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Abstract. A new method for the incremental analysis of elastoplastic associated materi-
als is presented. The method fully retains all the equations and variables of the problems
at the same level and uses a sequential quadratic programming with equality constraints
to solve in an efficient and robust fashion the elastoplastic step equations derived by means
of a suitable mathematical programming formulation of the problem. The new proposal is
compared with standard strain driven formulations which use a return mapping by closest
point projection schemes. The numerical tests performed show a good performance and
a great robustness of the proposed formulation also in the case of multi–surface elasto-
plasticity.

1 INTRODUCTION

The finite element incremental elastoplastic analysis is commonly performed by means
of a strain driven (SD) step by step procedure in which each step implements a return
mapping strategy. The latter is based on the formulation of a finite step holonomic equa-
tion obtained from the irreversible incremental elastoplastic laws by using an integration
process which evaluates all the quantities at the end of the step starting from the known
values at the beginning of the step and from a prescribed value of the displacement field
(strain driven). Among the available integration processes the backward–Euler scheme is
the most used.

In standard FEM implementations, the plastic flow rule and consistency conditions are
solved exactly and, for an assigned value of the displacements, the return mapping process
imposes these equations for each Gauss point of the element. The major advantage of
this approach is that the inequality constraints arising from the constitutive laws are
eliminated from the step equations using the closest point projection scheme which solves
a small optimization problem on each Gauss point of the finite element, so defining the
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stress parameters in terms of the displacement ones. The finite step equations are so
transformed into a nonlinear system of equations, without inequalities, easily solved by
means of standard arc–length strategies. The global description of the algorithm is always
performed in terms of displacement variables alone.

The use of descriptions based on displacement variables alone would not be the best
choice and potentially more efficient and robust analysis algorithms could be obtained by
directly solving the finite step equations, maintaining all the variables of the problems at
the same level. Few attempts in this direction have been made and, among these we recall
the use of nonsmooth Newton methods proposed by Cristiansen [1] or the use of interior
point methods to solve an optimization problem exactly equivalent to the elastoplastic
step of Krabbenhoft et al. [2].

In this work a new algorithm for the FEM elastoplastic analysis of structures is pre-
sented. The proposed algorithm uses the stress, displacement and plastic multiplier pa-
rameters introduced in the discretized form of the problem as primary variables. Adopting
the mathematical programming point of view, which allows the use of a theoretically ro-
bust environment now endowed with several efficient solution algorithms, a sequential
quadratic programming (SQP) formulation is proposed to solve the problem. All the
equations describing the finite step are solved at the same level using an equality con-
straints sequential quadratic programming (EC-SQP) [3] which exploits the particular
structure of the equations of the elastoplastic step in order to improve efficiency also for
large dimensional problems. In particular an equality constrained sequential quadratic
programming (EQ-SQP) is employed. The algorithm is subdivided in two phases: i) a
suitable estimate of the active constraints at the current iteration is performed employ-
ing the closest point projection scheme; ii) the solution of a quadratic programming that
retains only the active constraints is performed. In this way the solution of each QP
problem is far easier than the general case and it also makes it possible to deal with
very large dimension problems. In particular the solution of the QP subproblem can be
performed after condensation of the locally defined quantities (stresses and plastic mul-
tipliers) so maintaining, at the global level of analysis, a pseudo compatible system that
has the same structure used in standard elastoplastic analysis. The overall algorithm has
then the same organization as standard SD-CPP ones and only a few modifications of the
existing codes are required to implement the present proposal.

The finite elements used are of mixed type, see [4], but plastically enriched in order
to work well also in the elastoplastic field. They are based on a three field interpolation
and are so well suited for the application of the proposed algorithm. They also allow
the new formulation to be tested in a more severe multi-surface case. The numerical
results show how a great improvement in terms of robustness is achieved with respect
to the standard SD-CPP algorithms. The proposed algorithms can painlessly undergo
large steps sizes or singular yield conditions while the SD-CPP approach shows serious
convergence difficulties or, also with respect to small step sizes, line search addiction is
mandatory to obtain convergence.
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2 THE DISCRETE EQUATIONS FOR THE ELASTOPLASTIC STEP

In the following, the elastoplastic step equations are derived by a backward Euler
integration process and then are rewritten in terms of discrete algebraic expressions by
introducing the finite element description. The chosen FEM format is based on the general
three field interpolation presented in [4] but any other more usual finite element format
could be considered by assigning the appropriate meaning to the discrete parameters used
in the following.

