xl� � jOj �m and:

��x�� � ��x�  � x� � succ�x�

where the� holds by definition of � and� by the linear character of
�. Since every subset of a metric space is also metric, we can devise
a distance inO resorting to the standard metric inR, for ��O� �R,
and making use of the fact that � is a bijection. Hence, for x� y 
 O ,
a normalized distance can be obtained as:

d�x�y� �
j��x�� ��y�j

jOj � �

 ��� �� (3)

and, by selecting �s�z� � �� z, s�x� y� � �s�d�x� y�� is a similarity
measure in O (though others are possible). Note that, in a working
implementation, the set O can be safely replaced by ���m� � N� as
long as its elements are not arithmetically operated beyond (3).

2.1.2 Nominal variables

The most basic similarity measure for these variables is the overlap.
LetN be a nominal space and x� y 
 N .

s�x� y� �

	
� if x � y
� if x �� y

(4)

Proposition 2.6 The function defined in (4) is a similarity inN .

2.1.3 Continuous variables

Let x� y 
 � � �r�� r�� � R�r� � r� . The standard metric in R
is a metric in �. A normalized distance can be obtained by setting:

d�x� y� �
jx� yj

supx�y�� jx� yj

 ��� �� (5)

which is the standard distance weighted by the maximum deviation.
Any s�x� y� � �s�d�x� y�� is a similarity measure in �. In particular,
the family �s��z� � ��� zd��� � 	 d � �� 
 � � can be used.

2.1.4 Fuzzy variables

The word fuzzy is viewed in this work taking the epistemic interpre-
tation of a fuzzy set, i.e., as describing the vague observation of a
theoretically crisp object. We begin by defining a basic concept:

Definition 2.5 A fuzzy number in X (the reference set) is a convex
and normalized fuzzy set F , with piecewise continuous �F , such that
��x 
 X � �F �x� � �. Symmetry of �F is not required.

Let Fn�X� be the (crisp) set of all the fuzzy numbers in X ,
where X is assumed a continuum. Since it is unlikely that collected
data come already in a fuzzyfied form, a fuzzyfication process has
to be introduced. In Fuzzy Control, crisp values x�, in absence of
other information, are transformed onto a fuzzy number of the form
�x��x� � ��x � x��. In this work, however, a numerical variable
will be considered a fuzzy number (and treated as such) only if addi-
tional information is available; otherwise it is considered as continu-
ous. One of the forms this information can take is about the reliability
of measured values, which can be translated into the fuzzy number’s
spread. For every x 
 R, let �x be a fuzzy number of a given form
centered at x with a spread proportional to x. The transformation:

�� � x 
 R ��� �x 
 Fn�R� (6)

associates a fuzzy number �x to x as � �x � �	x��
x�� –where x is the
center and��x� the fuzzyness–is the membership function of a fuzzy



number expressing a degreeof uncertainty, an interpretation proposed
by Zadeh when introducing possibility theory [8]. The membership
��x�u� represents the degree of possibility that x has valueu. Domain
knowledge can be added to refine the transformation; e.g., if x comes
from a measuring device known to be biased towards underestimating
the actual value at most a 2%, and overestimating it at most a 1%, a
(non-symmetric) fuzzy number as depicted in Fig. 2 can be derived.

x

Figure 2. Example form for ��x (not to scale).

Given two fuzzy numbers, the question is: how similar are they?
The possibility measure expresses co-occurrence or simultaneity of
two vague propositions, with a value of one standing for absolute
certainty. For two fuzzy sets �A� �B possibility is defined as:

� �A�
�B� � sup

u�X

�� �A� �B�u��

where � �A� �B�u� � min �� �A�u�� � �B�u��. Note that this measure
is symmetric, in the sense� �A�

�B� � � �B�
�A�.

Proposition 2.7 Given X�Y 
 Fn����� � R, and making use of
the transformation in (6), the function s � Fn����Fn��� � ��� ��
defined as:

s�x� y� � ����x� �y� (7)

where����x� �y� � ��x��y�, is a similarity measure in Fn���.

Proof: Since s � �����, non-negativity and boundedness conditions (with
smax � �) are easily met. There is also symmetry and a clear semantics.
Minimality is met because, given ��x� is the same function for all x � R, it
holds that x � y � �x � �y � 	���x� �y� � �.

2.1.5 Linguistic variables

The integration of numeric and qualitative information —the latter
in the form of fuzzy sets— has been pointed out to have several
advantages in the framework of pattern recognition. The addition of
linguistic features to express vaguenessboth in the input patterns and
in the inner workings of the system itself can lead to new architectures
with enhanced expressiveness and flexibility. This approach consid-
ers variables by means of linguistic terms (words in the most basic
situation). Since words are less precise than numbers, this approach
enables the use of vague information, in cases where a precise quan-
tity is unknown or there is a need or convenience to abstract it out.
Among the possible forms such a fuzzy set can take, the most popular
are the trapezoidal and bell-shaped. Let supp�F � denote the support
of a fuzzy set F and let �R�denote the set of all finite and closed real
intervals: �R� � f�a� b� �R a� b 
R�a 	 bg.

