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a b s t r a c t 

Given a connected graph G and an integer 1 ≤ p ≤� | V ( G )|/2 � , a p -restricted edge-cut of G 

is any set of edges S ⊂ E ( G ), if any, such that G − S is not connected and each component 

of G − S has at least p vertices; and the p -restricted edge-connectivity of G , denoted λp ( G ), 

is the minimum cardinality of such a p -restricted edge-cut. When p -restricted edge-cuts 

exist, G is said to be super- λp if the deletion from G of any p -restricted edge-cut S of 

cardinality λp ( G ) yields a graph G − S that has at least one component with exactly p ver- 

tices. In this work , we prove that Kneser graphs K ( n , k ) are λp -connected for a wide range 

of values of p . Moreover, we obtain the values of λp ( G ) for all possible p and all n ≥ 5 when 

G = K(n, 2) . Also, we discuss in which cases λp ( G ) attains its maximum possible value, and 

determine for which values of p graph G = K(n, 2) is super- λp . 
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1. Introduction 

For other terminology and notation not defined here, we refer the reader to the book by Chartrand and Lesniak [9] . 

All graphs are considered hereafter as finite and simple, that is, with a finite number of vertices and without loops or

multiple edg es. If G is such a graph, its sets of vertices and edges are denoted as V ( G ), E ( G ), respectively. For a nonempty

subset of vertices X ⊂ V ( G ), G [ X ] stands for the subgraph of G induced by X . The clique number of G is the maximum cardinality

of X ⊂ V ( G ) such that G [ X ] is a complete graph. The connectivity (or vertex-connectivity) of G is written κ( G ), and the edge-

connectivity of G is denoted as λ( G ). For nonempty disjoint sets X , Y ⊂ V ( G ) let [ X , Y ] be the set of edges with one end in X

and the other end in Y . Clearly, [ X , V ( G ) �X ] is an edge-cut of G . Denote ω G (X ) = [ X, V (G ) \ X] . The degree of a vertex x ∈ V ( G )

is deg G (x ) = | ω G ({ x } ) | , and δ( G ) stands for the minimum degree of G . 

In [12,13] Fàbrega and Fiol proposed the concept of p -restricted edge-connectivity. Given a connected graph G and an

integer 1 ≤ p ≤� | V ( G )|/2 � , a p-restricted edge-cut of G is any set of edges S ⊂ E ( G ), if any, such that G − S is not connected and

all components of G − S have at least p vertices. If p -restricted edge-cuts of G exist, then G is said to be λp -connected . When

G is λp -connected, the p-restricted edge-connectivity of G , λp ( G ), is defined as follows: 

λp (G ) = min 

S⊂E(G ) 
{| S| : S is a p-restricted edge-cut of G } . 

If G is λq -connected for some q > p , note that G is λp -connected and λp ( G ) ≤λq ( G ) holds. When p = 1 , λp (G ) = λ1 (G ) is

the standard edge-connectivity λ( G ); and for the case p = 2 , λ2 ( G ) is usually known as the edge-superconnectivity of G (also

denoted λ′ ( G )). A p -restricted edge-cut of cardinality λp ( G ) is called a λp -cut . When p -restricted edge-cuts of G exist, G is
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said to be super- λp if the deletion from G of any λp -cut S yields a graph G − S that has at least one component with exactly

p vertices. If G is super- λp and also λq -connected for some q > p , observe that λp ( G ) < λq ( G ) necessarily. For the case p = 1 ,

saying that G is super- λ1 and that G is edge-superconnected are synonyms. 

The optimization of λp ( G ) requires an upper bound. Let 

ξp (G ) = min 

X⊂V (G ) 
{| ω G (X ) | : | X | = p, G [ X ] is connected } . 

It has been shown that λp ( G ) ≤ ξ p ( G ) for many graphs [4,6,16,21,28,30] and sufficient conditions to establish that λp (G ) =
ξp (G ) have been given in [4,18,26] among others. 

It is worth noting that attaining super- λp property implies minimizing the number of minimum p -restricted edge-cuts

(see [23] for the case p = 1 ). In general, to determine whether a graph is super- λp is a hard problem, and only some special

graphs have been shown to possess the super- λp property. 

Fàbrega and Fiol also proposed the concept of p -restricted (vertex-)connectivity κp and some results for this kind of

connectivity have been obtained in [2,3,27,29] . Other kind of connectivity measures involving both vertices and edges are

studied in [11,19] , for instance. Hellwig and Volkmann [17] provide a comprehensive survey of sufficient conditions for a

graph to achieve lower bounds on other index of connectivities. 

In this paper , we are interested in studying the p -restricted edge-connectivity of Kneser graphs , which are a class of

graphs introduced by Lovász [20] to prove Kneser’s conjecture . Given integers n ≥ k ≥ 1, the Kneser graph K ( n , k ) is the graph

whose vertices are the k -subsets of the set { 1 , . . . , n } , two vertices being adjacent if and only if they correspond to disjoint

subsets. Therefore, K ( n , k ) has 
(

n 
k 

)
vertices, and has no edges in case that n < 2 k . When n ≥ 2 k , K ( n , k ) is 

(
n −k 

k 

)
-regular, then

it has 
(

n 
k 

)(
n −k 

k 

)
/ 2 edges; hence for the case n = 2 k, K ( n , k ) consists of a set of 

(
n 
k 

)
/ 2 independent edges. Note that K ( n , 1) is

the complete graph on n vertices and also that K (5, 2) is the Petersen graph. 

