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Abstract. This paper describes some issues related to the numerical implementation of a 
constitutive model for unsaturated soils based on the BBM [1]. The focus of the paper is on 
the stress variables used and on the numerical algorithms adopted. Conventional stress 
variable approach (net stress and suction) as well as the approach that takes into account the 
degree of saturation (Bishop’s stress and suction) are examined.  To solve the constitutive 
stress–strain equations, two stress integration procedures have been implemented, an explicit 
stress integration scheme with automatic substepping and error control techniques [2] and a 
fully implicit stress integration scheme based on the Backward-Euler algorithm with 
substepping [3]. Their performances during the integration of the constitutive laws are 
compared. 

 
 
1 INTRODUCTION 

There is agreement that at least two constitutive variables are generally required to 
represent adequately the full range of unsaturated soil behaviour, that is, including strength 
and deformation.  Several review articles on the subject are available [4-6].  Conventional 
constitutive stress variable, namely net stress ( ij ij a iju     ) as well as the constitutive stress 
variable that takes into account the degree of saturation, commonly called Bishop’s stress or 
average stress ( ' ( )ij ij a ij r a w iju S u u        ) are examined in this paper.  In both formulations 
the second constitutive variable is the suction (s=ua-uw). ij are total stresses, ua the air 
pressure, uw the water pressure and ij the Kroneckers’s delta. The selection of net stress or 
Bishop’s stress or other alternative as the constitutive variable remains at present a matter of 
convenience [6].  

Incremental stress-strain equations for unsaturated soils can be solved by a wide range of 
explicit and implicit integration algorithms. Explicit algorithms, use the gradients of the yield 
surface and plastic potential at the start of the strain increment, and their accuracy can only be 
controlled by breaking up the strain increment into sub-increments, special automatic 
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substepping and error control techniques have been proposed [2,7]. In implicit algorithms, all 
gradients are estimated at an advanced stress state (which is unknown) and then the resulting 
non-linear constitutive equations are solved by iteration [3,8]. The relative performance of 
implicit and explicit methods is strongly dependent on the precise form of the constitutive 
model. For unsaturated constitutive models, the problem of the non-convexity of the yield 
surface at the transition between saturated and unsaturated states can significantly complicate 
the implementation of these models into finite element codes [2,4]. In this paper both stress 
integration procedures are evaluated.

2 INTEGRATION ALGORITHMS 

2.1 General 
Integration algorithms will be applied to the elastoplastic BBM model for unsaturated soils 

[1] defined in terms of either net stresses or Bishop’s stresses. In this model, suction is an 
additional independent variable. The constitutive equations that characterize the elasto-plastic 
material can be written in this particular case as: 
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where, d , ed  and pd are increments of the total, elastic and plastic strain tensors 

respectively and e s,d is the contribution of suction to increment of elastic strain tensor (only 
necessary in the net stress formulation). m is the flow vector, kd  represents the increment of 
hardening parameters (in this case P0) and d is the plastic multiplier. Note that in above 
equations,   vector can be either net stress ( ) or Bishop’s stress ( ' ). 

Satisfying the consistency condition, 
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Note that for Bishop’s stress formulation vector b=0. Combining equations (1) and (3), the 
constitutive equation integration is expressed as, 
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In the integration the infinitesimal increments in the above equations (denoted by “d”) are 
approximated with finite increments (denoted by “”). 

2.2 Explicit algorithm 
The more refined versions of the explicit algorithms [2,7] combine sub-stepping techniques 

with automatic sub-stepping control, error control and yield surface drift correction. An 
algorithm of this type has been implementedl. In this algorithm suction variable is treated as 
an additional strain component and it is assumed that it may be subincremented at the same 
rate as the other strain components. 

The substepping procedure automatically divides the increment of strain and suction into a 
number of substeps small enough to ensure that the desired integration accuracy is enforced. 
The scheme involves splitting the elasto-plastic strain step  1   and suction step   s 1
into a series of smaller substeps,  s

nT    1    and  s
ns T s    1  (where nT  0 1),

and using a modified Euler approximation for each substep.   1   and   s 1  are the 
portions of the strain increment and suction increment, respectively, that are outside of the 
yield surface. The size of each substep is determined by estimating the error in the stress 
changes and comparing it to a user-defined tolerance, STOL. The procedure begins assuming 
that only one substep is necessary. Consequently Tn is set to unity and Tn is set to zero. 

A first estimation of the changes in stresses and hardening parameters at the end of the 
pseudo-time step Tn are evaluated using a first order Euler approximation, as, 
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where, epD , epW , epR and Q  are computed using equations (5). Using the above quantities, 
the stresses and hardening parameters at the end of the substep are   1   and k k  1 ,
respectively. These are then used to calculate a second estimate of the changes in stress and 
hardening parameters over the substep, namely, 
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A more accurate estimate and the end of interval Tn is founded using the modified Euler 
procedure,
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A relative error measure is computed as, 
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The current strain subincrement is accepted if Rn is not greater than STOL. If Rn>STOL
then the solution is rejected and a smaller step size is computed. After accepting or rejecting 
the current substep, the size of the next substep is calculated based on the estimated error and 
the set tolerance. The next pseudo-time step is found from the relation, n nT q T  1  where q is 
chosen so that, nR STOL 1 . A conservative choice for q is, nq STOL R 0.9 / and it is also 
constrained to lie within the limits, q 0.1 1.1, so that, n n nT T T     -1 1 0.1 1.1 . The end of the 
integration procedure is reached when the entire increment of strain and suction is applied so 
that n nT T   1 .

After a successful substep the yield surface consistency condition is verified. If it is 
violated a drift correction procedure [9] is activated, which must ensure that the current state 
lies on the yield surface with a certain tolerance (YTOL). This correction changes both stress 
and internal variables but keeps the strain and suction increments unchanged. 