Definition 2.6 A fuzzy quantity inRis a convex normalized fuzzy set
F with continuous �F such that supp�F � 
 �R�.

Let Fq�X� be the (crisp) set of all the fuzzy quantities in X (note
that a fuzzy number is a unimodal fuzzy quantity). Given �A� �B 

Fq����� 
 R, with support sets � �A�� �B 
 �, define their ratio as:

r� �A� �B� �

R
� �A
	� �B

� �A� �B�u�duR
� �A
	� �B

� �A	 �B�u�du
(8)

This is the continuous version of a measure between general fuzzy
sets [9]. For fuzzy quantities, it allows for a reasonably accurate
assessment of similarity. It can be regarded as a generalization of a

measure for crisp sets A�B 
 �R�, in which a value either belongs or
not to the interval. The step to fuzzy sets makes the integral operator
necessary. Note that, although (7) could in principle be applied, its
behaviour in some cases (whenever�fx 
 X� �A� �B�x� � �g � �)
makes it unfit as a similarity index (it does not fulfill minimality).

Proposition 2.8 Given �A� �B 
 Fq����� 
 �R�, the function s �
Fq����Fq ���� ��� �� defined as in (8), for �� �min�� � max�,
is a similarity in Fq���.

Proof: Symmetry, non-negativity and boundedness conditions (with
smax � �) hold. There is also a clear semantics. Minimality is met because,
as in crisp sets, the property �A � �B � �A � �B � �A � �B holds.

It is a design decision –involving the existence of a continuous sub-
strate and enough domain knowledge– which variables are amenable
to be treated as linguistic and which as ordinal. A complete coverage
and a correct degree of overlapping should be ensured.

2.2 A Framework for General Neuron Models

An heterogeneous space, denoted �Hn, is defined as the Cartesian
product of a number n of source sets, as follows. Let X 
�� � X� �
� � � � X� denote the Cartesian product with X 
�� � �. Consider
now a collection of extended sets �R�� � � � � �Rnr , where �Ri � Ri �
fXg�Ri 
 �R�, and � � i � nr . Consider also collections of
extended sets �O�� � � � � �Ono , with �Oi � Oi � fXg� � � i � no,
where each Oi is a finite and linearly ordered set, and of extended
sets �N�� � � � � �Nnn , with �Ni � Ni � fXg� � � i � nn, where
eachNi is a finite and unordered set. Consider now the collection of
nf extended families of fuzzy sets of the form �F�� � � � � �Fnf , where
�Fi � Fi �fXg�Fi � Fq��i���i 
 �R�, and � � i � nf . Note that
Fn��i� � Fq��i�. In all cases, the extension is given by the special
symbolX , which denotes the unknown element (missing information)
for which only equality is defined and behaving as an incomparable
element w.r.t. any ordering relation. In these conditions, set:

�Hn � �R
nr� � �O
no� � �N 
nn� � �F 
nf � (9)

with n � nrnfnonn � �. According to (9), the elements of
�Hn are general tuples of n components: real numbers, fuzzy numbers

or quantities, ordinals, nominals and missing data. We call such a
structure an heterogeneous space.

Definition 2.7 Given �x 
 �Hn, an heterogeneousneuronor s-neuron
with weight vector �w i is a function of the form:

Fi��x� � fs��x� �w i�� �w i 
 �Hng (10)

with s a similarity or pseudo-similarity measure in �Hn.

An ANN making use of s-neurons is an Heterogeneous Neural
Network or HNN. For complete data, by setting �Hn �Rn �n � nr�,
the standard neuron models –included in the above definition– are
proven [10] to compute a similarity measure under mild conditions3.

A basic but very useful heterogeneous measure can be devised
using a Gower-like similarity index [11], an additive (2) similarity
aggregation operator of (3), (4), (5) for d � �

� � 
 � �, (7) and (8) as:

sG��xi� �xj� �

Pn

k�� s�xik� xjk� �ijkPn

k�� �ijk
(11)

where �ijk���xik ��X �xjk ��X � is a binary function expressing
whether the objects are comparable or not according to variable k.
This treatment respects the adopted semantics by handling what is
not known in a way it does not affect the known values.

� Proofs for the rest of Propositions can also be found therein.



Due to the existence of domains other than the real continuum, the
presence of missing data and the eventual use of a non-differentiable
s function, the general training procedure for the HNN is based on a
BreederGenetic Algorithm (BGA) [12, 13], a method in mid position
between Genetic Algorithms (GA) and Evolution Strategies. While in
GA selection is stochastic and meant to mimic Darwinian evolution,
BGA selection is driven by a deterministic breeding mechanism,
an artificial method in which only the best individuals —usually a
fixed percentage � of total population size �— are selected to be
recombined and mutated, as the basis to form a new generation. In
addition, the BGA as used here does not need any coding scheme.

