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quadratic programming problem which has the same structure and variables of a standard
return mapping by closest point projection scheme, i.e. it is decoupled and it can be solved
at a local level (finite element, Gauss point). The solution of the equality constraint
problems is performed by means of a static condensation of the locally defined variables,
that is stress and plastic multiplier parameters, for which the inter element continuity
is not required so obtaining at the global level a nonlinear pseudo-compatible scheme of
analysis that has the same structure as classic path following arc-length methods.

The numerical results are performed for plane stress/strain problems using both von
Mises and Drucker-Pragher yield functions and adopting the finite element interpolation
proposed in [4]. This finite element uses a three field interpolation and requires a multi-
surface return mapping solution in the SD-CPP case, representing a good test for the
robustness and efficiency of the incremental elastoplastic algorithm proposed here. A
large number of numerical results performed for both single or multi–surface elastoplastic
cases shows the great improvement in robustness and efficiency with respect to standard
return mapping strain driven formulations.

The presentation and the application are limited to the perfect plasticity case but its
extension to other more complex associated cases would be simple.
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Abstract. This paper illustrates how to implement effectively solvers for elasto-plastic
problems. We consider the time step problems formulated by nonlinear variational equa-
tions in terms of displacements. To treat nonlinearity and nonsmoothnes we use semis-
mooth Newton method. In each Newton iteration we have to solve linear system of
algebraic equations and for the numerical solution of the linear systems we use TFETI
algorithm. In our benchmark we compute von Misses plasticity with isotropic hardening
and use return mapping concept.

1 INTRODUCTION

The goal of paper is to show how to implement effectively solvers for elasto-plastic prob-
lems. Such problems with hardening lead to quasi-static initial-boundary value problems,
so the history of loading is taken into account. The problems are often solved by an
incremental finite element method, see e.g [1]. For the time-discretisation we can use the
explicit or implicit Euler methods or the return mapping concept. Each time-step problem
may be formulated in different ways by variational equalities or inequalities described in
terms of stress, plastic strain, hardening parameter, and displacements. In this paper, we
consider the time-step problems formulated by nonlinear variational equations in terms of
displacements. To treat nonlinearity and non-smoothness we use the semismooth Newton
method introduced in [2] and used in [3] for elasto-plastic problems.

In each Newton iteration we have to solve an auxiliary (possibly of large size) linear
system of algebraic equations. The key idea of our approach is to use for the numerical
solution of the linear systems arising in each Newton step the FETI method with optimal
convergence properties proposed by Farhat et al. [4] for parallel solution of linear prob-
lems. Using this approach, a body is partitioned into non-overlapping subdomains, an
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elliptic problem with Neumann boundary conditions is defined for each subdomain, and
intersubdomain field continuity is enforced via Lagrange multipliers. The Lagrange multi-
pliers are evaluated by solving a relatively well conditioned dual problem of small size that
may be efficiently solved by a suitable variant of the conjugate gradient algorithm. The
first practical implementations exploited only the favorable distribution of the spectrum of
the matrix of the smaller problem, known also as the dual Schur complement matrix, but
such algorithm was efficient only with a small number of subdomains. Later, Farhat, Man-
del, and Roux introduced a “natural coarse problem” whose solution was implemented
by auxiliary projectors so that the resulting algorithm became in a sense optimal [4]. In
our approach, we use the Total-FETI [5] variant of FETI domain decomposition method,
where also the Dirichlet boundary conditions are enforced by Lagrange multipliers. Hence
all subdomain stiffness matrices are singular with a-priori known kernels which is a great
advantage in the numerical solution and also in the theory.