2.3 Implicit algorithm 
A fully implicit stress integration scheme based on the Backward-Euler (BE) algorithm 

with substepping [3] extended to unsaturated soil has been implemented. Integrating the 
constitutive equations with the BE methods, leads to an incremental algebraic format which is 
followed by a plastic corrector of the elastic trial stress violating the current yield surface. In 
this algorithm the plastic multiplier calculation is integrated with the internal variables 
updates and the incremental stress-strain relationship in a monolithic fashion.  

Time-integration equation with BE scheme yields the following non-linear local problem 
of the type R=0:
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The unknowns of this local problem are the stresses (n+1) and the hardening parameters 
k (n+1) at time t(n+1), and the plastic multiplier  . e,s  is required only for net stress 
formulation and is a known variable. As in the explicit algorithm, the elasto-plastic strain step 
and suction step will be subdivided in smaller steps, as,  s

nT    1   and 
 s

ns T s    1  (where nT  0 1), in case that no convergence is reached in the iterative 
process of residual minimisation. 

The non-linear system of equation (10) is solved by linearizing the residual and expanding 
it into a Taylor series, obtaining the following expression, 
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The gradient expression kRkis the Jacobian matrix J (12). Truncating after 
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the first order terms, O[2], and solving the linearized system of equations the new iterative 
update of the eight variables is obtained, as in (13) 
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Adding the iterative corrector to the old values of the independent variables yields the eight 
updates:
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In some cases, when large strain increments are prescribed, the minimization of residual 
equations (11) is not possible after a given number of iterations.  In this case, the strain and 
suction increments are reduced by n nT q T   , where q is chosen as 0.5. The end of the 
integration procedure is reached when the entire increment of strain and suction is applied so 
that n nT T   1.

In order to start the iteration process, the elastic solution at the contact point with the yield 
surface is chosen: 
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To solve the global problem with quadratic convergence it is necessary to use a consistent 
tangent matrix,  
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( )0 0T
ns=P I  is the projection matrix on stress space. 

3 APPLICATION AND PERFORMANCE 
The triaxial test on compacted Barcelona clayey silt presented in Error! Reference source 

not found. [10] was selected to examine the performance of the integration algorithms. The 
tests includes different types of stress paths typically performed on unsaturated soils: A1-A2, 
loading at constant suction, A2-A3, wetting path at constant net stress, A3-A4 drying path at 
constant net stress, A4-A4 shear to failure under constant suction.

Performance of numerical integration algorithms (explicit and implicit) is evaluated in 
terms of CPU time and the number of sub-increments required in each scheme. In all runs the 
yield surface tolerance is fixed at YTOL = 10-8; this parameters is also used to control the 
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convergence of the residual in the implicit algorithm. Control error tolerance of explicit 
algorithm varies from STOL=10-2 to 10-6. All CPU times presented are for an Intel Core Duo 
(2GHz) with 2GB of RAM. Results are presented in bar graphs where average values of the 
variables evaluated were computed for each stress path. 

Figure 1:  Stress paths followed by the test used in the evaluation of integration algorithms 

Figure 2 shows a comparison between implicit and explicit algorithms for net stress and 
Bishop’s stress. It is observed that the wetting path (A2-A3) requires both a higher 
computational cost and higher mean number of sub-increments when Bishop’s stress and the 
implicit scheme are employed. This is because Bishop’s stress induces a high curvature in this 
particular stress path.  As a consequence, the plastic corrector of implicit scheme has 
difficulties in returning to the yield surface and the requirement for sub-increments increases. 
Explicit algorithm is more efficient in this case because proceeds in an incremental fashion 
where all gradients are estimated at known stress states. Also, it is noted for path A2-A3 that 
the computational cost of net stress formulation is considerably lower than that of Bishop’s 
stress and differences between implicit and explicit schemes are minimised. Figure 2 also 
indicates that during stress path A1-A2 of isotropic load at constant suction, no significant 
differences are observed between implicit and explicit schemes. During drying path A3-A4, 
behaviour is elastic and no strain sub-incrementation is needed. Finally, during shearing path 
A4-A5, the explicit scheme demands a higher number of sub-increments than the implicit one. 
However, this tendency is not reflected in the CPU time, as the explicit scheme spends 
slightly less CPU time than implicit one. This may be explained by the fact that the implicit 
scheme requires second derivatives of yield function and plastic potential and the inversion of 
the Jacobian matrix. 

Figure 3 shows the influence of the error control tolerance (STOL) on mean number of sub-
increments and drift corrections of the explicit algorithm. As expected, the number of sub-
increments and drift corrections increases as STOL is decreased. Due to the fact that the stress 
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error controls the strain sub-increments in proportion to the square root of STOL, their number 
increases by a factor of roughly 10 if STOL is reduced by an order of magnitude.
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Figure 2:  Comparison of integration algorithms (STOL=10-4 for explicit scheme) 
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Figure 3:  Influence of STOL on sub-increments and drift corrections of explicit algorithm. Constituive model 

4 CONCLUSIONS 
- Net stress is a more simple and practical choice in terms of stress path representation 

than Bishop’s stress. However, it requires additional assumptions to take into account 
the shear strength increase with suction and the elastic volumetric strain due to 
changes in suction. Using Bishop’s stresses this features derive directly from the 
definition of the constitutive stress. However, the performance of the model using 
Bishop’s stress is more sensitive to the adopted soil water characteristic curve. 

- In terms of the efficiency of numerical algorithms, the explicit scheme is likely to be 
more robust than implicit scheme to solve the kind of complex stress involved in 
unsaturated soil behaviour. The use of explicit scheme, however, does not yield 
quadratic convergence of the full problem. 
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