3 AN EXPERIMENTAL COMPARISON

A number of experiments are carried out to illustrate the validity of
the approach. Five data sets are used, (Pima Diabetes, Horse Colic,
Credit Card and Solar Flares taken from [5], Sinus Exp from [13])
chosen as representatives because of their richness in data types.
The last problem has continuous variables only, Solar Flares has not
any, and the other three display a mixture of variables, and varying
percentagesof missing information. They are all displayed in Table 1.

Table 1. Some basic characteristics of the data sets. #P: number of cases,
%Def: default accuracy. The last column shows data heterogeneity.

Name Type #P %Def missing In�Out Data
Pima C 768 65.1% 10.6% 8� 2 6R, 0N, 2I
Credit C 690 55.5% 0.65% 15� 2 6R, 9N, 0I
Colic C 364 61.5% 26.1% 20� 3 7R, 4N, 9I
Flares R 1066 - 0.0% 9� 3 0R, 5N, 4I
Sinus R 500 - 0.0% 2� 1 2R, 0N, 0I

C classification R regression R real N nominal I ordinal

For every data set, the available documentation is analysed to clas-
sify the variables as real, nominal, ordinal or integer, fuzzy number
or linguistic. Originally missing information is also identified. For
instance, there are two ordinal variables in Pima Diabetes (number
of times pregnant and age in years) while many of the attributes
have zero values that are physically impossible (e.g. diastolic blood
pressure or body mass). Except for Sinus Exp, a logistic activation is
applied to (11). The corresponding data set for the real-valued neurons
is constructed using the mentioned techniques. Specifically, ordinals
mapped to an equidistant linear scale, 1-out-of-c coding for nominal
and an additional input for those variables with missing values.

All of the tested models use exactly the same experimental en-
vironment, in which everything is kept constant except the neuron
model itself. The network architecture is fixed to one single layer
of 8 neurons plus as many output neurons as required by the task,
sigmoidal for classification problems and linear otherwise. The input
variables are normalized to ��� ��. This is not needed by the hetero-
geneous neurons because they compute a normalized measure, but
is beneficial for the standard models. The output is not normalized.
The weights (including biases and standard deviations) for the clas-
sical models are let to vary in ����� ���, a sufficiently wide range
given the normalization chosen; the same interval is used for the
hidden-to-output weights in all the networks. The BGA is set to the
following parameters: � � ���� � � ��, EIR recombination with
� � ����, and continuous mutation with � � ���� k � �. This setting
has been proven useful in the context of ANN optimization [13]. For
each data set n � �� independent runs are performed using the hold-
out method, as follows. The original data set is split in three parts,
for training (TR), validation (VA) and test (TE), 50-25-25 except for
Sinus (20-20-60). The BGA task is to minimize MSE (mean square
error) on the TR part, until 40,000 error evaluations are used –i.e. end
of resources– in each run. We present performance results in Table 2.

Table 2. Mean performance results for the tested neuron models. Mean
(best) accuracy is shown where appropriate.
MLP RBF HNN

Name TR TE TR TE TR TE

Pima 0.1374 0.1527 0.1825 0.1712 0.1077 0.1669
81.0 (83.3) 78.3 73.7 (75.3) 77.4 86.2 (88.5) 76.8

Credit 0.0455 0.1751 0.1579 0.1867 0.0697 0.1318
95.4 (97.1) 79.6 79.0 (80.6) 73.0 91.9 (93.6) 81.7

Colic 0.0597 0.1927 0.1435 0.1523 0.0584 0.1565
86.3 (93.4) 66.3 67.5 (72.5) 67.7 90.3 (94.0) 68.9

Flares 0.2060 0.3925 0.2688 0.2439 0.2650 0.3017
Sinus 0.3189 0.3677 1.4526 1.8594 0.1814 0.2451

Approximation ability is computed as the final MSE on the TR part
and generalization measured as the MSE on the TE part, using the net
with lowest MSE on the VA part. This is the simplest approach to the
comparison of different networks and it does not involve excessive
computational overhead. It has been followed also to evaluate both
approximation and generalization ability. Generalization errors in
boldface are significant under a Mann-Whitney test [14] against the
best of the other two models, at the 95% confidence level.

4 CONCLUSIONS
We have presented a general class of neuron models suited for he-
terogeneous pattern recognition. The rationale behind the approach
consists in respecting the nature of the data and endowing the neuron
models with an explicit similarity measure. The resulting networks
are shown to learn from complex data sets in a satisfactory way.
A preliminary studied model had been applied to a real problem in
Environmental Sciences [15] with encouraging results.
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