A number of structural properties are known for K ( n , k ). Chen and Lih [10] showed that Kneser graphs are vertex- and

edge-transitive . Valencia-Pavon and Vera [25] showed that the diameter of K ( n , k ) is equal to 
 (k − 1) / (n − 2 k ) � + 1 . When

n ≥ 2 k , Lovász [20] proved that the chromatic number of K ( n , k ) is n − 2 k + 2 . Many of these results can be checked in

the book by Aigner and Ziegler [1] ; for instance, the clique number of K ( n , k ) is � n / k � , and its independence number is(
n −1 
k −1 

)
. It has long been conjectured that K ( n , k ) is Hamiltonian (with the exception of K (5, 2)) for n > 2 k , and this was

verified by Shields and Savage [22] for n ≤ 27. It is also worth noting that the Kneser graph K ( n , 2) is distance-regular with

intersection array { (n − 2)(n − 3) / 2 , 2 n − 8 ; 1 , (n − 3)(n − 4) / 2 } (see [24] , p. 86). Brouwer and Haemers proved in [8] that

distance-regular graphs are edge-superconnected, then K ( n , 2) is edge-superconnected. 

Concerning the connectedness of Kneser graphs the following results were obtained in [7] . Note that K ( n , k ) is connected

whenever n ≥ 2 k + 1 , since it has a finite diameter (see again [25] ). 

Theorem 1.1 ( [7] ) . Let n , k be two integers, n ≥ 2 k + 1 ≥ 5 . The following statements hold: 

(i) the graph K ( n , k ) is maximally connected; that is, its (vertex-)connectivity is equal to 
(

n −k 
k 

)
; 

(ii) the graph K ( n , 2) is (vertex-)superconnected; 

(iii) the (vertex-)superconnectivity of K ( n , 2) is equal to 
(

n 
2 

)
− 6 . 

The paper (Section 2) is organized into two subsections as follows. S ection 2.1 is devoted to prove for G = K(n, k ) that

there exists some n 0 ≥ 2 k + 1 such that G is λp -connected and satisfies λp ≤ ξ p for all n ≥ n 0 and all 1 ≤ p ≤� | V ( G )|/2 � ; more-

over, we prove that n 0 = 5 when k = 2 . In Section 2.2 we focus on G = K(n, 2) , approaching the problem of finding for which

values of 1 ≤ p ≤� | V ( G )|/2 � the optimal result λp = ξp holds, and we study if G is super- λp in the affirmative case. This is

done by computing the exact values of ξ p for all 1 ≤ p ≤� | V ( G )|/2 � , from where all the values of λp will follow. 

For the sake of simplicity, most of quantities defined for a graph G will be written from now on without any explicit

reference to G , unless it is necessary; for instance, κ , λ, ω( X ) will be written instead of κ( G ), λ( G ), ω G ( X ), respectively. 

2. Results 

2.1. λp ≤ ξ p for K(n, k) 

Let G 1 , . . . , G s be s copies of a complete graph K t . The graph denoted as G 

∗
s,t is obtained by adding a new vertex u and

joining u to every vertex in V ( G i ), i = 1 , . . . , s . In [30] it is proved the following result. 

Theorem 2.1 ( [30] ) . Let G be a connected graph with order at least 2(δ(G ) + 1) which is not isomorphic to any G 

∗
s,t with

t = δ(G ) . Then for any p ≤ δ(G ) + 1 , G has p-restricted edge-cuts and λp ( G ) ≤ ξ p ( G ) . 

In the following statement we prove a similar result for graphs of order less than 2(δ(G ) + 1) . 

Lemma 2.1. Let G be a connected graph with vertex connectivity κ and order ν ≤ 2 κ − 1 . Then G is λp -connected and λp ≤ ξ p 

for all integer p such that 1 ≤ p ≤� ν/2 � . 
Proof. Let X ⊂ V ( G ) satisfying | X| = p, G [ X ] connected and ω(X ) = ξp . Then G − X is connected because | X| = p ≤ � ν/ 2 � ≤
� (2 κ − 1) / 2 � = κ − 1 . Moreover, | V (G ) \ X| = ν − p ≥ ν − � ν/ 2 � = 
 ν/ 2 � ≥ p. Hence, ω(X ) = [ X, V (G ) \ X] is a p -restricted

edge-cut yielding that G is λp -connected and λp ≤ ξ p . �
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We now apply the above results to Kneser graphs K ( n , k ). 

Theorem 2.2. Let n , k be two integers, n ≥ 2 k + 1 ≥ 5 , G = K(n, k ) , and p be an integer. Then G is λp -connected and λp ≤ ξ p if 

(i) 
(

n 
k 

)
≥ 2 

(
n −k 

k 

)
+ 2 for 1 ≤ p ≤

(
n −k 

k 

)
+ 1 . 

(ii) 
(

n 
k 

)
≤ 2 

(
n −k 

k 

)
+ 1 for 1 ≤ p ≤� | V ( G )|/2 � . 

Proof. Since n ≥ 2 k + 1 , G = K(n, k ) is connected. Let ν = 

(
n 
k 

)
and d = 

(
n −k 

k 

)
be the order and degree of G , respectively. If

ν ≥ 2 d + 2 , then G is λp -connected and λp ≤ ξ p for p ≤ d + 1 by Theorem 2.1 because clearly G is not isomorphic to G 

∗
s,t .

Hence item ( i ) holds. If ν ≤ 2 d − 1 , then G is λp -connected and λp ≤ ξ p by Lemma 2.1 , as κ = d by Theorem 1.1 . Therefore

it remains to study for item ( ii ) the case when either ν = 2 d or ν = 2 d + 1 . The former case 
(

n 
k 

)
= 2 

(
n −k 

k 

)
is not possible

because 
(

n 
k 

)
= 

∑ k 
i =1 

(
n −i 
k −1 

)
+ 

(
n −k 

k 

)
and 

∑ k 
i =1 

(
n −i 
k −1 

)
� = 

(
n −k 

k 

)
. The latter case 

(
n 
k 

)
= 2 

(
n −k 

k 

)
+ 1 only holds when n = 7 and k = 2 ;

for the rest of values of n , k we also have 
∑ k 

i =1 

(
n −i 
k −1 

)
� = 

(
n −k 

k 

)
+ 1 . When n = 7 and k = 2 let us take the following set of

vertices: 

X = { x 1 = { 1 , 2 } , x 2 = { 3 , 4 } , x 3 = { 5 , 6 } , x 4 = { 1 , 7 } , x 5 = { 2 , 4 } , 
x 6 = { 3 , 5 } , x 7 = { 6 , 7 } , x 8 = { 2 , 7 } , x 9 = { 1 , 6 } , x 10 = { 4 , 5 }} . 

