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Abstract. Significant progress has been made on computational contact mechanics over
the past decade. Many of the drawbacks that were inherent to the standard node-to-
segment element strategy, such as locking/over-constraint and non-physical jumps in the
contact forces due to the discontinuity of the contact surface, have been systematically
overcome. In particular, the formulation of the mortar finite element method [1], which
has allowed the establishment of efficient segment-to-segment approaches [2, 3] when ap-
plied to the discretization of a contact surface, has promoted significant advance. However,
the regularization schemes used with the mortar element (e.g. the Penalty method, the
Lagrange multipliers method or combination of them) still cause unwanted side-effects
such as: ill-conditioning, additional equations in the global system or a significant in-
crease in the computational time for solution. In order to circumvent these shortcomings,
Wohlmuth [4] has proposed the use of dual spaces for the Lagrange multipliers allow-
ing the local elimination of the contact constraints. As a consequence, the Lagrangian
multipliers can be conveniently condensed and no additional equations are needed for
the solution of the global system of equations. H’́ueber et al. [5], Hartmann et al. [6],
Popp et al.[7] and Gitterle et al [8]. have later combined this methodology with an active
set strategy and obtained improved results in terms of convergence rate. Despite the
successful application of the dual mortar formulation to contact problems, the advances
presented in the literature have, to the authors knowledge, only been employed for the
simulation of elastic problems. However, contact between bodies has a strong influence
in many applications (e.g., metal forming and cutting) where finite inelastic strains play
a crucial role. Therefore, the main goal of the present work is both the application and
assessment of the dual mortar method in problems where contact takes place coupled with
finite plastic strains.
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1 INTRODUCTION

The great majority of industrial processes involve plastic deformation of metallic bod-
ies. There are several manufacturing procedures to modify the shape (i.e. Extrusion,
U-Shaping, L-Shaping, Upsetting, etc) and they all share a common mechanism: the fric-
tional contact. The correct prediction of frictional forces is intimately related to the precise
computation of the normal contact forces. One of the most common methods to solve
a non-conforming contact contact problem is the standard node-to-segment Lagrangian
method. However the drawbacks inherent to the node-to-segment (NTS) approach, such
as locking/over-constraint and non-physical jumps in the contact forces due to the dis-
continuity of the contact surface, use to compromise the method’s results. Therefore, it
is possible to replace the strong pointwise non-penetration function by a weaker integral
condition through the use of dual spaces for the Lagrange multiplier [4]. This provides a
very efficient discretization approach for non-conforming meshes, and therefore, a more
accurate evaluation of the normal contact forces. The main goal in this work is to as-
sess how the Dual Mortar method behaves when the deformation field along the contact
surface evolves to the plastic zone. This paper is organized as follows: in Section 2, the
contact problem is presented by stating the boundary conditions, the contact kinematics
and the material model employed. In Section 3, the final equation system of the Dual
Mortar method is presented. Numerical examples comparing the Dual Mortar method
and the lagrangian method, are given in Section 4. Conclusion remarks are presented in
Section 5.

2 PROBLEM DEFINITION

Considering two solid bodies in the reference configuration, we denote them by Ωs and
Ωm, {Ωs ∪ Ωm = Ω : Ω ⊂ R

2}. The boundaries of subset Ω are divided in a contact zone
Γc, a Neumann part ΓN and a Dirichlet part ΓD, {Γc ∪ ΓN ∪ ΓD = Γ : Γ ⊂ R}. It is
assumed that ΓD has a non-zero measure. The boundary value problem, in terms of the
displacement vector u, is given as follows:

−∇ · (σ(u)) = f in Ω, (1)

u = 0 on ΓD (2)

σ (u)n = t, (3)

where f is the body forces over Ω and t are the prescribed tractions on the Neumann
boundary. The outward unit normal vector n on Γc is defined with respect to the slave
body Ωs. The stress tensor σ is obtained using the classical von Mises nonlinear model.
The yield function for the von Mises criterion can be defined as:

Φ(σ) =
√

J2 (S (σ))− τy, (4)

with J2 as the second principal invariant of the deviatoric stress tensor S = σ− pI, where
p is hydrostatic pressure, and τy as the shear stress tensor. The gap function g(X, t) is
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defined as the normal distance between a point x(1) over the slave surface (Γs) and a point
x(2) over the master surface (Γm) in the current configuration as

g(X, t) = −n[x(1)(X(1), t)] · [x(1)(X(1), t)− x̂(2)(X(2), t)]. (5)

Together with the normal contact pressure, λn (X, t), the gap function creates a set of
conditions known as the Kuhn-Karush-Tucker (KKT) conditions, which enforce a non-
penetration relation on the normal direction of Γc,

g(X, t) ≥ 0, λn ≤ 0, λng(X, t) = 0. (6)

In the tangential direction, the frictional conditions are given by the Coulomb’s law:

ψ := |tτ | − µ|λn| ≤ 0. (7)

Having stated these definitions, let v be virtual displacement vector and V the space of
test functions fulfilling the condition v = 0 on the Dirichlet boundary ΓD. Then, applying
the principle of virtual work to the boundary value problem and using the KKT conditions
(6), the energy problem is reduced to finding u ⊂ {us,um} ∈ V such that,

∂Π(u, δu) = ∂Πint,ext (u, δu) + ∂Πc (u, δu) = 0, (8)

where ∂Πint,ext (u, δu) represents the virtual work from the internal and external forces.
The contact virtual work, ∂Πc (u, δu), is obtained by the integration – over the slave side

– of the work done by the contact traction t
(1)
c ,

∂Πc (u, δu) = −

∫

Γs

t(1)c ·
(
δu(1) − δu(2)

)
dΓs. (9)

The next section presents the discretization procedures adopted for solving the contact
virtual work equation (9).

