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Abstract. Simulation of any physical process requires definition of the physical model, 
method – analytical or numerical, to solve the set of equations describing the physical model 
and the parameters expressing the body properties and boundary conditions. This paper focus 
on two latter aspects of the numerical simulation process. Precise determination of the model 
quantities are crucial for high quality of the model predictions and accurate reflection of real 
system. Determination of the process parameters is defined as an inverse problem. Following 
this the sensitivity analysis is applied as the preliminary step of the inverse analysis to reduce 
the number of model evaluations and to increase the inverse calculations robustness and 
efficiency. Sensitivity analysis techniques show how "sensitive" is a model to its input 
parameters variations and to changes of the model structure. As the example the sensitivity 
analysis was applied to the 2D DC borehole resistivity measurements simulation problem 
solved with hp-Finite Element Method. 

1 INTRODUCTION 
Modeling of any physical problem requires precise quantitative information of the model 

parameters. Some of them are derived from physical laws, others are of phenomenological 
nature. Proper physical and mathematical description of the problem as well as selection of 
the solution method and accurate estimation of the model parameters are crucial for the high 
quality of the modeling results. The paper focuses on the problem of model parameters 
estimation and the efficient methods to determine the parameters.  

Most problems describing physical phenomena related to identification of some quantities 
are defined as inverse problems [1],[2]. Those problems are hard to solve due to non-unique 
solution and the lack of the model output stability with respect the identified parameters. 
Another aspect is efficiency of the identification. Models of physical phenomena are based on 
differential equations and solved with time consuming numerical methods (e.g. finite element 
method, finite volume method, particles method). All those features motivate to develop the 
robust parameter identification method of high efficiency with respect to the calculation time. 
Classical inverse method was developed and applied by the Author to identify rheological 
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material properties [3]–[5]. One of the main disadvantages of that approach is calculation 
time. The idea of the modified inverse method is to supply the classical algorithm with 
sensitivity analysis as the preliminary step of the solution to decrease the calculation time. As 
the application example problem of DC (direct current) borehole resistivity measurements is 
analyzed. 

2 PROBLEM FORMULATION 

2.1 Direct and inverse problem 
Integral or differential equations describing any physical phenomena are set out in terms of 

functional analysis as: 

:K X Y→  (1) 

where X and Y are normed spaces and K is a mapping (linear or nonlinear).  
The direct problem is formulated as evaluating y = K(x) ∈ Y for given x ∈ X and an 

operator K that is equivalent to solve a boundary value problem for differential equation or to 
evaluate an integral. The inverse problem is defined as evaluating the x ∈ X value for given K 
and y ∈ Y [1],[2]. 

It could be shown that inverse problems described as the integral/differential equations are 
ill-posed in the sense of Hadamard [6]. Those problems require regularization procedure and 
one of the solution is transforming them to the following, well-posed, problems: 

2x Kx y−  (2) 

The form (2) leads to minimization with respect to the parameters, which are identified: 
boundary conditions parameters or material parameters. In terms of optimization terminology, 
the inverse problem is to find the minimum of the objective function: 

( ) 2
:x Kx yδΦ = −  (3) 

where yδ is the perturbated (measured) data such that || ||y yδ δ− ≤ , y ∈ K(X) – exact solution of 
equation (1).  
The objective function (3) depends on the norm in the Y space, if it is supplied with Euclid’s 
norm, the objective function is defined as an average square root error (the Euclidean distance) 
between calculated and measured quantities. 
Equation (1) can be expressed as: 

( )* *x I aK K x aK y= − +  (4) 

where K* is adjoint operator and a>0 is the a number. 
For equation (4) the iteration procedure scheme : 

( )
0

* 1 *

: 0

, 1, 2,...m m

x

x I aK K x aK y m−

=

= − + =
 (5) 
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leads to the solution of the inverse problem described by (2). The general flow chart of the 
inverse analysis algorithm is presented in figure 1. Regardless of the process type inverse 
problem and independently of the applied method of the solution, the algorithm consists of three 
parts: 
• The set of process outputs measured in the experiments (real or virtual). 
• Solver of the direct problem (in most cases of high computation cost). 
• Optimization procedure of objective function. The objective function is defined as a 

distance between measured and calculated model outputs in the selected space norm or it 
can be Pareto set. Either gradient and non-gradient or bio-inspired optimization algorithms 
are applied to determine the minimum of the objective function. 

 

Figure 1: Inverse analysis flow chart. 

2.2 Sensitivity analysis 
Sensitivity analysis allows to assess the accuracy of the model of the analyzed system or 

process, determine the parameters which contribute the most to the output variability, indicate 
the parameters which are insignificant and may be eliminated from the model, evaluate these 
parameters which interact with each other, determine the input parameters region for 
subsequent calibration space [7],[8]. 