It is not difficult to check that for all p = 1 , . . . , �| V (G ) | / 2 � = 10 , both X p = { x 1 , . . . , x p } ⊆ X and G − X p induce connected

subgraphs of G , with | ω(X p ) | = ξp . Hence, item( ii ) holds, and the proof is complete. �

Observe from the above theorem that for all k ≥ 2 there exists an integer n 0 ≥ 2 k + 1 such that for all n ≥ n 0 , G = K(n, k )

is λp -connected and λp ≤ ξ p for all p with 1 ≤ p ≤� | V ( G )|/2 � . In the following corollary we prove that n 0 = 5 when k = 2 . 

Corollary 2.1. Let n ≥ 5 be an integer, G = K(n, 2) , and p be an integer such that 1 ≤ p ≤� | V ( G )|/2 � . Then G is λp -connected and

λp ≤ ξ p . 

Proof. The result follows from Theorem 2.2 ( ii ) when n ≥ 7. When n = 5 , 6 , from Theorem 2.2 ( i ) we have that G is λp -

connected and λp ≤ ξ p for p ≤
(

n −2 
2 

)
+ 1 . This implies that the result is valid for 1 ≤ p ≤� | V ( G )|/2 � when n = 6 ; and when n =

5 the result holds for 1 ≤ p ≤ 4. Thus, the only remaining case is n = p = 5 = | V (G ) | / 2 . The graph G = K(5 , 2) is isomorphic

to Petersen graph and it can be described as two disjoint cycles of length 5 joined by a matching. Hence G is λ5 -connected

and λ5 ≤ ξ5 = 5 , ending the proof. �

2.2. λp -optimality and super- λp in K(n, 2) 

Let G be a λp -connected graph and let X ⊂ V ( G ) with | X | ≥ p such that ω G ( X ) is a λp -cut. Then, X is called a λp -fragment

of G . Define 

r p (G ) = min 

X⊂V (G ) 
{| X | : X is a λp -fragment of G } . 

Clearly, p ≤ r p ( G ) ≤� | V ( G )|/2 � . A λp -fragment X is called a λp -atom of G when | X| = r p (G ) . Next, we recall a result obtained by

Wang et al. [28] , where λp -connected (q + 1) -clique-free graphs were nicely addressed. Then a first result for the equality

of λp ( K ( n , 2)) and ξ p ( K ( n , 2)) will follow quite straightforwardly for some values of p . 

Theorem 2.3. ( [28] ) Let G be a λp -connected and (q + 1) -clique-free graph. If λp ( G ) < ξ p ( G ), then r p (G ) ≥ max { p + 1 , q 
q −1 δ(G ) −

p − 1 } . 
Proposition 2.1. Let n ≥ 7 be an integer and G = K(n, 2) . Then λp = ξp if 

p ≤

⎧ ⎨ 

⎩ 

n (n − 5) 

4 

− 2 , if n is even 

[1 ex ] 
(n − 1)(n − 4) 

4 

− 2 , if n is odd . 

Proof. We know that G is a (q + 1) -clique-free graph, where q = � n/ 2 � . First, suppose that n is even. Suppose p ≤ n (n −5) 
4 − 2

and λp < ξ p . From Theorem 2.3 it follows that r p (G ) ≥ max { p + 1 , q 
q −1 

(
n −2 

2 

)
− p − 1 } , yielding that r p (G ) ≥ q 

q −1 

(
n −2 

2 

)
− p −

1 ≥ n 
n −2 

(
n −2 

2 

)
− n (n −5) 

4 + 1 = 

1 
2 

(
n 
2 

)
+ 1 = 

| V (G ) | 
2 + 1 , an absurdity. Similarly, when n is odd and p ≤ (n −1)(n −4) 

4 − 2 we have

r p (G ) ≥ q 
q −1 

(
n −2 

2 

)
− p − 1 ≥ n −1 

n −3 

(
n −2 

2 

)
− (n −1)(n −4) 

4 + 1 = 

1 
2 

(
n 
2 

)
+ 1 which is again a contradiction. Hence, λp ≥ ξ p , and by

Corollary 2.1 we can conclude that λp = ξp . �

For K ( n , 2), our objectives now are to compute λp for all 1 ≤ p ≤� | V ( K ( n , 2))|/2 � (extending the result in Proposition 2.1 ),

and to study when K ( n , 2) is super- λp . As we show in the following lemma for a general graph G , these objectives can be

reached provided that the values of ξ p ( G ) are known for all 1 ≤ p ≤� | V ( G )|/2 � . In the rest of the paper, by 
(

V (G ) 
p 

)
we denote

the set of those subsets of V ( G ) having cardinality p . 
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Lemma 2.2. Let G be a λp -connected graph with λp ≤ ξ p for all 1 ≤ p ≤� | V ( G )|/2 � . The following statements hold: 

(i) λp = min { ξq : p ≤ q ≤ �| V (G ) | / 2 �} . 
(ii) For p = �| V (G ) | / 2 � it follows that λp = ξp and G is super- λp . 

(iii) For p ≤ �| V (G ) | / 2 � − 1 it follows that: 

1) λp = ξp if and only if ξ p ≤ ξ q for all q such that p < q ≤� | V ( G )|/2 � . 
2) λp = ξp and G is super- λp if and only if ξ p < ξ q for all q such that p < q ≤� | V ( G )|/2 � . 