2.1 The elastoplastic step equations for the continuum body

The nonlinear response of an elastoplastic body Ω subjected to bulk load b and tractions
t, increasing proportionally to a scalar multiplier λ, can be evaluated by using a standard
step-by-step strategy based on the incremental computation of a sequence of discrete
points along a time/loading process. In the following we will denote with a superscript
(n− 1) the quantities relative to the current instant/load in which the solution is known
and with a superscript (n) the unknown quantities at the new instant. The stress σ(n)

and the plastic multiplier γ(n) are evaluated by performing a time integration of the
constitutive laws once the displacement field u(n) at the end of the step is assigned. In
this way the path–dependent elastoplastic behavior is transformed into a sequence of
finite holonomic steps. In particular using a backward-Euler time integration scheme and
omitting from now on the dependence of quantities on x for an easier reading, the n-th
finite step equations can be written, using a standard vector notation, as follows:

Compatibility:






D∆u = C−1∆σ +∆γ
∂ϕ

∂σ

�
�
�
�
n

in Ω,

u(n) = ū on ∂Ωu;

Admissibility and consistency:

ϕ[σ(n)] ≤ 0 , ∆γ ≥ 0 , ∆γϕ[σ(n)] = 0.

(1a)

The symbol ∆(·) = (·)n−(·)n−1 will denote, from now on, the difference between quantities
in (n) and (n− 1), C−1 the elastic compliance operator, D the compatibility operator, ϕ
the convex yield function and ū the prescribed displacement on ∈ ∂Ωu. In the previous
equations and from now on the finite increment of plastic strain is evaluated using an
associated flow rule.

The holonomic finite step is then completed with the equilibrium equations:
{

DTσ(n) + λ(n)b = 0 in Ω,

nσ(n) = λ(n)t on ∂Ωt

(1b)

where n is the matrix collecting the normal to the loaded boundary ∂Ωt.
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2.2 The weak form of the finite step equations

Following [5], the finite step equations (1a) can be rewritten in a weak form as
∫

Ω

δσT

(

C−1∆σ −D∆u+∆γ
∂ϕ

∂σ

�
�
�
�
n

)

= 0 ∀δσ, (2a)

∫

Ω

δγϕ[σ(n)] = 0 ∀δγ ≥ 0, (2b)

where Eq. (2b) expresses, in a weak sense, the plastic admissibility condition for the ma-
terial. In a similar fashion the weak statement of the equilibrium condition (1b) becomes

∫

Ω

(Dδu)T σ(n) − λ(n)

(∫

Ω

δuTb+

∫

∂Ωt

δuT t

)

= 0 ∀δu. (2c)

Finally, the use of a path–following Riks algorithm to solve the step equations, requires
the introduction of the arc–length parameters ∆ξ(n). The following definition can be
exploited

δλ

(∫

Ω

∆uTb+

∫

∂Ωt

∆uT t−∆ξ(n)
)

= 0 ∀δλ. (2d)

2.3 The FE finite step equations

Following [4] where more details can be found, we adopt a finite element formulation
based on the interpolation of three fields: displacement, stress and plastic multiplier.
These interpolations can be expressed as:

u := Nde σ := Sβe γ := Gκe, (3)

where N , S and G are the matrices containing the interpolation functions and de, βe and
κe are the vectors collecting the finite element parameters. The non–negativeness of the
interpolation functions G allows the condition γ ≥ 0 to be easily expressed by making
κe ≥ 0, where, from now on, vector inequality will be considered in a componentwise
fashion. Moreover an important aspect which will allow the nonlinear algorithm to be
casted in the format described in the following regards the continuity order of the assumed
interpolations, in particular the displacement field has to be capable of assuring the inter-
element continuity while σ and γ can be defined locally inside the element.

From now on we omit reporting the superscript ()(n) that defines the step.

