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Abstract. A recently proposed procedure for the simulation of cross roll straightening
allows to predict successfully the residual stress distribution in straightened bars as well
as their yield stress. Although the procedure allows also to make predictions about the
curvature of straightened bars, large discrepancies appear between predictions and exper-
iments. The present study aims at understanding the causes of these deviations. The
standard experimental setup for the measurement of curvature provides values on the
assumption of a constant in-plane curvature. Using a modified procedure for the predic-
tion of the curvature, this study shows that, according to the model, the curvature of
straightened bars is not constant and not in-plane. The reason for the deviation observed
between predictions and measurements is then obvious.

1 INTRODUCTION

Cross roll straightening is the last mechanical operation in the production process of
bright steel bars and aims principally at reducing: (1) the curvature and (2) the detrimen-
tal residual tensile stresses on, and close to, the surface of round bars. On the downside,
the operation may lead to a decrease of the yield stress of the bars. Modelling approaches
to describe the process can be grouped into two main categories: analytical procedures
and FE based procedures. The former ones (see e.g. [1, 2]) relie on the assumption of
straightening under pure alternate bending and cannot take into account such influences
as the lateral stamping applied by the rolls on the bar. The latter ones (see e.g. [3, 4])
are CPU cost intensive and, therefore, require the use of relatively rough meshes, making
them unable to predict subtle differences in e.g. the yield stress of straightened bars.

During cross roll straightening, the bar is bent and stamped between two rotating
rolls, a convex and a concave one, as shown in Figure 1. Apart from the geometry of the

1

XI International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XI 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds) 



1137

A. Mutrux, B. Berisha and P. Hora

Figure 1: Sketch of the cross roll straightening process. The two main process parameters are the angle
α and stamping δ. XY Z are the principal axes of the global coordinate system.

rolls, the main process parameters are the angle α between the rolls and the bar and the
stamping δ, defined as the diameter of the bar minus the minimum distance between the
rolls. During straightening, the rolls rotate, inducing a forward motion of the bar and a
rotation about its main axis.

A mixed analytical-numerical modelling approach to cross roll straightening, based on
similar assumptions as the one introduced in [5], is presented in [6]. The procedure allows
to predict quantitatively the influence of the straightening parameters α and δ on the
yield stress of straightened bars. The predicted residual stress distribution is in qualita-
tive agreement with the measurements presented in [7].

In [6], only intermediate results about the prediction of the curvature of straightened
bars are presented. The predictions lie about an order of magnitude higher than the
experimental values and no satisfying explanation of this discrepancy is provided. The
present study aims at shedding light on the capabilities of the procedure regarding the
prediction of the curvature of bars after straightening.

2 PROCESS MODELLING

This section presents a summary of the modelling approach. A more detailed expla-
nation can be found in [6]. The main assumptions on which the procedure rely are the
following:

- a closing simulation, in which the bar is simply bent and stamped between two
static rolls (without rotation or forward feed), provides a decent approximation of
the total strain distribution in a bar during cross roll straightening. For example,
the influence of the rolling contact between the bar and the rolls can be neglected

- the total strain distribution in the bar depends marginally on the behaviour of the
material
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- the path of a material point of the bar during straightening can be computed ana-
lytically

The first step of the procedure is a closing simulation. This simulation is conducted
using a dynamic implicit scheme and the material behaviour is described using a linear
isotropic model. The results are the total strain distribution within the bar and the
bending line b (t). b (t), with t ∈ [0, 1], is a parameterised curve in the ZY plane passing
through the nodes lying on the neutral axis of the bar in the deformed configuration. A
coordinate system {ξ (t) , η (t) , ζ (t)} is associated to b (t)

eξ (t) =
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where b′ (t) is the directional derivative of b (t).