Proof. ( i ) Let t = r p (G ) be the cardinality of a λp -atom of G . Clearly p ≤ t ≤� | V ( G )|/2 � . Let X ∈ 

(
V (G ) 

t 

)
be such that ω( X ) is

a λp -cut (note that | V (G ) \ X| = | V (G ) | − t ≥ | V (G ) | − �| V (G ) | / 2 � ≥ �| V (G ) | / 2 � ≥ p), then λp = | ω(X ) | ≥ ξt . But λp ≤λt ≤ ξ t ,

hence λp = ξt . Suppose next that there exists some integer q such that p ≤ q ≤� | V ( G )|/2 � and ξ q < ξ t . Then 

ξq < ξt = λp ≤ λq ≤ ξq , 

that is, ξ q < ξ q , an absurdity. As a consequence, ξ t ≤ ξ q for all p ≤ q ≤� | V ( G )|/2 � and therefore 

λp = ξt = min { ξq (G ) : p ≤ q ≤ �| V (G ) | / 2 �} , 
as claimed in ( i ). 

When p = �| V (G ) | / 2 � we have λp = ξp by ( i ), and note that every p -restricted edge-cut ω( Y ) is such that | Y | = p or

| V (G ) \ Y | = p. As a consequence, G is super- λp . This proves item ( ii ). 

Item ( iii .1) follows directly from ( i ). For ( iii .2), if λp = ξp and G is super- λp then ξp = λp < λq ≤ ξq for all q > p , hence

ξ p < ξ q . Conversely, suppose that ξ p < ξ q for all q > p . Then λp = ξp follows from ( i ). Moreover, if G is not super- λp , we can

consider some Y ⊂ V ( G ) such that | Y | ≥ p + 1 , | V (G ) \ Y | ≥ p + 1 , G [ Y ] and G − Y are both connected and | ω(Y ) | = λp . Setting

m = min {| Y | , | V (G ) \ Y |} it follows that 

ξp = λp ≥ ξm 

> ξp , 

again an absurdity. Then G must be super- λp , ending the proof of ( iii .2). �

As G = K(n, 2) is a regular graph, minimizing the cardinality of ω( X ) among all sets X ⊂ V ( G ) on p vertices that induce a

connected subgraph is equivalent to finding such a set X which maximizes | E ( G [ X ])|. In the following result we present a set

X ∗p of p vertices (for each 1 ≤ p ≤� | V ( G )|/2 � ) with large | E(G [ X ∗p ]) | , for which we will finally prove that ξp (G ) = ω(X ∗p ) . 

Proposition 2.2. Let n ≥ 5 be an integer, and let G = K(n, 2) . For all integers 1 ≤ p ≤� | V ( G )|/2 � there exists a set X ∗p ∈ 

(
V (G ) 

p 

)
such

that G [ X ∗p ] is connected and 

| E(G [ X 

∗
p ]) | = 

1 

2 

(
p 2 + � 2 p/n � (1 + � 2 p/n � ) n − p(1 + 4 � 2 p/n � ) ). 

Proof. Suppose first that n ≥ 6 is even. The following partition of V ( K ( n , 2)) is direct from some related known results, see

for instance Baranyai’s Theorem ( [5] ): 

V (K(n, 2)) = E 1 ∪ · · · ∪ E n −1 , 

where the following statements hold for all i = 1 , . . . , n − 1 : 
• E i ∩ E j = ∅ , for all j � = i ;
• |E i | = n/ 2 ;
• e k ∩ e l = ∅ , for all distinct e k , e l ∈ E i ;
• the union of all elements of E i is equal to { 1 , . . . , n } . 

(1) 

Let p be an integer, 1 ≤ p ≤� | V ( G )|/2 � , and set c = � p/ (n/ 2) � = � 2 p/n � , for which 0 ≤ c ≤ n/ 2 − 1 < n − 1 . Hence we write

p = c n 2 + r, where 0 ≤ r ≤ n 
2 − 1 . Suppose c ≥ 1 and consider the set X ∗p of p vertices defined as 

X 

∗
p = E 1 ∪ · · · ∪ E c ∪ R, 

where R ⊂ E n −1 is any subset of cardinality r . Observe that each E i induces a clique in G of cardinality n 
2 , and R (if nonempty)

induces a complete graph on r vertices. Hence 

| E (G [ E i ]) | = 

1 

2 

n 

2 

(
n 

2 

− 1 

)
, | E (G [ R ]) | = 

1 

2 

r(r − 1) . 

As the union of all elements of E i is equal to { 1 , . . . , n } , note that each vertex in E j is adjacent to exactly n 
2 − 2 vertices in

E i , for i � = j ; and analogously, each vertex in R is adjacent to exactly n 
2 − 2 vertices in E i . As a consequence we have: 

| E(G [ X 

∗
p ]) | = 

c ∑ 

i =1 

| E(G [ E i ]) | + | E(G [ R ]) | + 

c ∑ 

i =1 

| [ R, E i ] | 

+ 

∑ 

1 ≤ j<i ≤c 

| [ E i , E j ] | 
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= c 
1 

2 

n 

2 

(
n 

2 

− 1 

)
+ 

1 

2 

r(r − 1) + rc 

(
n 

2 

− 2 

)
+ 

1 

2 

c(c − 1) 
n 

2 

(
n 

2 

− 2 

)
= 

1 

2 

(
p 2 + � 2 p/n � (1 + � 2 p/n � ) n − p(1 + 4 � 2 p/n � ) 

)
, 

last expression obtained after replacing c with � 2 p / n � and r with p − � 2 p/n � n 2 . Note that this expression for | E(G [ X ∗p ]) | still

holds when c = 0 , where X ∗p = R is taken. Observe that G [ X ∗p ] is connected by construction. Hence the proof is complete

when n is even. 

