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plastic modulus, k affects both peak strength and residual strength, while only residual 
strength is affected when original plastic modulus is used. In addition, modified plastic 
modulus seems to result in a less brittle response than the original one.Two alternative 
formulations have been used to describe the elastic behaviour of the soil. It has been shown 
that both formulations give equivalent results for the chosen parameters. In contrast, the 
traditional elastic formulation does not attain high initial stiffness at small strains.
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Summary. The formation and propagation of compaction bands in high porosity sandstones 
is theoretically investigated in this paper using a new constitutive model based on the recently 
developed continuum breakage mechanics theory [1,2]. This model possesses a 
micromechanics-based link between the evolving grain size distribution (gsd) and the 
macroscopic stress strain relationship, through an internal variable called Breakage. This is 
an advanced feature over many existing plasticity based models in the literature, helping to 
faithfully track the evolving gsd and its related physics (e.g. permeability reduction). A 
localization analysis based on the acoustic tensor [3] is performed to determine both the onset 
and orientation of compaction bands due to grain crushing. It is shown that the model used is 
able to capture well both the material behaviour and formation of compaction band 
experimentally observed. An enhancement using rate-dependent regularization is applied to 
the model to deal with instability issues in the analysis of Boundary Value Problems. Based 
on the regularised model, the formation and propagation of compaction bands due to grain 
crushing is analysed through a numerical experiment on a porous rock specimen under 
triaxial loading condition. Good agreement between numerical predictions and experimental 
observations demonstrates the capability of the new model.  

1 INTRODUCTION 
The formation of localization bands in high porosity sandstones involves several 

micromechanical processes such as grain crushing, grain sliding, bond breaking and pore 
collapse [4,5]. Shearing at low confining pressures facilitates the fracture of grain bonding 
cement, allowing the grains to rotate and slip, which could be followed by the flow of 
granulated material. This bond breaking also reduces the mobilized shear strength, observed 
through the shear stress drop in experiments. In contrast, shearing at high confining pressures 
leads to grain crushing followed by pore collapse. During this process, the contacting grains 
tend to crush under the pressure, leading to the rearrangement of fragments, which further 
reduces the porosity and consequently hardens the material [4,6]. In this sense, pore collapse 
acts as a passive mechanism facilitated by a grain-crushing event. At a macroscopic level, 
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these failure mechanisms can be classified as brittle failure under low pressure and cataclastic 
flow with shear-enhanced compaction in high-pressure regimes [6]. Although these physical 
insights on the failure of porous sandstones are well understood, their theoretical modeling is 
still a challenging task.

 Continuum approach based on plasticity theory has been widely used for the prediction of 
compaction localization in porous rocks [7-12]. In these continuum approaches a bifurcation 
condition [3], as a material instability condition, is usually employed for the detection of both 
the onset and orientation of localization bands. It is however unclear whether the parameters 
giving a good prediction of compaction localization in these models correspond to an 
experimentally observed response. In other words, the capability of the model to capture the 
observed material responses is usually left untouched in these studies, while much attention is 
paid to adjusting model parameters for the prediction of compaction localization. In addition, 
the underlying evolving microstructures (e.g. grain size distribution) are not fully reflected in 
those models. It has been showed that these plasticity-based models can lead to erroneous 
predictions of the permeability changes due to grain crushing [15]. Consequently, despite 
their good theoretical predictions, lack of a sound physical basis seems to impair the 
usefulness of these models.  

A new continuum model based on the breakage mechanics theory [1,2] has shown its 
capability in capturing the compaction band formation in porous rocks [13]. The main feature 
of this theory is that it can take into account the grain crushing effects on the constitutive 
behavior through an internal variable (called Breakage, B) of the continuum model. This 
internal variable is explicitly linked with the evolving grain size distribution (gsd), helping to 
continuously track the gsd during the crushing induced deformation process. The effects of 
pore collapse on the macroscopic behavior of the material are also accounted in this models 
based on breakage mechanics theory. A recent study [13] showed that this breakage 
mechanics model predicts well both the formation and orientation of compaction bands, 
besides its capability to capture the behavior of porous rocks under high confining pressures 
[15].

In this paper, the formation and propagation of compaction bands in high porosity 
sandstones is studied using the above model. An enhancement employing rate dependent 
regularization is incorporated in this constitutive model to deal with instability issues due to 
softening and strain localization. Numerical analyses of a porous rock sample under drain 
triaxial condition are carried out to study the formation and propagation of compaction band. 
The obtained numerical results are validated against experimental observations. 