The paper is organized as follows. After introducing a model problem, we briefly
review the TFETI methodology that transforms the large primal problem in terms of
displacements into the smaller and better conditioned dual one in terms of the Lagrange
multipliers whose conditioning is further improved by using the projectors defined by the
natural coarse grid. Then we introduce a modification of the conjugate gradient algorithm
for the solution of the resulting quadratic programming problem with equality constraints
enforced by the orthogonal projector onto the subspace defined by the constraints. Futher
we briefly review the elasto-plasticity methodology for von Mises plasticity with isotropic
hardening. We illustrate the efficiency of our algorithm on the solution of 3D elasto-plastic
model benchmark and give encouraging results of numerical experiments.

2 PROBLEM OF ELASTOSTATICS

Let us consider an isotropic elastic body represented in a reference configuration by a
domain Ω in R

d, d = 2, 3, with the sufficiently smooth boundary Γ as in Fig. 1. Suppose
that Γ consists of two disjoint parts ΓU and ΓF , Γ = ΓU ∪ΓF , and that the displacements
U : ΓU → R

d and forces F : ΓF → R
d are given. The mechanical properties of Ω are

defined by the Young modulus E and the Poisson ratio ν.
Let cijkℓ : Ω → R

d and g : Ω → R
d denote the entries of the elasticity tensor and a

vector of body forces, respectively. For any sufficiently smooth displacement u : Ω → R
d,

the total potential energy is defined by

J(u) =
1

2
a(u,u)−

∫

Ω

g⊤u dΩ−

∫

ΓF

F⊤u dΓ, (1)

where

a(u,v) =

∫

Ω

cijkℓeij(u)ekℓ(v)dΩ, ekℓ(u) =
1

2

(
∂uk

∂xℓ
+

∂uℓ

∂xk

)

.

We suppose that the elasticity tensor satisfies natural physical restrictions so that

a(u,v) = a(v,u) and a(u,u) ≥ 0. (2)

2
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ΩΓU

ΓF

ΓF

ΓF

Figure 1: Model problem

Now let us introduce the Sobolev space V = H1(Ω)d and let K denote the set of all
kinematically admissible displacements, where K = {v ∈ V : v = U on ΓU}. The
displacement u ∈ K of body in equilibrium satisfies

J(u) ≤J(v) for any v ∈ K. (3)

Conditions that guarantee existence and uniqueness may be expressed in terms of coer-
civity of J . More general boundary conditions, such as prescribed normal displacements
and periodicity, may be considered without any conceptual difficulties.

3 TFETI DOMAIN DECOMPOSITION

To apply the TFETI domain decomposition, we tear body from the part of the bound-
ary with the Dirichlet boundary condition, decompose body into subdomains, assign each
subdomain a unique number, and introduce new “gluing” conditions on the artificial
intersubdomain boundaries and on the boundaries with imposed Dirichlet condition.

More specifically, the body Ω is decomposed into a system of s homogeneous isotropic
elastic subdomains, each of which occupies, in a reference configuration, a subdomain Ωp

in R
d, d = 2, 3. After decomposition each boundary Γp of Ωp consists of three disjoint

parts Γp
U , Γ

p
F , and Γp

G, Γ
p = Γ

p

U ∪ Γ
p

F ∪ Γ
p

G, with the corresponding displacements Up

and forces Fp inherited from the originally imposed boundary conditions on Γ. For the
artificial intersubdomain boundaries, we use the following notation: Γpq

G denotes the part
of Γp that is glued to Ωq and Γp

G denotes the part of Γp that is glued to the other
subdomains. Obviously Γpq

G = Γqp
G . An auxiliary decomposition of the problem of Fig. 1

with renumbered subdomains and artificial intersubdomain boundaries is in Fig. 2. The
gluing conditions require continuity of the displacements and of their normal derivatives
across the intersubdomain boundaries. The mechanical properties of Ωp are defined by
the Young modulus Ep and the Poisson ratio νp.