Next we consider the case when n ≥ 5 is odd. Note that (1) can be applied to V (K(n + 1 , 2)) yielding V (K(n + 1 , 2)) =
E 1 ∪ · · · ∪ E n . Observe that after a suitable relabeling of the elements of { 1 , . . . , n + 1 } and, if necessary, a reordering of sets

E 1 , . . . , E n , we can assume that 

{ i, n + 1 } ∈ E i for all i = 1 , . . . , n ; and E n = { t j = { 2 j − 1 , 2 j} : j = 1 , . . . , (n + 1) / 2 } . 
By defining O i = E i \ { i, n + 1 } for all i = 1 , . . . , n, from (1) we can write 

V (K(n, 2)) = O 1 ∪ · · · ∪ O n , 

where O n = { t j = { 2 j − 1 , 2 j} : j = 1 , . . . , (n − 1) / 2 } 
and where the following statements hold for all i = 1 , . . . , n : 
• O i ∩ O j = ∅ , for all j � = i ;
• |O i | = (n − 1) / 2 ;
• e k ∩ e l = ∅ , for all distinct e k , e l ∈ O i ;
• the union of all elements of O i is equal to { 1 , . . . , n } \ { i } . 

(2)

Let p be an integer, 1 ≤ p ≤� | V ( G )|/2 � , set c = � p 
(n −1) / 2 

� = � 2 p/ (n − 1) � , 0 ≤ c ≤ (n − 1) / 2 < n, and write p = c n −1 
2 + r,

where 0 ≤ r ≤ n −1 
2 − 1 . Suppose c ≥ 1 and consider the set of p vertices X ∗p defined as 

X 

∗
p = O 1 ∪ · · · ∪ O c ∪ R, 

where R = { t j = { 2 j − 1 , 2 j} : j = 1 , . . . , r} ⊂ O n . Again 

| E (G [ O i ]) | = 

1 

2 

n − 1 

2 

(
n − 1 

2 

− 1 

)
, | E (G [ R ]) | = 

1 

2 

r(r − 1) 

because the respective induced subgraphs are complete. Furthermore, all but one vertices in O j are adjacent to exactly
n −1 

2 − 2 vertices in O i = E i \ { i, n + 1 } , for i � = j ; and one only vertex in O j is adjacent to n −1 
2 − 1 vertices in O i , precisely a

vertex of the kind { i , α}, with α ∈ { 1 , . . . , n } \ { i, j} . Then, for all 1 ≤ j < i ≤ c we have 

| [ O i , O j ] | = 1 + 

n − 1 

2 

(
n − 1 

2 

− 2 

)
. 

Notice now that vertex t j = { 2 j − 1 , 2 j} ∈ R is adjacent to exactly n −1 
2 − 2 vertices in O i for all i ∈ { 1 , . . . , c} \ { 2 j − 1 , 2 j} ,

and t j = { 2 j − 1 , 2 j} ∈ R is adjacent to n −1 
2 − 1 vertices in O 2 j−1 and to n −1 

2 − 1 vertices in O 2 j whenever 2 j − 1 ≤ c or 2 j ≤ c

respectively. Therefore, 

∑ c 
i =1 | [ R, O i ] | = 

{
rc 

(
n −1 

2 
− 2 

)
+ 2 r, if c > 2 r 

rc 
(

n −1 
2 

− 2 

)
+ c, if c ≤ 2 r 

= rc 
(

n −1 
2 

− 2 

)
+ min { 2 r, c} . 

Then we have: 

| E(G [ X 

∗
p ]) | = 

c ∑ 

i =1 

| E(G [ O i ]) | + | E(G [ R ]) | + 

c ∑ 

i =1 

| [ R, O i ] | 

+ 

∑ 

1 ≤ j<i ≤c 
| [ O i , O j ] | 

= c 
1 

2 

n − 1 

2 

(
n − 1 

2 

− 1 

)
+ 

1 

2 

r(r − 1) + rc 

(
n − 1 

2 

− 2 

)
+ min { 2 r, c} 

+ 

1 

2 

c(c − 1) 
(

1 + 

n − 1 

2 

(
n − 1 

2 

− 2 

))
= 

1 

2 

(
p 2 + � 2 p/ (n − 1) � (1 + � 2 p/ (n − 1) � ) n − p(1 + 4 � 2 p/ (n − 1) � ) 

)
−c + min { 2 r, c} . (3)

Observe again that this expression for | E(G [ X ∗p ]) | still holds when c = 0 , where X ∗p = R . Note that G [ X ∗p ] is connected by

construction. 
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We continue by discussing on the sign of c − 2 r. When c − 2 r ≤ 0 we have 
⌊

2 p 
n −1 

⌋
n − 2 p ≤ 0 , that is, 

⌊
2 p 

n −1 

⌋
≤ 2 p 

n . As
2 p 
n < 

2 p 
n −1 it follows that 

⌊
2 p 
n 

⌋
= 

⌊
2 p 

n −1 

⌋
. Since min { 2 r, c} = c, by replacing 

⌊
2 p 
n 

⌋
with 

⌊
2 p 

n −1 

⌋
in (3) we get 

| E(G [ X 

∗
p ]) | = 

1 

2 

(
p 2 + � 2 p/n � (1 + � 2 p/n � ) n − p(1 + 4 � 2 p/n � ) 

)
, 

and the result follows in this case. 

When c − 2 r > 0 we have 
⌊

2 p 
n −1 

⌋
n − 2 p > 0 , hence 

⌊
2 p 

n −1 

⌋
> 

2 p 
n ≥

⌊
2 p 
n 

⌋
. Since we have 0 < 

2 p 
n −1 − 2 p 

n = 

p 
n (n −1) / 2 

≤ 1 
2 < 1 it

follows that 
⌊

2 p 
n −1 

⌋
= 1 + 

⌊
2 p 
n 

⌋
. As −c + min { 2 r, c} = 2 r − c = 2 p −

⌊
2 p 

n −1 

⌋
n, replacing 

⌊
2 p 

n −1 

⌋
with 1 + 

⌊
2 p 
n 

⌋
in (3) we obtain 

| E(G [ X 

∗
p ]) | = 

1 
2 

(
p 2 + (1 + � 2 p/n � )(2 + � 2 p/n � ) n − p(1 + 4(1 + � 2 p/n � ) 

)
+2 p − (1 + � 2 p/n � ) n 

= 

1 
2 

(
p 2 + � 2 p/n � (1 + � 2 p/n � ) n − p(1 + 4 � 2 p/n � ) 

)
, 

proving the result also in this case. The proof is so complete. �

The following theorem makes use of the adjacency matrix of K ( n , 2), and its proof follows similar lines of reasoning

as those used for this topic in the literature (see, for instance, [14,15] ). With this theorem we deduce the exact value of

ξ p ( K ( n , 2)) for all possible p . 