2 A CONSTITUTIVE MODEL BASED ON BREAKAGE MECHANICS  
A brief outline of a model based on breakage mechanics theory is presented in this section. 

The details of the theory and the development of several constitutive models based on this 
theory can be found in the papers by Einav [1,2,14] and Nguyen and Einav [15]. Due to grain 
crushing, the gsd evolves during the deformation of crushable granular materials. In breakage 
mechanics theory [1,2] this evolution of the current gsd p(d) is directly tracked through an 
internal variable, called Breakage (B) by the following relationship: 

       0, 1 up B d B p d Bp d    (1)
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where d is the grain diameter, p0(d) is the initial gsd and pu(d) is the ultimate gsd, which can 
be conveniently assumed to be of fractal type.  

The stress-strain relationship is: 

   1 : pB  σ D ε ε  (2)

where σ  is Cauchy stress tensor;   and p  are the total and plastic strain tensors 
respectively; D is the linear (isotropic) elastic tangent stiffness tensor; the grading index 
which is a result of the statistical homogenization, can be obtained from the initial and 
ultimate gsd’s as 

2 201 uJ J    (3)

where J20  and J2u are second order moments of initial and final gsd [1]. Einav [14] derived 
the following elastic-plastic-breakage yield criterion in mixed stress-energy space considering 
the energy balance driving particle breakage. 

22(1 ) 1 0B

c

B E qy
E Mp

 
    

   
(4)

where Ec is the critical breakage energy which can be determined directly from the isotropic 
crushing pressure through the relationship 2 2C crE P K  [2];  1 3p   σ δ  is the mean 

stress (positive in compression);  3 2 :q  s s is the distortional stress ( .p s σ δ is the 
deviatoric stress; δ  is Kronecker delta); M is the slope of the critical state line in p – q space;
and EB is the energy thermodynamically conjugated to the breakage internal variable.

 

2 2
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2

31
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p qE
K GB

 
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  
 (5)

A typical evolving yield envelope in p-q-B space is plotted in Fig. 1.
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The evolution rules for breakage and plastic strain are respectively, 

 2 2d 2d 1 cos  cB B E  and (6)

 2 2

2 2
1 sin 3d d 2

3
Bp

c

B E
pE M p



    
 
 

δ sε . (7)

In the above expression, ω is the parameter that couples the plastic volumetric deformation 
with grain crushing [2]. Physically,  represents the pore collapse of the material, which is a 
consequence of grain crushing and grain/fragment reorganization. Further details on  and 
pore collapse can be found in Einav [1, 2] and Das et al. [13].

3 ANALYSIS OF COMPACTION LOCALIZATION 

3.1 Model behavior 
The model behavior is presented in this section. The model parameters for a typical high 

porosity (23%) sandstone, the Bentheim sandstone are determined from experimental data. In 
particular, the stiffness (G, K), critical state parameter (M) and critical breakage energy (Ec)
are obtained from published experimental stress-strain responses [16,17]. The grading index 
is determined from basic gsd [18] information and the assumption of power law distribution 
for both initial and final gsd. The coupling angle () is chosen by matching the inelastic 
stress-strain response with experimental results. Details on the model calibration can be found 
in Das et al. [13] and corresponding model parameters are listed in table 1. 

Table 1: Model parameters

Parameters Value
G 7588 MPa
K 13833 MPa 
M  1.7
Ec 4.67 MPa 
 0.85
 70°

Fig. 2 presents the model behavior based on the model parameters in Table 1. The 
predicted stress-strain responses are found to be in good agreement with experimental 
observations.
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Figure 2: Numerical and experimental [19] comparisons of stress-strain responses of Bentheim sandstone under 
drained triaxial loading at different confining pressures; (a) mean stress vs. volumetric strain; (b) differential 

stress vs. axial strain.  