A sufficient number of points Pi are chosen over a cross section of the bar. Their helical
paths pi (t), having b (t) as neutral axis and a pitch κ = 2πrrod tan (α), are computed.
The solids lying on each path are identified. The sequence of the total strain tensors asso-
ciated to these elements builds the total strain history of each material point considered.
Total strain increments are defined as the differences between consecutive states along
a given path. Those strain increments are then integrated according to the constitutive
equations presented in Section 3.2. To compensate for eventual deviations from the state
of equilibrium, the internal variables obtained for each Pi are mapped to a corresponding
layer of solid elements and, applying adequate boundary conditions, the equilibrium is
sought using a one-step static implicit solution scheme.

For predictions regarding the evolution of the curvature of the bar, axis asymmetric
axial initial stresses are considered. An initial curvature κbs < σy/ (Errod) of a bar can be
reduced to a stress distribution over its cross section according to relation

σin
ζζ (η) = Eκbsη (2)

Considering σin
ζζ as initial stresses, the corresponding σout

ζζ stresses after straightening are
computed using the procedure described above. This stress distribution generates a mo-
ment Mξ̃ about an axis ξ̃
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Figure 2: σout

ζζ
stress distribution in a bar with an initial curvature κbs = 10−4 straightened with α = 18◦

and δ = 0.50 mm. The angle β is highlighted (β = −20◦ in the present case). The linear initial stress
distribution in the core of the bar is not affected by the plastification that takes place in the peripheral
layers.

Mξ̃ =

∫

A

σout
ζζ η̃dA (3)

where ξ̃η̃ is obtained by a rotation of ξη by an angle β around the axis ζ , as shown in
Figure 2. The moment Mmax

ξ̃
is

Mmax
ξ̃

= max
(
Mξ̃ (β)

)
(4)

The curvature after straightening is κas = Mmax
ξ̃

/ (EI).

3 MATERIAL MODELLING

3.1 Tension-compression tests

The material investigated in the context of this study is a SAE 1144 medium carbon
steel (�25 mm). As mentionned above, cross roll straightening induces a cyclic defor-
mation in the bar. The cyclic behaviour of the material is investigated by carrying out
tension-compression tests under total strain control with an amplitude ∆ε/2 = 1.5·10−2 at
a strain rate of approximately 5 ·10−3 1/s. The material exhibits a strong Bauschinger ef-
fect, cyclic softening and a small apparent tension-compression asymmetry. The term
apparent is used to highlight the fact that the phenomenon is more likely due to a
Bauschinger effect from the previous drawing operation than to a real (according to the
definition given in [8]) strength differential effect.
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Figure 3: Stress-strain curve obtained from a tension-compression test and corresponding values according
to the Chaboche model.

3.2 Constitutive equations

The total strain tensor is additively decomposed in an elastic strain and a plastic strain.
The elastic part of the strain tensor obeys Hooke’s law. The plastic strain components
are governed by the associated flow rule. The yield function is expressed as

F =
3

2
(s − a) : (s − a) − Y 2 (5)

where s is the deviatoric stress tensor and a is the backstress tensor. Y , the isotropic
hardening (or softening) part, is

Y = Q (1 − exp (−bp)) + σ0 (6)

where p is the accumulated plastic strain. a (i.e. its evolution equation) is decomposed
according to [9] as

a =
M∑
i=1

a(i) + a0 (7)

where a0 allows to take into account the initial asymmetry between tension and com-
pression in a non-evanescent manner. a(i) is defined through the (Armstrong-Frederick)
differential equation

da(i) =
2

3
Cidεp

− γia
(i)dp (8)

Figure 3 shows the fitted model on the experimental stress-strain curve; the correspond-
ing values of the parameters are given in Table 1. The material model is implemented
according to the radial return algorithm presented in [10]. For the closing simulation
mentionned in Section 2, a linear isotropic model is fitted on the first tension branch
(σy = 935 MPa and Etan = 3000 MPa).
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Table 1: Fitted parameters for the Chaboche model (E = 210 GPa and M = 3)

C1 C2 C3 γ1 γ2 γ3 Q b σ0 a33

44400 18100 1430 665 87 0 -214 5.5 757 7.7

Figure 4: Experimental setup used to measure the curvature of bars (L = 1 m).