Let cpijkℓ and gp denote again the entries of the elasticity tensor and a vector of body

forces, respectively. For any sufficiently smooth displacement u : Ω
1
× . . .×Ω

s
→ R

d, the

3
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total potential energy is defined by

J (u) =

s∑

p=1

{

1

2
ap(up,up)−

∫

Ωp

(gp)⊤updΩ−

∫

Γp

F

(Fp)⊤updΓ

}

, (4)

where

ap(up,vp) =

∫

Ωp

cpijkℓe
p
ij(u

p)epkℓ(v
p)dΩ, epkℓ(u

p) =
1

2

(
∂up

k

∂xp
ℓ

+
∂up

ℓ

∂xp
k

)

.

We suppose that the bilinear forms ap satisfy (2) and let us introduce the product Sobolev
space V = H1(Ω1)d×. . .×H1(Ωs)d , and let K denote the set of all kinematically admissible
displacements, where K = {v ∈ V : vp = Up on Γp

U , vp = v|Ωp
}. The displacement

u ∈ K of the system of subdomains in equilibrium satisfies

J (u) ≤J (v) for any v ∈ K. (5)

Ω
Ω1 Ω2

Ω3 Ω4

H h

λ

Figure 2: TFETI domain decomposition with subdomain renumbering

The finite element discretization of Ω = Ω
1
∪ . . . ∪ Ω

s
with a suitable numbering of

nodes results in the quadratic programming (QP) problem

1

2
u⊤Ku− f⊤u → min subject to Bu = c, (6)

where K = diag(K1, . . . ,Ks) denotes a symmetric positive semidefinite block-diagonal
matrix of order n, B denotes an m× n full rank matrix, f ∈ R

n, and c ∈ R
m.

The diagonal blocks Kp that correspond to the subdomains Ωp are positive semidefinite
sparse matrices with known kernels, the rigid body modes. The blocks can be effectively
decomposed using the Choleski factorization [6]. The vector f describes the nodal forces
arising from the volume forces and/or some other imposed traction.

4
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The matrixB with the rows bi and the vector c with the entries ci enforce the prescribed
displacements on the part of the boundary with imposed Dirichlet condition and the
continuity of the displacements across the auxiliary interfaces. The continuity requires
that biu = ci = 0, where bi are vectors of the order n with zero entries except 1 and −1
at appropriate positions. Typically m is much smaller than n.

Even though (6) is a standard convex quadratic programming problem, its formulation
is not suitable for numerical solution. The reasons are that K is typically ill-conditioned,
singular, and very large.

The complications mentioned above may be essentially reduced by applying the duality
theory of convex programming (see, e.g., Dostál [7]), where all the constraints are enforced
by the Lagrange multipliers λ. The Lagrangian associated with problem (6) is

L(u,λ) =
1

2
u⊤Ku− f⊤u+ λ⊤(Bu− c). (7)

It is well known [7] that (6) is equivalent to the saddle point problem

L(u,λ) = sup
λ

inf
u

L(u,λ). (8)

4 OPTIMAL SOLVERS TO EQUALITY CONSTRAINED PROBLEMS

The solution of (8) leads to equivalent problem to find (ū, λ̄) ∈ R
n × R

m satisfying:

A

(
u
λ

)

=

(
f
c

)

(9)

with the saddle-point matrix

A :=

(
K B⊤

B 0

)

.

We suppose that (9) is uniquely solvable which is guaranteed by the following necessary
and sufficient conditions [8]:

KerB⊤ = {0}, (10)

KerK ∩ KerB = {0}. (11)

Notice that (10) is the condition on the full row-rank of B. Let us mention that an
orthonormal basis of KerK is known à-priori and that its vectors are columns ofR ∈ R

n×l,
l = n− rank(K).

The first equation in (9) is satisfied iff

f −B⊤λ̄ ∈ ImK (12)

and
ū = K†(f −B⊤λ̄) +Rᾱ (13)

5
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for an appropriate ᾱ ∈ R
l and arbitrary generalized inverse K† satisfying KK†K = K.