3.2 Numerical prediction of compaction localization  
We use the discontinuous bifurcation condition described in Rudnicki and Rice [3] to 

detect the formation of compaction band. Eq. 8 represents the simplified form of 
discontinuous bifurcation condition, considering the fact that the tangent stiffnesses of the 
material inside and outside the band are different in the case of breakage model [3,20]. 

i 0   n L n A . (8)

In the above equation n is the band orientation vector; Li is the tangent stiffness tensor inside 
the localization zone (eq. 9); A is the strain localization tensor, also termed the acoustic 
tensor. The following tangent stiffness tensor is obtained using the model described in section 
2. The details on the formulation of this forth order stiffness tensor were already given in Das 
et al. [13]. 
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ε σD D
σ σ

L D
ε σD

σ σ

(9)

We show that the model described in the previous sections is capable of capturing the 
experimentally observed localization features of porous rocks, besides its capability in 
describing the material behavior (section 3.1). Fig. 3a highlights (the thick black line) the set 
of favorable stress states for the formation of localization band at the onset of yielding. The 
results are compared with their experimental counterpart [19]. At much higher-pressure 
regime, no localization failure is observed at the onset of inelastic deformation. As also 
numerically experienced, the closer to the isotropic compression line the stress path is, the 
easier the deformation would evolve into cataclastic flow without any compaction 
localization. However, shearing beyond elastic limit also eventually induces compaction 
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Figure 3: (a) Initial yield envelope and predicted stress states at the formation of compaction localization for 
Bentheim sandstone. (b) Corresponding contour of determinant of the acoustic tensor. 

Fig. 3b shows the contours of the determinants of the acoustic tensor against the band 
orientation angle () and the mean stress (p). In this figure the inner most zone, where the 
determinant of the acoustic tensor is negative (|A< 0), indicates localization failure. It can be 
seen from Eq. 8 and Fig. 3b that for a given confining pressure p, there is a set of possible 
orientation angles for the localization band. From the experimental point of view, localization 
bands having orientation angle 010 can be classified as pure compaction band whereas 
those with 1045 are treated as shear enhanced compaction bands [19]. Our analysis 
predicts that the band orientation for a wide range of confining pressure falls within the range 
of 0° to 40° that is close to the experimental observations in [19].  

4 RATE DEPENDENT REGULARIZATION 

4.1 Perzyna type rate dependent regularization  
Due to the localization characteristics of the model, the boundary value problems (BVP) 

become ill-posed and hence treatment for this instability is needed. Introduction of material 
rate dependency, which implicitly introduces a length scale in to the governing constitutive 
equation [21], is one of the ways to make the BVPs well-posed. Here we incorporate rate 
effect in the breakage constitutive model presented in the preceding section using Perzyna 
type overstressed function. The model enhancement is carried out by modifying the evolution 
laws of breakage and plastic strain in the following manner. 

 2 22 1 cos
d d

N

c

y B
B t

E





 , and (10)
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It is noted that the viscosity parameter η is a dimensional quantity (M-1LT3) when used with 
this breakage model. Comparing the rate dependent flow condition with conventional rate 
independent evolution law, we can express the non-negative multiplier or consistency 
parameter as, 

As can be seen, the Perzyna-type rate dependent breakage model provides an explicit form for 
the non-negative multiplier. 

4.2 Rate effect on constitutive response 
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Figure 4:  Effect of strain rate on the model response in drained triaxial loading - (a) breakage against mean 
stress; (b) distortional stress against axial strain. 

Numerical drained triaxial tests are carried out to observe the effect of increasing strain 
rate on the material behavior. The same model parameters listed in Table 1 are used. Other 
parameters related to the rate dependency are, N = 1.0; and viscosity parameter η = 1.0 
sec/kPa. In the numerical tests, the strain rate is increased via controlling the time increment 
(e.g. dt = 1s, 0.1s, 0.001s, and 0.0001s, corresponding to the strain rates indicated in Fig. 4). 
Fig. 4b indicates that with increasing strain rates the ultimate stress is also increasing. The 
transition from elastic to inelastic zone is smoother with increasing strain rate. On the other 
hand, at slow strain rates the model response approaches rate independent behavior. Besides 
the stress-strain response, the rate of breakage growth reduces with the increase in strain (Fig. 
4a). From the microscopic point of view, high strain rate does not allow sufficient time to 
break or rearrange the grains [22]. Thus, the material becomes stronger and this feature is also 
reflected in the macroscopic stress-strain response of the proposed model.  
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4.3 Mesh independency of finite element solutions 
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Figure 5: FE meshing for triaxial drained test 

