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Abstract. An improved accuracy analysis of elastoplastic integration algorithms is pre-
sented and proposed in this paper. The notion of the well–established isoerror maps is
extended and polar plots are constructed for a wide range of stress points, algorithmically
selected in the principal stress space. The selection of the stress points is independent of
the yield surface and therefore a general procedure is obtained. The individual maps are
then joined together to produce a complete view of the accuracy assessment of the stress
update algorithm. The proposed procedure is validated in a characteristic multisurface
yield criterion.

1 INTRODUCTION

Within the context of computational plasticity it is desirable that the stress update
algorithms employed at the Gauss point level should be sufficiently accurate for strain
increments as large as possible in order to ensure that the global finite element solution
remains within reasonable bounds of accuracy for large load increments. Therefore, accu-
racy assessment of elastoplastic integration algorithms under finite steps becomes crucial.

A systematic approach to accuracy analyses of elastoplastic algorithms have been first
developed by Krieg and Krieg [1] who constructed isoerror maps on a strain controlled ho-
mogeneous problem investigating the behaviour of integration algorithms for the Huber–
von Mises perfectly plastic model. Although this technique should not be regarded as a
replacement of a rigorous accuracy and stability analysis, it have been proved very effec-
tive and is generally accepted as a reliable tool for the accuracy assessment of integration
algorithms [2].

Standard accuracy assessment employing isoerror maps follows a typical pattern. For
a given yield surface, a range of possible stress points that reside on the surface and
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correspond to different stress states (eg. uniaxial loading, biaxial loading, pure shear
stress etc.) must be identified. A sequence of yield surface and position dependant,
normalized strain increments is then applied at each individual stress point and the error
between the computed and the exact solution is obtained and plotted [3].

Clearly the accuracy assessment following the above procedure is a rather tedious work,
which depends on the correct identification of all possible states, is limited only in the
vicinity of these states and differs considerably in each yield surface.

In this paper an improved accuracy analysis of elastoplastic integration algorithms is
presented and proposed. The isoerror maps are constructed for a wide range of stress
points, algorithmically selected in the principal stress space. The selection of the stress
points is independent of the yield surface and therefore a general procedure is obtained.
The individual maps are then used together to produce a complete view of the accuracy
assessment of the stress update algorithm. The proposed procedure is validated in the
Mohr–Coulomb yield criterion.

2 METHODOLOGY

Let P (ρ, θ, z) denote a point in a cylindrical coordinate system and assume a tran-
formation that maps P to the Haigh–Westergaard stress space [4] as shown in Fig. 1,
i.e.

T : (ρ, θ, z) → (σ1, σ2, σ3) (1)

where σi are the principal stresses.
Now assume that the stress state corresponding to point P defines a trial stress state,

i.e. P ≡ σtrial. Within the context of perfect plasticity, a scalar function f : S → ℜ is
defined, which goes by the name yield function and constrains the admissible stresses to
lie in the so called elastic domain, such as:

Eσ := {σ ∈ S|f(σ) ≤ 0} (2)

If σtrial violates the constraint defined by the yield function then a plastic correction is
needed in order to bring back the trial state in the boundary of Eσ, namely ∂Eσ . From
a numerical standpoint, a typical choice would be a fully–implicit integration algorithm,
which will approximate the solution, yielding a stress state σapprox on ∂Eσ.

However, it has been proved [5, 6] that a fully–implicit scheme tends to provide the
exact solution σexact of the problem when σtrial is divided into a sufficiently large number
n of subincrements. Thus an error estimate can be defined as:

ǫ(%) = 100×

√

(σexact − σapprox) : (σexact − σapprox)
√
σexact : σexact

(3)

Therefore, one has to define a suitable search space V for (ρ, θ, z) and apply the error
estimate for sufficiently large value of n, as described in algorithm 1.
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Figure 1: An arbitrary stress state P .

3 APPLICATION

The above proposed methodology is applied in what follows to the Mohr–Coulomb
yield criterion.

3.1 The Mohr–Coulomb yield criterion

The Mohr–Coulomb yield criterion is frequently acknowledged as one of the first and
most important criteria, widely used to describe the yield behavior of a wide range of
materials. It is defined by six linear surfaces in the principal stress space (Fig. 2(a)),
assuming however and without any loss of generality that σ1 ≥ σ2 ≥ σ3, only the following

Algorithm 1 Construction of improved isoerror maps.

for z ∈ [z0, z1, . . .] do
for θ ∈ [−π/6, π/6] with step dθ do
for r ∈ [r1, r2] with step dr do
transform (z, r, θ) to (σ1, σ2, σ3)
Find σapprox

Find σexact using n subincrements
Find error ǫ

end for
end for

end for
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Figure 2: The Mohr–Coulomb yield criterion.

three surfaces (Fig. 2(b)) can describe the elastic domain:

f1(σ1, σ2, σ3) = (σ1 − σ3) + (σ1 + σ3) sin(φ)− 2c cos(φ) (4)

f2(σ1, σ2, σ3) = (σ2 − σ3) + (σ2 + σ3) sin(φ)− 2c cos(φ) (5)

f3(σ1, σ2, σ3) = (σ1 − σ2) + (σ1 + σ2) sin(φ)− 2c cos(φ) (6)

For the problem examined next an associative flow rule is assumed. The elastic prop-
erties are characterized by E = 1000, ν = 0.25 while cohesion and internal friction angle
are given as c = 15 and φ = 20◦.

3.2 The return mapping scheme

The return mapping scheme used here is thoroughly examined in [7, 8] and implemented
in [9]. It is based on a spectral representation of stresses and strains and a return mapping
scheme in principal stress directions. Because of the linearity of the yield surfaces in the
principal stress space the return mapping reduces to a one step closest–point projection.

3.3 Accuracy assessment

For the accuracy assessment of the above implementation, it is chosen that z =
[0.,−10., . . . ,−50.], ρ = [0.01, 0.02, . . . , 100.] and θ = [30◦, 40◦, . . . , 90◦]. As described
in the algorithm 1, for a fixed z and θ both the σapprox and σexact are recovered, the latter
assuming a division into 1000 subincementations.
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The results, along with the corresponding elastic domains for the given deviatoric plane,
are plotted in Fig.3.3.
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Figure 3: Isoerror maps for the Mohr–Coulomb yield criterion.

4 CONCLUSIONS

An improved accuracy analysis of elastoplastic integration algorithms is presented and
proposed in this paper. The notion of the well–established isoerror maps is extended and
polar plots are constructed for a wide range of stress states spreading over the principal
stress space. The main advantages of this approach is that the selection of the stress
states leads to a procedure that:

- is yield surface–agnostic,

- does not depend on the integration algorithm and

- is able to cover the entire range of possible stress states.
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Contrary to typical isoerror maps, the individual equipotential diagrams produced are
joined together and plotted in polar coordinates as to generate a complete picture of the
accuracy assessment of the stress update algorithm. The proposed procedure is validated
in a characteristic multisurface yield criterion, namely the Mohr–Coulomb yield criterion,
composing an intuitive view of the selected integration scheme’s accuracy.
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