2.3.1 Local equations

On the basis of the interpolations we obtain the discrete counterpart of the flow rule,
plastic admissibility and consistency condition

{

rσ ≡ He∆βe −Qe∆de +Ae[βe]∆κe = 0

rµ ≡ Φe[β
(n)
e ] ≤ 0, ∆κe ≥ 0, ∆κT

e Φe[β
(n)
e ] = 0,

(4)
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where Ae[βe] represents the discrete form of the plastic flux direction and is defined by

Ae[βe] :=

∫

Ωe

ST ∂ϕ

∂σ
[βe]G

while the discrete operators

Qe :=

∫

Ωe

STDN He :=

∫

Ωe

STC−1S (5)

are the usual compatibility/equilibrium and elastic flexibility matrices respectively and

Φe[βe] :=

∫

Ωe

GTϕ[βe], (6)

corresponds to the element representation of the yield function and it depends on the final
value of the stress parameters. As Eqs. (4) are expressed in terms of quantities locally
defined on the element, or at the Gauss points for standard finite element interpolations,
they will be denoted from now on as local equations.

2.3.2 Global equations

The discrete form of the equilibrium equations and the arc length condition to be used
in the numerical solution of the problem are:

Ae

{
QT

e βe − λpe

}
= 0, , Ae

{
∆dT

e pe

}
= ∆ξ, (7)

Ae being the standard assembling operator which takes into account the inter–element
continuity conditions on the displacement field and

pe :=

∫

Ωe

NTb+

∫

∂Ωe

NT t (8)

is the element load vector. For the sake of the following discussion eqs.(7) can be rewritten
as {

ru ≡ QTβ − λp = 0

rλ ≡ ∆dTp−∆ξ = 0,
(9)

where β, d and p denote the global vectors collecting all the stress parameters βe, the
displacement parameters de and the applied loads pe.

5



1334

Antonio Bilotta, Leonardo Leonetti and Giovanni Garcea

2.4 The mathematical programming point of view

Noting that

Ae[βe] :=

(
∂Φe[βe]

∂βe

)T

each finite step is characterized by the set of nonlinear equalities and inequalities defined
by Eqs. (4) and (9) which represent the first order conditions of the following nonlinear
convex optimization problem:

maximize ∆ξ(n)λ(n) − 1

2

∑

e

(∆βe)
THe∆βe,

subject to QTβ(n) = λ(n)p

Φe[β
(n)
e ] ≤ 0 ∀βe.

(10)

Assuming this point of view the actual solution strategy can be implemented on the basis
of a nonlinear programming technique suitable for solving (10).

Note how more standard finite element formulations based on the numerical integration
on the Gauss points could be easily framed inside the optimization problem defined by
Eq. (10), by considering the quadratic terms of the objective function as the result of
the sum of the contributions of the Gauss points of each element while the admissibility
condition is imposed on each Gauss point.

3 A NEW SOLUTION SCHEME FOR ELASTOPLASTIC ANALYSIS

In the following section we will present an application of the SQP method to solve
Eq. (10). The algorithm exploits the problem structure allowing its solution at the global
level by means of a Newton (Riks) scheme which is characterized by minimal implemen-
tational differences with respect to standard SD-CPP formulations.

3.1 The linearized equations for the elastoplastic step and the sequential
quadratic programming (SQP) formulation

The estimate of the unknowns relative to the new step, z(n) = {λ(n),β(n),d(n),κ(n), },
will be denoted by zj+1 = zj + ż where, in order to make the notation simpler, the
superscript relative to the step number has been dropped leaving only the indication for
the current j–th iteration. The starting point for the new algorithm is the linearization
of the finite step equation (10) which yields the local equations (4) again, i.e.

{

−Hetβ̇
j
+Qeḋ−Aj

eκ̇e = −rj
σ,

Φj+1
e ≤ 0 , κj+1

e ≥ 0 , (κj+1
e )TΦj+1

e = 0.
∀e (11a)

Where

Het ≡ He +
∑

k

κj
ek

∂2Φek

∂β2
e

�
�
�
�
βe=βj

e

, Aj =
∂Φe

∂βe

�
�
�
�
βe=βj

e

,
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κj
ek and Φek are the kth components of κj

e and Φe[β
j
e] respectively, and

Φj+1
e ≡ Φe[β

j
e] + (Aj

e)
T (βj+1

e − βj
e) = Φe[β

j
e] + (Aj

e)
T β̇e.

Moreover, the linearization of the global finite step equations (9) gives:

{

QT β̇ − λ̇p = −ruj,

− ḋ
T
p = −rλj.