Theorem 2.4. Let n ≥ 5 be an integer, G = K(n, 2) , and let p be an integer such that 1 ≤ p ≤� | V ( G )|/2 � . Then it follows that 

max 

{
| E(G [ X ]) | : X ∈ 

(
V (G ) 

p 

)}
= | E(G [ X 

∗
p ]) | , 

where X ∗p ∈ 

(
V (G ) 

p 

)
is the set of vertices given in Proposition 2.2 . As a consequence, 

ξp = p 

(
n − 2 

2 

)
− p 2 − � 2 p/n � (1 + � 2 p/n � ) n + p(1 + 4 � 2 p/n � ) . 

Proof. Note that G is connected because n ≥ 5. Set V (G ) = { v 1 , . . . , v N } , with N = | V (G ) | = n (n − 1) / 2 , and consider some

X ∈ 

(
V (G ) 

p 

)
. Let us represent set X of cardinality p as 

Z X = [ t 1 t 2 · · · t N ] T , with t j = 

{
1 , if v j ∈ X 

0 , if v j �∈ X 

for all j = 1 , . . . , N. 

If A is the adjacency matrix of G , it is known (see [15] for a proof) that its eigenvalues are 

λ1 = 

(
n − 2 

2 

)
> λ2 = · · · = λm +1 = 1 > λm +2 = · · · = λN = −(n − 3) , 

where m = n (n − 3) / 2 . Then, we can write 

Z X = Z 1 + Z 2 + Z 3 , with 

{ 

Z T 
i 

Z j = 0 , for all i � = j 
Z 1 = 

p 
N 

1 

AZ 1 = 

(
n −2 

2 

)
Z 1 , AZ 2 = Z 2 , AZ 3 = −(n − 3) Z 3 , 

(4) 

where 1 is a column matrix full of ones, with N rows. Notice that 

p = Z T X Z X = Z T 1 Z 1 + Z T 2 Z 2 + Z T 3 Z 3 , hence Z T 2 Z 2 = p − Z T 1 Z 1 − Z T 3 Z 3 . 

Since AZ X = 

(
n −2 

2 

)
Z 1 + Z 2 − (n − 3) Z 3 , it turns out that 

2 | E(G [ X ]) | = Z t X AZ X = 

(
n −2 

2 

)
Z T 1 Z 1 + Z T 2 Z 2 − (n − 3) Z T 3 Z 3 

= 

(
n −2 

2 

)
Z T 1 Z 1 + 

(
p − Z T 1 Z 1 − Z T 3 Z 3 

)
− (n − 3) Z 3 Z 

T 
3 

= p + 

((
n −2 

2 

)
− 1 

)
Z T 1 Z 1 − (n − 2) Z T 3 Z 3 , 

once replaced Z T 2 Z 2 with p − Z T 1 Z 1 − Z T 3 Z 3 . As Z T 1 Z 1 = 

p 
N 1 

T · p 
N 1 = 

p 2 

N , we get 

2 | E(G [ X ]) | = p + 

((
n −2 

2 

)
− 1 

)
p 2 

N 
− (n − 2) Z T 3 Z 3 

= p + ( 1 − 4 /n ) p 2 − (n − 2) Z T 3 Z 3 . 
(5) 

Let us next compute Z T 
3 

Z 3 in a more useful manner. To this end, for all j ∈ { 1 , . . . , n } , let Y j be a column matrix on N rows,

with i -row entry equal to one if j ∈ v i (that is, when v i = { j, 	 } for some 	 � = j ), and zero otherwise (note that Y j has exactly

n − 1 ones). Since for all j ∈ { 2 , . . . n } we have 

(Y j − Y 1 ) 
T · 1 = Y T j · 1 − Y T 1 · 1 = (n − 1) − (n − 1) = 0 , 
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following [14] (p. 34) we conclude that 

{ Y j − Y 1 : j = 2 , . . . , n } is a basis of the eigenspace associated to eigenvalue −(n − 3) . 

Therefore, there must exist some μ2 , . . . , μn ∈ R such that 

Z 3 = 

n ∑ 

j=2 

μ j (Y j − Y 1 ) . 

Since (Y i − Y 1 ) 
T (Y j − Y 1 ) = 

{
2(n − 2) , if i = j 

n − 2 , if i � = j 
, we can write 

Z T 3 Z 3 = 

n ∑ 

i =2 

n ∑ 

j=2 

μi μ j (Y i − Y 1 ) 
T (Y j − Y 1 ) = (n − 2) [ μ2 · · · μn ](I + J ) 

⎡ 

⎣ 

μ2 

. . . 
μn 

⎤ 

⎦ , 

where I is the identity matrix of order n − 1 , and J is a square matrix of order n − 1 full of ones. In order to obtain the

values of μ2 , . . . , μn , we compute next (Y i − Y 1 ) 
T Z 3 in two different ways, for all i = 2 , . . . , n . First, 

(Y i − Y 1 ) 
T Z 3 = 

n ∑ 

j=2 

μ j (Y i − Y 1 ) 
T (Y j − Y 1 ) = (n − 2) 

( 

2 μi + 

n ∑ 

j =2 , j � = i 
μ j 

) 

. 