The steps of the sensitivity analysis are as following: 
• Sensitivity measure. The measure expresses the model solution (model output) changes to 

the model parameter variation.  
• Selection of the parameter domain points. Design of experiment techniques are commonly 

used to select the lower number of points guaranteed searching whole the domain. 
• Method of sensitivities calculation. The sensitivities are estimated by global indices or by 

local ones. 
The information obtained from sensitivity analysis is applied to the inverse method: 

• To verify if the objective function is well defined – it means if it is possible to estimate the 
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parameters, which are looked for, based on the information included in the objective 
function. In case of no sensitivity or low sensitivity of the objective function to the 
parameter changes, the parameter identification cannot be performed and the objective 
function hast to be transformed to another form including verification of the model output 
space norm. 

• As the preliminary step – to select the starting point/the first region of interest or the first 
population for optimization algorithm. 

• Optimization process – to construct the hybrid algorithms (e.g. the combination of a 
genetic algorithm to select local minima and a gradient method to explore those minima) 
or modified algorithms (e.g. the particle swarm procedure enriched with the local 
sensitivities information [9]) to increase the procedure efficiency.  

In this work the model output was defined as the Euclidean distance to exact logging 
curve. To points selection Latin hypercube  sampling (LHS) was used. The sensitivities were 
defined as the first order local sensitivities estimated using partial derivatives.  

2.3 2D DC borehole resistivity measurements problem 
Computational domain. The problem geometry was described as 2D problem of plane 

coordinates (x,y). The following materials were used (figure 2a):  
• borehole: a subdomain 0Ω  of width 10 cm ( ){ }0 , : 0cm 10cmx y xΩ = ≤ ≤  with 

resistivity 0 0.1 mρ = Ω⋅ , 
• upper and lower formations (no. 1 and 4): a subdomains 1 5,Ω Ω  defined by 

( ){ }1 , :10cm , 3mx y x yΩ = < ≤ , ( ){ }5 , :10cm , 2mx y x yΩ = < < −  with resistivity 

1,4 1000 mρ = Ω⋅ , 

• formation no. 2: a subdomain 2Ω  defined by ( ){ }1 , :10cm , 2m 3mx y x yΩ = < ≤ <  
with resistivity 2 5 mρ = Ω⋅ , 

• formation no. 3: a subdomain 3Ω  defined by ( ){ }3 , :10cm , 0m 2mx y x yΩ = < ≤ <  
with resistivity 3ρ , 

• formation no. 4: a subdomain 4Ω  defined by ( ){ }4 , :10cm , 2m 0mx y x yΩ = < − ≤ <  
with resistivity 4 1 mρ = Ω . 

Variational problem formulation. Find Vu∈  the electrostatic scalar potential such that: 

( ) ( )

( )

( )

2

1

2

1

,

,

N

i i i

i i

b u v l v v V

u vb u v dx
x x
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x

σ
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=Ω Γ

= ∀ ∈

∂ ∂
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∂ ∂

∂
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∂

∑∫

∑∫ ∫

 

(6) 

where 
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( ) ( )2 22 : : tr 0 on DV v L v v dx v
Ω

⎧ ⎫
= ∈ Ω + ∇ < ∞ = Γ⎨ ⎬
⎩ ⎭

∫  
(7) 

and J denotes a prescribed, impressed current source, σ is the conductivity, and the 
electrostatic scalar potential u is related to the electric field E by E u= −∇ . More information 
of DC borehole resistivity measurements problem is presented in [10]. 
The direct problem formulated by equations (6) is solved using automatic hp-Finite Element 
Method software (for detail description see [11],[12]). An example of the hp adaptive 
computations is presented in figure 2b. 

  
Figure 2: a) The 2D geometry of 3D DC borehole resistivity measurements problem. The rock formation is 

composed of five different layers of various resistivities, b) Automatic hp-adaptive solver – a solution example. 

3 CALCULATIONS 

Inverse calculations. The objective function in the inverse method for DC borehole 
logging curve measurements was defined as the Euclidean distance between measured and 
calculated values: 

( ) ( ) 2

1

1 mN
i i

m
i i

u u
N u=

⎛ ⎞−
Φ = ⎜ ⎟

⎝ ⎠
∑

a
a  (8) 

where u is the potential of electrical field, a – vector of identified parameters, N – number of 
measured points along the logging curve, m index – measured value.  
The measurement values of electrical field potential um were generated for the problem 
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described in the chapter 2.3 and the resistivity ρ3 = 200 Ω·m for Ω3 layer and next randomly 
perturbated. 
In general case vector a is of the form: 

{ }, ,j jhρ α=a  (9) 

where ρj, hj – resistivity and height of the jth layer, respectively, α – deviation angel of the 
well from perpendicular,  j = 1…nf, nf – the number of formation layers. 