The stability of the above rate dependent breakage constitutive model is illustrated through 
the numerical analysis of a rock specimen under drained triaxial loading condition. The 
commercial package Abaqus (version - 6.8) is used for the entire finite element analysis. We 
construct the model (0.1 x 0.2 m) using linear quadrilateral finite elements (Fig. 4). Due to 
symmetry in geometry and loading, only half of specimen is modelled. The analysis is 
performed considering axisymmetric 2D plane strain condition with strain controlled loading. 
The entire loading arrangement is a two stage process where initially we apply a confining 
pressure and allow the material to deform isotropically. Thereafter axial load, through 
prescribed vertical displacement producing a constant axial strain rate of 5.3*10-4/s, is applied 
to the specimen, while the confining stress is kept constant. The boundary conditions are: 
restricted vertical movement of the bottom boundary; and (fixed) incremental vertical 
displacement at the top boundary. To trigger off the localization we introduce local anisotropy 
via a weak element having lower crushing pressure (90% of Pcr) (Fig. 5).  

Breakage, B Breakage, B Breakage, B

(a) (b) (c)
Breakage, B Breakage, B Breakage, B

(a) (b) (c)

Figure 6: Breakage contours showing the formation of shear enhanced compaction band under drained triaxial 
test at 3% axial strain (a) 400 elements; (b) 1600 elements; (c) 6400 elements. 
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The effect of the spatial discretization on the numerical solutions is presented in Fig. 5. We 
use three different finite element meshes employing 400 elements, 1600 elements and 6400 
elements, respectively. The contours in Fig. 5 indicate the growth of breakage during the 
deformation of the specimen. As can be seen, the localization zones and their widths are 
almost identical for all three cases of discretization The regularization effect of the rate 
dependent enhancement is clearly visible from the global load-deflection curves (Fig. 7), in 
which the trends of the curves and their periods of oscillation are almost identical. 
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Figure 7: Reaction force against displacement plot for drained triaxial test 

5  COMPACTION BAND PROPAGATION IN POROUS ROCKS 
It is clear from the previous analysis that the use of rate effect eliminates the pathological 

mesh sensitivity of the numerical solutions. The propagation of compaction bands is studied 
in this section using the FE mesh consists of 1600 elements. We start the numerical drained 
shear test with an initial isotropic pressure of 300 MPa. The same axial strain rate of 5.3*10-4

/s, as used in section 4.3, is applied to the top of the specimen in the second stage of loading.  

Figure 8: Breakage contours showing pure compaction band formation in drained triaxial test at different axial 
strains, (a) Numerical simulation; (b) Experimental observation [19]. 

From laboratory experiments it has been observed and reported [23,24] that compaction band 
initiates from the two ends of the sample due to the stiffness mismatch between the material 
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and the cap of testing device. To simulate similar band initiation we introduce two weaker 
finite elements at both ends of the numerical sample. 

The breakage contours in Fig. 8 show the propagation of compaction bands during the 
shearing process. The colour code indicates intense grain crushing via breakage growth that 
takes place inside the compaction bands.  As expected, compaction localization occurs at the 
two ends of the specimen and propagates towards its centre (Fig. 8). Baud et al. [19] also 
reported similar band propagation in their experimental results. This is manifested because of 
simultanous loading and unloading process during shearing at high confining pressure.
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Figure 9: Stress responses at integration points (A and B) of numerical sample, (a) against axial strain; (b) 
against time, for a fixed time span.

The variation of distortional stress against time and axial strain is plotted in Fig. 9a,b for 
two integration points A and B. Due to the confinement and the varying inhomogeneous state 
(of stress, strains and breakage), the behavior of material points along the specimen height 
switches among hardening, softening, and elastic unloading. These material points take turn 
in the crushing process. Due to this process of simultaneous loading and unloading, 
compaction bands propagate from the two ends of the sample towards its centre, at discrete 
locations along the specimen height. This effect is also visible through the oscillating nature 
of the global stress strain response during shearing (Fig. 10). 
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Figure 10 Global stress-strain response from numerical prediction and experimental observation [19] 
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The predicted average distortional stress-strain response and experimental observations 
[19] are plotted in Fig.10. These macroscopic model responses can be seen to be in good 
agreement with its experimental counterpart.  

6 CONCLUSIONS 
We show in this study a micromechanics-based constitutive model capable of capturing 

both the material behavior and the formation of compaction bands. The enhancement of this 
model to deal with material instability issues, using rate dependent regularization, allows us to 
to numerically explore the propagation of compaction bands in a porous rock specimen. The 
obtained numerical results are in good agreement with experimental observations, thus 
demonstrating the capability of the proposed model. This is an important starting point for a 
deeper study on the initiation and propagation of compaction bands in porous rocks. 
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