Secondly, taking into account that (Y i − Y 1 ) 
T Z 1 = (Y i − Y 1 ) 

T Z 2 = 0 by (4) : 

(Y i − Y 1 ) 
T Z 3 = (Y i − Y 1 ) 

T Z X = σi − σ1 , 

where σ j (for all j ∈ { 1 , . . . , n } ) is the number of elements in X ∈ 

(
V (G ) 

p 

)
of the kind { j , h }, with h � = j . Note then that 

∑ n 
j=1 σ j =

2 p. By combining these two expressions of (Y i − Y 1 ) 
T Z 3 we get 

2 μi + 

n ∑ 

j =2 , j � = i 
μ j = 

σi − σ1 

n − 2 

for all i = 2 , . . . , n ;

or, in matrix form, 

(I + J ) 

⎡ 

⎣ 

μ2 

. . . 
μn 

⎤ 

⎦ = 

1 

n − 2 

⎡ 

⎣ 

σ2 − σ1 

. . . 
σn − σ1 

⎤ 

⎦ . 

As (I + J ) T = I + J and (I + J ) −1 = I − 1 
n J it follows for Z T 

3 
Z 3 t hat: 

Z T 3 Z 3 = (n − 2) [ μ2 · · · μn ](I + J ) T 
(
I − 1 

n 
J 
)

(I + J ) 

⎡ 

⎣ 

μ2 

. . . 
μn 

⎤ 

⎦ 

= 

1 
n −2 

( 

n ∑ 

j=2 

(σ j − σ1 ) 
2 − 1 

n 

(
n ∑ 

j=2 

(σ j − σ1 ) 

)2 
) 

, 

which, after some algebra, can be written as 

Z T 3 Z 3 = 

1 

n (n − 2) 

∑ 

1 ≤i< j≤n 

(σi − σ j ) 
2 . 

The minimum possible value of 
∑ 

1 ≤i< j≤n (σi − σ j ) 
2 occurs for the most possible balanced distribution of σ j ’s: when

( � 2 p/n � + 1 ) n − 2 p elements in { σ1 , . . . , σn } are equal to � 2 p / n � , the remaining 2 p − � 2 p/n � n elements in { σ1 , . . . , σn } being

equal to � 2 p/n � + 1 . That is, ∑ 

1 ≤i< j≤n 

(σi − σ j ) 
2 ≥ ( ( � 2 p/n � + 1 ) n − 2 p ) ( 2 p − � 2 p/n � n ) . 

Hence, coming back to expression (5) : 

2 | E(G [ X ]) | ≤ p + ( 1 − −4 /n ) p 2 − 1 

n 

( ( � 2 p/n � + 1 ) n − 2 p ) ( 2 p − � 2 p/n � n ) . 
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It takes a few calculations to see that the right hand side of this inequality is precisely equal to 2 | E(G [ X ∗p ]) | . As a conse-

quence, 

max 

{
2 | E(G [ X ]) | : X ∈ 

(
V (G ) 

p 

)}
= 2 | E(G [ X 

∗
p ]) | . 

Since G [ X ∗p ] is connected and G is 
(

n −2 
2 

)
-regular we finally obtain 

ξp = | ω(X 

∗
p ) | = p 

(
n − 2 

2 

)
− 2 | E(G [ X 

∗
p ]) | , 

and the proof ends by replacing | E(G [ X ∗p ]) | with the value given by Proposition 2.2 . �

From both Lemma 2.2 and Theorem 2.4 we get the following theorem, which constitutes the main result of this work. 

Theorem 2.5. Let n ≥ 5 be an integer, G = K(n, 2) , and p be any integer such that 1 ≤ p ≤� | V ( G )|/2 � . Then, the following state-

ments hold: 

(i) λp = ξp+1 = ξp − 1 < ξp when n ≡ 1 ( mod 4) and p = � | V (G ) | / 2 � − 1 . 

(ii) λp = ξp but G is not super- λp in the following cases: n = 6 and p = 5 ; n ≡ 1 ( mod 4) and p = � | V (G ) | / 2 � − 2 ; n ≡ 3 ( mod 4)

and p = � | V (G ) | / 2 � − 1 . 

(iii) λp = ξp and G is super- λp for all values of n , p not considered in ( i ), ( ii ) . 

Proof. By Lemma 2.2 ( ii ), when p = �| V (G ) | / 2 � it turns out that λp = ξp and G is super- λp , so the statement holds for this

value of p . Suppose then 1 ≤ p ≤ �| V (G ) | / 2 � − 1 from now on. By Corollary 2.1 , G is λp -connected and λp ≤ ξ p . 

Let us consider n = 5 , 6 , 7 , for which we get all possible values of ξ p from Theorem 2.4 . When n = 5 ≡ 1 (mod 4) and

1 ≤ p ≤ �| V (G ) | / 2 � = 5 : 

p 1 2 3 4 5 

ξp 3 4 5 6 5 

From Lemma 2.2 ( i ) we get λ1 = ξ1 , λ2 = ξ2 , λ3 = ξ3 and λ4 = ξ5 = ξ4 − 1 < ξ4 ; and by Lemma 2.2 ( iii .2), G is super- λp 

only when p = 1 , 2 . Hence the result holds. For n = 6 and 1 ≤ p ≤ �| V (G ) | / 2 � = 7 : 

p 1 2 3 4 5 6 7 

ξp 6 10 12 16 18 18 20 

Therefore, again from Lemma 2.2 ( iii ) it turns out that λp = ξp for all 1 ≤ p ≤ 6, and G is super- λp for all those values of

p except for p = 5 . And when n = 7 ≡ 3 (mod 4) and 1 ≤ p ≤ �| V (G ) | / 2 � = 10 we obtain 

p 1 2 3 4 5 6 7 8 9 10 

ξp 10 18 24 30 36 40 42 46 48 48 

Then, λp = ξp for all 1 ≤ p ≤ 9, and G is super- λp for all 1 ≤ p ≤ 8. 

So the statement holds for n = 5 , 6 , 7 . Take n ≥ 8 from now on, and let us next study the sign of ξp+1 − ξp for all 1 ≤ p ≤
�| V (G ) | / 2 � − 1 . 

n even : 

Let us write p = c n 2 + r, where c = 

⌊
2 p 
n 

⌋
and 

{
0 ≤ r ≤ n 

2 − 1 , if 0 ≤ c ≤ n −4 
2 ;

0 ≤ r ≤
⌊

n 
4 

⌋
− 1 , if c = 

n −2 
2 . 