(11b)

Eq. (11) could also be obtained by applying a sequential quadratic programming (SQP)
approach to (10) obtaining

maximize ∆ξ λ̇−
∑

e

(

β̇e

T
He∆βj

e −
1

2
β̇

T

e Hetβ̇e

)

subject to QT β̇ − λ̇p+ rj
u = 0,

(Aj)T β̇ +Φe[β
j] ≤ 0,

(12a)

whose solution gives the new estimate zj+1 in the form

zj+1 = {λj + λ̇,βj + β̇,dj + ḋ,κj+1}. (12b)

However the solution of the QP sub-problems (12a) with a standard SQP algorithm
requires however a great computational effort due to the coupling action exerted by the
equilibrium constraints. A method to efficiently solve Eq. (11) or problem in (12a) will
now be examined.

3.2 The EC-SQP formulation

First the SQP problem in (12) is solved by using an equality constraint sequential
quadratic programming (EC-SQP) approach [3]. Each iteration of the EC-SQP approach
consists of two phases: i) estimation of the active set of constraints; ii) solution of an
equality constrained quadratic program that imposes the apparently active constraints
and ignores the apparently inactive ones. The idea is to identify the active constraints for
the actual estimate of the solution using information available at a point near to zj+1, a
point which in the sequel will be denoted by z̄j+1.

3.2.1 The detection of the active set of constraints

The estimation of the active constraints is performed by advocating the decomposition
point of view, i. e. solving an optimization problem obtained by the original ones (11a) for

a fixed, properly assumed, value of the displacements d̄
j+1

= dj. The series of decoupled
problems obtained in this way have the same form as a standard CPP scheme and it can

7
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be easily solved at the local element level in a way as efficient as, or also more, than the
standard SD-CPP approach.

At the iteration j + 1 then the active set of constraints is obtained by solving (11a)
assuming d̄j+1 ≈ dj and so ḋ = 0. The result is a problem that is now decoupled at the
local level, i. e. {

−Het
˙̄βj
e −Aj

e
˙̄κe = −rj

σ,

Φj+1
e ≤ 0 , κ̄j+1

e ≥ 0 , (κ̄j+1
e )TΦj+1

e = 0,
∀e (13)

where the symbols with a bar denote the estimates of the new quantities. In particular
Eqs.(13) are the first order conditions of the following QP problem:







min
(β̇e)

:
1

2
( ˙̄βj

e)
THet

˙̄βj
e + ( ˙̄βj

e)
Tgj,

subj.: AT
j
˙̄βj
e +Φj

e ≤ 0,

∀e (14)

where Φj
e = Φe[β

j
e], g

j = He(β
j
e − β∗

e). The solution of Eqs (14), which can be seen
as the quadratic problems arising from an SQP approximation of the CPP projection
scheme, gives the actual estimate of the stress and plastic multiplier parameters, β̄e

j+1
=

βj
e +

˙̄βe, κ̄j+1. In particular the QP problem (14) is efficiently solved by using the
Goldfarb-Idnani active set method, see [6] for further details.

3.2.2 The solution of the QP equality constraint scheme

After the detection of the set of active constraints, and assuming that this set is not
void, we have to solve Eqs. (11) by means of the following system of equations in which
only the residuals of the active constraints are considered:







· AjT
e · ·

−Aj
e −Het Qe ·

· QT
e · −pe

· · −pT
e ·













κ̇e

β̇e

ḋe

λ̇






= −







rj
µ

rj
σ

rj
u

rjλ







, zj+1 = zj + ż, (15)

where the further condition κj+1 ≥ 0 needs to be imposed.
System (15) is easily solved by static condensation of the local defined quantities. In

particular, recalling that the QP scheme in (14) solves the first two equations of (11a)
zeroing the displacements ḋe, we obtain







β̇e = H−1
et

(

rj
σ +Qeḋe −Ajκ̇e

)

= ˙̄βe +H−1
et Qeḋe,

κ̇e = W
(

rj
µ +AT

j H
−1
et r

j
σ +AT

j H
−1
et Qeḋe

)

= ˙̄κe +WAT
j H

−1
et Qeḋe,

(16)

where W =
[
AT

j H
−1
et Aj

]−1
.
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Goldfarb-Idnani active set method, see [6] for further details.