Moreover, (12) can be equivalently written as

R⊤(f −B⊤λ̄) = 0. (14)

Further substituting (13) into the second equation in (9) we arrive at

−BK†B⊤λ̄+BRᾱ = c−BK†f . (15)

Summarizing (15) and (14) we find that the pair (λ̄, ᾱ) ∈ R
m × R

l satisfies:

S

(
λ

α

)

=

(
d
e

)

, (16)

where

S :=

(
BK†B⊤ −BR
−R⊤B⊤ 0

)

is the (negative) Schur complement of K in A, d := BK†f − c, and e := −R⊤f . As both
S and A are simultaneously invertible [8], we can compute first (λ̄, ᾱ) by solving (16)
and then we obtain ū from (13). Let us note that (16) has formally the same saddle-point
structure as that of (9), however, its size is considerably smaller.

Before discussing the solution method for (16) we introduce new notation

F := BK†B⊤, G := −R⊤B⊤

which changes (16) into
(

F G⊤

G 0

)(
λ

α

)

=

(
d
e

)

. (17)

Now we shall split (17) using the orthogonal projector PG onto KerG. As (11) implies
that G is of full row-rank, we can identify PG with the following matrix:

PG := I−G⊤(GG⊤)−1G.

Applying PG on the first equation in (17) we obtain that λ̄ satisfies:

PGFλ = PGd, Gλ = e. (18)

In order to arrange (18) as one equation on the vector space KerG we decompose the
solution λ̄ into λ̄Im ∈ ImG⊤ and λ̄Ker ∈ KerG as

λ̄ = λ̄Im + λ̄Ker . (19)

Since λ̄Im is easily available via

λ̄Im = G⊤(GG⊤)−1e,

6
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it remains to show how to get λ̄Ker . Substituting (19) into (18) we can see that λ̄Ker

satisfies:
PGFλKer = PG(d− Fλ̄Im ), λKer ∈ KerG. (20)

Let us note that this equation is uniquely solvable, as PGF : KerG �→ KerG is invertible
if A is invertible [8]. Finally note that, if λ̄ is known, the solution component ᾱ is given
by

ᾱ = (GG⊤)−1G(d− Fλ̄). (21)

Let us algorithmically summarize the previous results. It turns out to be reasonable to
form and store the l×m matrix G and the l×l matrix H := (GG⊤)−1 because l is usually
small (the Cholesky factor of GG⊤ may be used instead of H). On the other hand, the
m × m matrices F and PG are not assembled explicitly, since only their matrix-vector
products are needed. Finally note that the actions of B are inexpensive in our problems
due to sparsity of B and the actions of K† are computed effectively by the Cholesky
factorization of Kp, p = 1, ..., s ([6]). All the above steps are summarized in the following
algorithmic scheme.

Algorithmic scheme

Step 1.a: Compute G := −R⊤B⊤, H := (GG⊤)−1, d := BK†f − c, and
e := −R⊤f .

Step 1.b: Compute λ̄Im := G⊤He.

Step 1.c: Compute d̃ := d− Fλ̄Im .

Step 1.d: Compute λ̄Ker by solving PGFλKer = PGd̃ on KerG.
Step 1.e: Compute λ̄ := λ̄Im + λ̄Ker .
Step 2: Compute ᾱ := HG(d− Fλ̄).
Step 3: Compute ū := K†(f −B⊤λ̄) +Rᾱ.

Finally, we introduce the projected conjugate gradient method with preconditioning
(ProjCGM) [4] that we use for computing λ̄Ker in Step 1.d of Algorithmic scheme. Thus
we want to compute λ̄Ker by solving the system PGFλKer = PGd̃ on KerG with the
lumped preconditioner F−1 [4] to F.

Algorithm ProjCGM

1. Initialize

r0 = d̃, λ0
Ker

= o.

2. Iterate k =1, 2, ..., until convergence

Project wk−1 = PGr
k−1.

Precondition zk−1 = F−1wk−1.

Project yk−1 = PGz
k−1.

7
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βk = (yk−1)⊤wk−1/(yk−2)⊤wk−2; (β1 = 0).

pk = yk−1 + βkpk−1; (p1 = y0).