4 PREDICTION OF RESULTING STRAIGHTNESS

The curvatures of 40 bars before and after straightening with α = 18◦ and δ = 0.50
mm are measured using the setup sketched in Figure 4. The setup is a common means of
assessing the curvature of bars in the industry and [11] presents measurements obtained
using a similar device, the dial gauge being replaced by a laser one. The maximum dial
gauge amplitude 2Υ is recorded and is converted into a curvature κ = 8Υ/L2 assuming
that the bar has a constant radius of curvature in a single plane. Experimental results
and corresponding predictions are plotted in Figure 5.

It appears from Figure 5 that the curvatures predicted by the model are about an order
of magnitude higher than the experimental values. A straightening effect can be predicted
when relatively large values of curvature before straightening are considered. When bars
with a small initial curvature are considered, such as the ones investigated in this study,
the predicted curvatures after straightening are larger than the ones before straightening.

In [11], the roller leveller straightening of coiled medium carbon steel wire (�6 mm)
is investigated both experimentally and numerically. In a roller leveller, the bar is re-
peatedly bent in a single plane. Considering a bar initially curved in a single plane and
straightening it in its plane of curvature leads to (1) a reduction of its main curvature
and (2) the appearance of a small out-of-plane curvature. In this case, the assumption
that straightened bars are curved in a single plane does not hold.

In order to verify the hypothesis of the constant in-plane curvature of the bars after
straightening for the present case, κas is computed for different sections over a distance κ

of the bar (κ = 25.52 mm for rrod = 12.5 mm and α = 18◦). The computations are made
with α = 18◦ and δ = 0.50 mm and two initial curvatures are considered: (1) κbs = 0 and
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Figure 5: The curvatures before (κbs) and after (κas) straightening (with α = 18◦ and δ = 0.50 mm) of 40
bars are measured. The values predicted by the model are also plotted. The model cannot, apparently,
predict curvatures below κas = 6.5 · 10−6 1/mm.

(2) κbs = 10−4 1/mm. The predicted curvatures as well as the corresponding angles β are
plotted in Figure 6.

It appears from the results obtained for κbs = 0 (Figure 6 (top)) that:

- the curvature of the bar after straightening is approximately constant (κas
≈ 6.6 ·

10−6 1/mm, which corresponds to the apparent limit highlighted in Figure 5)

- the angle β between the axis of principal curvature and the axis ζ completes a whole
rotation over a distance κ

According to the model, the shape after straightening of an initially perfectly straight
bar is hence a helix whose main axis is a straight line. Random numerical errors lead to
variations 2∆κas < 5 · 10−7 1/mm, which are acceptable considering the scattering of the
experimental data.

It appears from the results obtained for κbs = 10−4 1/mm (Figure 6 (bottom)) that:

- the curvature of the bar after straightening varies over a length κ

- the angle β varies in a ±30◦ strip

These results highlight the fact that the comparison made in Figure 5 between experi-
mental (global) values of curvature and predicted (local) curvatures is not relevant. The
assumption of a constant in-plane curvature after straightening does not hold. The exper-
imental setup pictured in Figure 4 is not sufficient to assess the curvature of straightened
bars.
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Figure 6: Predicted curvatures after straightening (κas) and the corresponding angles to the axis ξ for
two different curvatures before straightening: κbs = 0 (top) and κ = 10−4 1/mm (bottom).
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5 CONCLUSIONS

The present study sheds light on the causes of the large discrepancy observed between
measurements and experiments in [6]. Using a standard experimental setup, the curvature
of bars is measured on the assumption of a constant in-plane curvature. Although drawn
bars may exhibit such curvatures, it is shown numerically that the assumption does not
hold for straightened bars. A meaningful link, if any, between predicted (local) and
measured (global) values is still to be established.
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