3.2.2 The solution of the QP equality constraint scheme

After the detection of the set of active constraints, and assuming that this set is not
void, we have to solve Eqs. (11) by means of the following system of equations in which
only the residuals of the active constraints are considered:







· AjT
e · ·

−Aj
e −Het Qe ·

· QT
e · −pe

· · −pT
e ·













κ̇e

β̇e

ḋe

λ̇






= −







rj
µ

rj
σ

rj
u

rjλ







, zj+1 = zj + ż, (15)

where the further condition κj+1 ≥ 0 needs to be imposed.
System (15) is easily solved by static condensation of the local defined quantities. In

particular, recalling that the QP scheme in (14) solves the first two equations of (11a)
zeroing the displacements ḋe, we obtain







β̇e = H−1
et

(

rj
σ +Qeḋe −Ajκ̇e

)

= ˙̄βe +H−1
et Qeḋe,

κ̇e = W
(

rj
µ +AT

j H
−1
et r

j
σ +AT

j H
−1
et Qeḋe

)

= ˙̄κe +WAT
j H

−1
et Qeḋe,

(16)

where W =
[
AT

j H
−1
et Aj

]−1
.
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At the global level then we have to assemble the condensed element contribution as

Ae

(
QT

e EtQe

)
ḋ− λ̇p = −Ae

(
r̃j
u

)
, −pT ḋe = −rjλ, (17)

where

r̃j
u = rj

u +QT
e (Etr

j
σ −H−1

et AjWrj
µ) and Et = H−1

et −H−1
et AjWAT

j H
−1
et .

Et has the same expression as the algorithmic tangent matrix evaluated by standard
SD-CPP formulation.

System (17) is coincident with a standard SD-CPP iteration scheme except for the
new definition of quantities r̃j

u. Note that Et and H−1
et AjW are evaluated at each step

of the QP problem, by the optimization algorithm used, so only the evaluation of r̃j
u is

required. In the case of an element with zero active constraints the solution is obtained
from previous scheme by deleting the first row and column from system (15).

4 NUMERICAL RESULTS

A series of numerical tests, in plane stress/strain conditions has been performed in
order to evaluate the performance of the proposed algorithm in the elastoplastic analysis
of 2D problems under the action of various kinds of loads (traction tests characterized by
stress concentration, in-plane bending actions) and for different materials (Von Mises and
Drucker-Prager materials). The finite elements adopted are those proposed in [4] where
the interpolation of the displacement, stress and plastic multiplier fields is adopted. In
particular, among the elements proposed in the cited work, only the FC4 element, with
a piecewise-constant interpolation over 4 subareas into which the internal area of the
element is divided, has been used. This choice allows to test the robustness of the proposed
algorithm with respect to more severe and more nonlinear cases. Further details of the
finite elements used can be found in [4].

The convergence to a new equilibrium point will be considered as achieved when the
norm of residuals is less than a given tolerance, i.e. ∥ru∥ + ∥rσ∥ + ∥rµ∥ ≤ toll, while
the analysis is stopped when the displacement component of a specified point reaches
a prescribed value. The number of points required by the Riks strategy to evaluate the
equilibrium path will be denoted with steps while the iterations required for each step will
be denoted with loops. The arc–length scheme adopted does not use any globalization
technique, such as line search. In the case of convergence failure the algorithm simply
restarts from the last point evaluated but with a reduced arc–length increment. A line
search is performed in the return mapping process of the SD-CPP algorithm to allow the
possibility of handling with large step sizes. Moreover, in order to test the robustness of
the proposed EC-SQP algorithm, that is the possibility of convergence to an equilibrium
point also starting very far from it, the analyses were repeated by increasing the value of
the first step length ∆ξ(1) selected in order to force the value of the observed component
of the displacement to a prescribed amplitude. In this way the analysis works with larger
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step sizes, this last one being controlled through an extrapolation parameter calculated

by the formula
(

1− 1
2
lps−lpsd
lps+lpsd

)

, where lps is the number of loops required by the last

step and lpsd the desired number of loops. However if the step is not closed within the
maximum number of loops the analysis is restarted with a smaller initial step size. Then,
for each test, a report is presented which shows the evaluated collapse load multiplier and
the relative error, the number of steps, the total number of loops and the number of step
failures (i. e. the steps not closed within lpsm). In this way a deep comparison of the
SD-CPP and EC-SQP algorithm is performed. In the following only one test, representing
well the behavior of the algorithm, will be presented.

4.1 Square plate with circular hole

This test is depicted in Fig. 1 and is known as square plate with circular hole. The
analyses were performed in plane stress conditions on the basis of four different meshes of
(2n×2n) elements each denoted as mesh n and was stopped when the vertical component
of node A reaches the value 5e− 3.