As yet inverse calculations were performed using hierarchical genetic searching [13],[14] 
with respect to some resistivities and the angel. Since the results of estimation were sufficient, 
the computations have been very time-consuming. The idea was to performed sensitivity 
analysis to investigate the parameters domain and to develop more efficient searching 
algorithm.  

Calculation time depends on the assumed accuracy of hp-FEM solver. The accuracy of hp-
FEM modeling is defined as the difference between coarse-grid and fine-grid solution in the 
quantity of interest. To increase the efficiency of the calculations some simulations of the 
process were performed with various accuracies. The calculations were carried out with the 
computer of two 3 GHz processors and 8 GB RAM, the times are shown in table 1. The 
accuracy of 10-2 was taken for further investigations.  

Table 1: Relation between hp-FEM accuracy and the execution time of the solution. 

hp-FEM accuracy Execution time 
10-5 5h 21min 40s 
10-4 3h 30min 
10-3 1h 4min 15s 
10-2 20min 24s 
10-1 9min 40s 

1 3min 52s 
10 2min 26s 

100 2min 17s 
1000 2min 19s 

 
Sensitivity analysis. The sensitivity measure was expressed as derivatives of the objective 

function (8) and estimated though Taylor series expansion: 

( ) ( ) ( )
2 1

2

1

nf

i
i i

a
a

+

=

∂Φ
Φ +∆ = Φ + ∆ +Ο

∂∑a a a a  (10) 

where ( )2Ο a  residue is neglected.  

As the result the first-order local sensitivities are obtained { } { }/i is a= = ∂Φ ∂S . 
Current investigations were focus on the resistivity coefficient ρ and the sensitivity 

analysis was performed with respect to that parameter: / ρ∂Φ ∂ .  
The domain for the resistivity was specified as [ ]0.1,1000ρ ∈  Ω·m. To provide uniform 

but random covering of the interval, points were generated by LHS with equal probability for 
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each subinterval. To evaluate numerical computations of / ρ∂Φ ∂  the value of ∆ρ was 
assumed as 5% and 10% of ρ resistivity. 

In figure 3 the logging curves calculated for various values of resistivity are presented. The 
changes of the goal function are shown in figure 4a and the results of sensitivities estimations 
– in figure 4b. 

 
Figure 3: Logging curves of DC borehole resistivity problem: a) all formers layers, b) focus of one of the layer 

with curves obtained for various resistivity parameters.  

a) 

 

b) 

 

Figure 4: a) Objective function computed for various resistivities, b) Sensitivity of the objective function with 
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respect to the resistivity parameter. 

4 DISCUSSION 
Computations of the inverse calculations objective function sensitivities were performed 

for the resistivity screening the parameter domain. For resistivity values higher than 50 Ω·m 
the electrical field potential changes are not significant (see figure 3b). Similar behavior is 
observed for the objective function (figure 4a): the values are high for small resisitivties, close 
to zero for exact solution (200 Ω·m) and next they a little increase but are still low. The 
sensitivities are close to zero all over the interval except narrow interval of the exact solution 
(figure 4b). Such distribution of the objective function and the sensitivities effect the 
optimization procedure hard to performed using conventional optimization algorithms.  

The investigations were performed for the resistivity of the one layer. In real systems the 
identification consists of several resistivities and the heights of the layers (vector a, equation 
(9)), consequently the objective function (8) is multimodal function of high sensitivities with 
respect to the resistivities close to the problem solution, remaining area is of low sensitivities.  

The results of current investigations are guidelines for two optimization strategies: 
• Hierarchical genetic searching (or another bio-inspired optimization algorithm) to 

select local minima and next application of the gradient method to explore the local 
minima, 

• Application of design of experiment method (LHS or screening design) to select a set 
of points, for which objective function is computed with hp-FEM model and next, 
based on the those accurate results, generating fast metamodel using one of the 
approximation method (e.g. response surface algorithm) or neural network, and 
performing inverse calculations with investigated, fast model. 

Both the strategies are expected to increase the efficiency of the inverse calculations in 
terms of computation time. 

5 CONCLUSIONS 
In that work application of the sensitivity analysis to the hard inverse problem as the 

preliminary step of the computations was proposed. As the example inverse problem of DC 
borehole resistivity measurements was formulated. The sensitivities were defined locally and 
expressed using Taylor series expansion. The set of the points that sensitivities were estimated 
for, was generated with design of experiment algorithm. The guidelines for the inverse 
optimization procedure were developed. The accuracy of the hp-FEM solution of the direct 
model in relation to the inverse problem objective function was analyzed as well. 

The obtained results of calculations, as the first attempt, are the basis to develop efficient 
optimization procedures with sensitivity analysis application to solve hard inverse problem: 
hybrid methods or algorithms with metamodels. Another way to decrease the number of the 
solver evaluations is to modify the objective function by including the information of the 
sensitivities. All above aspects will have been investigated. 
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