Suppose first that 

⌊ 

2(p+1) 
n 

⌋ 

= 

⌊
2 p 
n 

⌋
= c. Hence from Theorem 2.4 we obtain: 

ξp+1 − ξp = 

(
n − 2 

2 

)
− c(n − 4) − 2 r. (6) 

Observe that 

⌊ 

2(p+1) 
n 

⌋ 

= 

⌊
2 p 
n 

⌋
implies r ≤ n 

2 − 2 when c ≤ n −4 
2 . Then, for all c ≤ n −2 

2 it follows easily from (6) that ξp+1 −
ξp > 0 . 

Suppose next that 

⌊ 

2(p+1) 
n 

⌋ 

= c + 1 > c = 

⌊
2 p 
n 

⌋
, then c ≤ n −4 

2 and r = 

n 
2 − 1 . Theorem 2.4 yields in this case: 

ξp+1 − ξp = 

(
n − 2 

2 

)
− (n − 4) c − (n − 2) ≥ n − 6 

2 

> 0 . 

Having obtained ξp+1 − ξp > 0 for all p when n ≥ 8 is even, we get 

ξ1 < · · · < ξ�| V (G ) | / 2 �−1 < ξ�| V (G ) | / 2 � . 
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Then Lemma 2.2 ( iii .2) allows us to assure that λp = ξp and G is super- λp for all p , and we are done for the case that n is

even. 

n odd : 

We write p = c n −1 
2 + r, with c = 

⌊
2 p 

n −1 

⌋
, 

{
0 ≤ r ≤ n −1 

2 − 1 , if 0 ≤ c ≤ n −3 
2 ;

0 ≤ r ≤
⌊

n −1 
4 

⌋
− 1 , if c = 

n −1 
2 . 

In this case, it is more convenient to use expression (3) for obtaining ξ p , instead of applying Theorem 2.4 directly. That

is, from ξp = p 
(

n −2 
2 

)
− 2 | E(G [ X ∗p ]) | and expression (3) we write 

ξp = p 

(
n − 2 

2 

)
− p 2 − c(c + 1) n + p(1 + 4 c) + 2 c − 2 min { 2 r, c} . (7)

Suppose first that 

⌊ 

2(p+1) 
n −1 

⌋ 

= 

⌊
2 p 

n −1 

⌋
= c. Hence from (7) it follows that: 

ξp+1 − ξp = 

(
n − 2 

2 

)
− c(n − 5) − 2 r + 2 min { 2 r, c} − 2 min { 2 r + 2 , c} . (8)

Observe that 

⌊ 

2(p+1) 
n −1 

⌋ 

= 

⌊
2 p 

n −1 

⌋
implies r ≤ n −1 

2 − 2 when c ≤ n −3 
2 . Then, for c ≤ n −1 

2 it follows easily from (8) that ξp+1 −
ξp > 0 , except for the following cases (for which 2 min { 2 r, c} − 2 min { 2 r + 2 , c} = −4 ): 

ξp+1 − ξp = −1 , when n ≡ 1 (mod 4) , c = 

n −1 
2 

, and r = 

n −1 
4 

− 1 ;
ξp+1 − ξp = 0 , when n ≡ 3 (mod 4) , c = 

n −1 
2 

, and r = 

n −3 
4 

− 1 . 

Indeed, for the former case we have 

ξp+1 − ξp = 

(
n − 2 

2 

)
− (n − 1)(n − 5) 

2 

− (n − 1) 

2 

− 2 = −1 < 0 ;

and for the latter, 

ξp+1 − ξp = 

(
n − 2 

2 

)
− (n − 1)(n − 5) 

2 

− (n − 3) 

2 

− 2 = 0 . 

Suppose next that 

⌊ 

2(p+1) 
n −1 

⌋ 

= c + 1 > c = 

⌊
2 p 

n −1 

⌋
, then c ≤ n −3 

2 and r = 

n −1 
2 − 1 . In this case expression (7) yields 

ξp+1 − ξp = 

(
n − 2 

2 

)
− (c + 1)(n − 3) − 2 ≥ n − 7 

2 

> 0 

because n ≥ 9 in the odd case. 

Let us gather together all these deductions for n ≥ 9 odd. Firstly, when n ≡ 1 ( mod 4) we have obtained ξp+1 − ξp > 0 for

all p except for the case p = �| V (G ) | / 2 � − 1 , where ξp+1 − ξp = ξ�| V (G ) | / 2 � − ξ�| V (G ) | / 2 �−1 = −1 . As it is easy to compute from

(3) , ξ�| V (G ) | / 2 � − ξ�| V (G ) | / 2 �−2 = 0 , that is, 

ξ1 < · · · < ξ�| V (G ) | / 2 �−2 < ξ�| V (G ) | / 2 �−1 > ξ�| V (G ) | / 2 � = ξ�| V (G ) | / 2 �−2 . 

Then from Lemma 2.2 ( i ) we have that λp = ξp for all p � = �| V (G ) | / 2 � − 1 , and among these values of p graph G is super-

λp for all p � = �| V (G ) | / 2 � − 2 , so the statement holds. Finally, when n ≡ 3 ( mod 4) we have obtained ξp+1 − ξp > 0 for all p

except for the case p = �| V (G ) | / 2 � − 1 , where ξp+1 − ξp = ξ�| V (G ) | / 2 � − ξ�| V (G ) | / 2 �−1 = 0 . Therefore, 

ξ1 < · · · < ξ�| V (G ) | / 2 �−2 < ξ�| V (G ) | / 2 �−1 = ξ�| V (G ) | / 2 � , 

and Lemma 2.2 states that λp = ξp holds for all p , G being super- λp for all those values of p except for p = �| V (G ) | / 2 � − 1 .

The proof is so complete. �
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