αk = (yk−1)⊤wk−1/(pk)⊤Fpk.

λk
Ker

= λk−1
Ker

+αkpk.

rk = rk−1 −αkFpk.

3. λ̄Ker = λk
Ker

.

Using TFETI in combination with ProjCGM algorithm we are able to find the solution
of the original elasto-plastic problem in O(1) matrix-vector multiplications independently
of the problem size provided the ratio between the decomposition step H and the dis-
cretization step h is kept bounded. For more details about optimality see [4].

5 ELASTO-PLASTICITY

Elasto-plastic problems are the so-called quasi-static problems where the history of
loading is taken into account. We consider the von Mises elasto-plasticity with the strain
isotropic hardening and incremental finite element method with the return mapping con-
cept [1].

The elasto-plastic deformation of an body Ω after loading is descibed by the Cauchy
stress tensor σ, the small strain tensor ε, the displacement u, and the nonnegative hard-
ening parameter κ. Symmetric tensor is represented by the vector and its deviatoric part
is denoted by the symbol dev.

Let us denote the space of continuous and piecewise linear functions constructed over
a regular triangulation of Ω with the discretization norm h by Vh ⊂ V , where V =
{
v ∈ H1(Ω)d : v = 0 on ΓU

}
. Let

0 = t0 < t1 < . . . tk < . . . < tN = t∗ (22)

be a partition of the time interval [0, t∗]. Then the solution algorithm after time and space
discretizations has the form:
Algorithm 3.

1. Initial step: u0
h = 0, σ0

h = 0, κ0
h = 0,

2. for k = 0, . . . , N − 1 do (load step)

3. From previous step we know: uk
h, σk

h, κk
h and compute △uh, △σh, △κh

△εh = ε(△uh), △uh ∈ Vh, (23)

△σh = Tσ(σ
k
h, κk

h, △εh), (24)

△κh = Tκ(σ
k
h, κk

h, △εh). (25)

8
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4. Solution △σh(σ
k
h, κk

h, ε(△uh)) is substituted into equation of equilibrium:
∫

Ω

△σT
h (σ

k
h, κk

h, ε(△uh))ε(vh)dx = �△fkh , vh�, ∀vh ∈ Vh. (26)

This leads to a nonlinear system of equations with unknown △uh which is solved
using the Newton method. The linearized problem arising in each Newton step is
solved by TFETI algorithmic scheme proposed above.

5. Then we compute values for the next step: uk+1
h = uk

h + △uh, σk+1
h = σk

h +
△σh, κk+1

h = κk
h +△κh.

6. enddo

Above we consider the following notation. Let C denote the Hook’s matrix, E represent
linear operator dev, µ, λ be the Lamé coefficients, △fkh be the increment of the right hand
side and σt

h = σk
h +C△εh. For return mapping concept we define

△σh = Tσ(σ
k
h,κ

k
h,△εh) = TRM

σ (σk
h,κ

k
h,△εh) =

=

{
C△εh if P (σt

h,κ
k
h) ≤ 0,

C△εh − γRn̂ if P (σt
h,κ

k
h) > 0,

(27)

△κh = Tκ(σ
k
h,κ

k
h,△εh) = TRM

κ (σk
h,κ

k
h,△εh) =

=

{
0 if P (σt

h,κ
k
h) ≤ 0,

γz = γR�Cp�−1z if P (σt
h,κ

k
h) > 0,

(28)

where

γR = 3µ
3µ+Hm

√
2
3

(√
3
2
�dev(σt

h)� − (Y0 +Hmκ
k
h)
)

=

= 3µ
3µ+Hm

√
2
3
P (σt

h,κ
k
h),

(29)

n̂ =
dev(σt

h)

�dev(σt
h)�

, �Cp� = 2µ

√

3

2
, z = 1, (30)

and plasticity function

P (σt
h,κ

k
h) =

√

3

2
�dev(σt

h)� − (Y +Hmκ
k
h), Y,Hm > 0. (31)

The function γRn̂ is semismooth and potential. The derivative of TRM
σ is

(TRM
σ )

′

(△ε) = C− 2µ 3µ
3µ+Hm

[E+

+
√

2
3

Y0+Hmκ
k
h

�dev(σk
h
+C△ε)�

(
dev(σk

h
+C△ε)(dev(σk

h
+C△ε))T

�dev(σk
h
+C△ε)�2

−E
)]

.