0.1L

0.4L

0.5L

σy = 10ν = 0.3

E = 200000

A

10

Figure 1: Plate with circular hole. Problem description and discretization meshes.

The results obtained on all the meshes using both the standard SD-CPP algorithm
and the new EC-SQP algorithm are summarized in Tab. 4.1. The capability of the
proposed algorithm to sustain even very large step sizes without affecting the computed
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The results obtained on all the meshes using both the standard SD-CPP algorithm
and the new EC-SQP algorithm are summarized in Tab. 4.1. The capability of the
proposed algorithm to sustain even very large step sizes without affecting the computed
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collapse load, regardless of the mesh considered, is clear. In contrast the standard SD-CPP
algorithm has no particular problem for the first values of the assigned initial increment
of the monitored displacement component, i.e. 5e − 5 and 1e − 4. Afterward, for the
bigger increments, the algorithm makes some false steps until the step size is not reduced
to a value that can be sustained.

Mesh 1 (dofs 98) Mesh 2 (dofs 338)
λc stps lps flrs incr. λc stps lps flrs incr.

SD-CPP 0.8100 20 58 0 5e-5 0.8030 23 77 0 5e-5
0.8100 18 55 0 1e-4 0.8030 20 73 1 1e-4
0.8100 19 55 4 1e-3 0.8030 21 72 4 1e-3
0.8100 21 57 7 5e-3 0.8030 25 84 7 5e-3
0.8100 22 65 8 1e-2 0.8030 25 86 8 1e-2

EC-SQP 0.8100 20 58 0 1e-5 0.8030 24 87 0 5e-5
0.8100 18 58 0 1e-4 0.8030 21 83 0 1e-4
0.8100 6 32 0 1e-3 0.8030 9 72 0 1e-3
0.8100 2 37 0 5e-3 0.8030 2 54 0 5e-3
0.8100 1 20 0 1e-2 0.8030 1 28 0 1e-2

Mesh 3 (dofs 1250) Mesh 4 (dofs 4802)
λc stps lps flrs incr. λc stps lps flrs incr.

SD-CPP 0.8015 27 105 0 5e-5 0.8006 28 113 1 5e-5
0.8015 22 91 0 1e-4 0.8006 24 109 1 1e-4
0.8015 25 97 4 1e-3 0.8006 27 118 6 1e-3
0.8015 28 106 7 5e-3 0.8006 32 136 8 5e-3
0.8015 27 100 8 1e-2 0.8006 31 128 8 1e-2

EC-SQP 0.8015 27 111 0 5e-5 0.8006 34 157 0 5e-5
0.8015 25 112 0 1e-4 0.8006 29 143 0 1e-4
0.8015 9 91 0 1e-3 0.8006 10 103 0 1e-3
0.8015 2 86 0 5e-3 0.8005 2 77 1 5e-3
0.8015 1 37 0 1e-2 0.8005 1 43 1 1e-2

Table 1: Plate with circular hole. Analysis report, vAmax = 5e− 3, toll = 1e− 4, desired = 6, max = 50.

5 CONCLUSIONS

In this paper a new method for the incremental elastoplastic analysis of structures
has been presented. The method is based on a SQP approximation of the finite element
representation of the holonomic step equations that retains as primary variables, and at
each iteration, all the variables of the problems. In the solution process, based on the
equality constrained approach, the set of active constraints is obtained by solving a simple
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quadratic programming problem which has the same structure and variables of a standard
return mapping by closest point projection scheme, i.e. it is decoupled and it can be solved
at a local level (finite element, Gauss point). The solution of the equality constraint
problems is performed by means of a static condensation of the locally defined variables,
that is stress and plastic multiplier parameters, for which the inter element continuity
is not required so obtaining at the global level a nonlinear pseudo-compatible scheme of
analysis that has the same structure as classic path following arc-length methods.

The numerical results are performed for plane stress/strain problems using both von
Mises and Drucker-Pragher yield functions and adopting the finite element interpolation
proposed in [4]. This finite element uses a three field interpolation and requires a multi-
surface return mapping solution in the SD-CPP case, representing a good test for the
robustness and efficiency of the incremental elastoplastic algorithm proposed here. A
large number of numerical results performed for both single or multi–surface elastoplastic
cases shows the great improvement in robustness and efficiency with respect to standard
return mapping strain driven formulations.

The presentation and the application are limited to the perfect plasticity case but its
extension to other more complex associated cases would be simple.
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