(32)

9
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If we represent a function vh ∈ Vh by the vector v ∈ R
n and omit index k then (26)

can be rewritten as the system of nonlinear equations

F (△u) = △f , (33)

where
�F (v),w� =

∫

Ω
�TRM

σ (ε(vh)), ε(wh)�dx, ∀v,w ∈ R
n

�△f ,w� = △fh(vh), ∀w ∈ R
n.

(34)

6 NUMERICAL EXPERIMENTS

Described algorithms were implemented in MatSol library [9] developed in Matlab
environment and tested on solution of 3D problems.

Let us consider a 3D plate with a hole in the center (due to symmetry only a quatre of
the whole structure is used) with the geometry depicted in Fig. 3. Boundary conditions
are specified in Fig. 4. Symmetry conditions are prescribed on the left and lower sides of
Ω. The surface load g(t) = 450 sin(2πt) [MPa], t ∈ [0, 1

4
] [sec], is applied to the upper side

of Ω. The elasto-plastic material parameters are E = 206900 [MPa], ν = 0.29, Y = 450,
Hm = 100 and the time interval [0, 1

4
] [sec] is divided into 50 steps. We consider a mesh

with 5489 nodes and 19008 tetrahedrons. The body Ω is decomposed into 20 subdomains.
In the nth Newton iteration we compute an approximation △un by solving the con-

strained linear problem of the form

min
B△un=o

1

2
(△un)⊤Kn△un − (△un)⊤ △fn

using the TFETI algorithmic scheme proposed above. We stop the Newton method in
every time step if �△un+1 −△un�/ (�△un+1�+ �△un�) is less than 10−6.

Notice that the maximum number of the Newton iterations is small for all time steps
(less than 7), therefore the method is suitable for the problem. In the following figures,
we depict plastic and elastic elements, graph of maximum value of hardenining at each
time step and von Mises stress in the xy plane cross-section with the z coordinate 0 [mm]
corresponding to the surface of Ω. In Figs. 5, 6, we see which elements are plastic (gray
color) and which are elastic (white color) in chosen time steps. Particularly, in time steps
1-12 we observe only elastic behavior, and in time steps 13-50 plastic behavior of some
elements. The maximum value of hardenining at each time step is depicted in Fig. 7.
The von Mises stress distribution on deformed mesh is showed in Fig. 8.

7 CONCLUSIONS AND GOALS

We have presented an efficient algorithm for the numerical solution of elasto-plastic
problems. These problems lead to the quasi-static problems, where each nonlinear and
nonsmooth time step problem is solved by the semismooth Newton method. In each
Newton iteration we solve an auxiliary (possibly of large size) linear system of algebraic

10
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Figure 3: 3D plate geometry in [mm]
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Figure 4: 2D plate geometry in [mm]
and boundary conditions

Figure 5: Plastic and elastic elements after
35 time steps

Figure 6: Plastic and elastic elements after
50 time steps
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Figure 7: Maximum values of hardening in
time iterations
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Figure 8: Von Mises stress distribution on
the deformed mesh (scaled 10x)
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equations using in a sense optimal algorithm based on our Total-FETI variant of FETI
domain decomposition method. We illustrated the efficiency of our algorithm on the
solution of 3D elasto-plastic model benchmark and gave results of numerical experiments.
The results indicate that the algorithm may be efficient. In the future we would like to
adapt this approach to the solution of contact problems.
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