3 DISCRETIZATION

Since the lagrangian method has been extensively treated in the literature, the dis-
cretization procedure adopted for this method may be found in references such as Laursen
[9] and Wriggers [10]. The discretization using a dual basis for the lagrangian multipliers
adopted in this work is strongly based in the works of Hüeber et al. [5], Popp et al. [7]
and Gitterle et al. [8], however a remark – concerning the final equation system used –
must be made. Introducing the Lagrange multiplier, on the slave side, as the negative of
the contact traction λ = −t

(1)
c it is possible to rewrite equation (9) as,

δΠc (u, δu,λ) =

∫

γ
(1)

c

λ ·
(
δu(1) − δu(2)

)
dγ (10)

which represents a weak integral replacement of the strong pointwise non-penetration
condition. The matrix form of equation (8) was reduced to the following pure displacement
problem,
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[
KNN KNM KNI KNI

KMN + M̂T

AK̃AN K̃MM + M̂T

AK̃AM K̃MI + M̂T

AK̃AI K̃MA + M̂T

AK̃AA

KMA K̃IM K̃II K̃IA

0 M̃A S̃AI S̃AA

T̂AKAN T̂AK̃AN T̂AK̃AN − F̃AI T̂AK̃AN − F̃AI

] [
∆dN

∆dM

∆dI

∆dA

]

=

[
rN

rM + M̂T

ArA
rI
g̃A

T̂ArA

]

(11)

here, indexes N , M, I, A stands for the set of internal nodes, nodes on the mortar
side, inactive non-mortar nodes and active non-mortar nodes, respectively. The matrix K̃
corresponds to the summation of the standard tangent stiffness matrix K and the matrix
C̃, which contains the directional derivatives of both mortar matrices D and M. Matrix
S̃ contains the directional derivatives of the gap functions vector g̃, while the matrix F̃ is
obtained by assembling the tangent vector linearizations together with the current values
of the Lagrange multipliers. The matrices T̂ and M̂ are defined as, T̂ = D−1T and
M̂ = D−1M, respectively. Since friction is taken into account, the terms related to stick
and slip must be considered in the tangent matrix T. Finally, the residual force vector is
computed in terms of the vector of internal forces, fint, the vector of external forces, fext,
and the contact forces, fc, as follows,

r = fint(d) + fc (d, z)− fext = 0, (12)

where d represents the nodal displacements and the nodal values of the lagrangian mul-
tipliers, z, are recovered using the following relation,

z = D−1
(

−rI −KIN∆dN − K̃IM∆dM − K̃II∆dI

)

. (13)

The solution is undertaken using a sparse equation solver with the Newton-Raphson
method, were the residual forces are indirectly used as a control parameter. The outcome
is a fast and memory-optimized solver.

4 NUMERICAL EXAMPLES

In this section a set of three numerical problems is presented. The objective of those
analyzes is to compare the standard Lagrange method and the Dual Mortar method,
when plastic strain comes to play. Two normal contact problems are considered first
to evaluate which formulation provides better load transfer. The second example is a
classical Hertzian contact problem. Lastly, a conical extrusion problem is considered.
Three materials were employed in the simulations and their properties are detailed in
Table 1. All the examples employ the four node quadrilateral F-BAR finite element [11]
and two node linear mortar elements.

Table 1: Material properties.

Material E G ν σy Hardening law

Steel ANSI 9000 210 GPa 76 GPa 0.33 830 MPa σ = σy + 600 (ǫ)0.21

Al ANSI 201.0(†) 71.15 GPa 26 GPa 0.30 370 MPa σ = σy + 550 (ǫ)0.223

Al ANSI 771.0(‡) 69.8 GPa 26.12 GPa 0.32 31 MPa σ = σy + (ǫ) (G/100)

4
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4.1 Normal contact problems

This first case study is mainly concerned with the correct prediction of strains/stresses
in the normal direction, and therefore no friction is considered. Two contact problems
are chosen: the classical contact patch test (Fig. 1) and the block pile problem (Fig. 2).
The contact patch test [12] is the most commonly used benchmark to evaluate the load
transfer from the contacting surface (master surface) to the target surface (slave surface).
Here, a point load F = 7.2kN is applied on each node at the top of the structure. The
objective is to generate a constant uniaxial stress field in both contact bodies. By doing
this, the Ladyzhenskaya-Babuska-Brezzi (LBB) criteria (discrete version of the inf-sub
condition) should be satisfied. 
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Figure 1: Contact patch test.
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Figure 2: Block pile problem.

Another example typically employed to verify if the normal contact forces are correctly
computed, is solving the block pile problem [13]. It consists of an arrangement of several
blocks – with the same geometry – where a prescribed displacement (or distributed load)
over the top surface of the last block on the pile is applied. The structure is meant
to behave as an axisymmetric bar. Here, a prescribed displacement of δy = −15mm
is applied to the top surface of the upper block. Since no friction is considered, the
contacting surfaces should slide over each other, making the blocks deform alike. The
ANSI 9000 Steel (Table 1) was employed for both problems. Applying the Lagrange
Method to enforce the contact constraints in the first problem and using a single pass
NTS detection to create the contact pairs will produce the results shown in Fig. 3. The
displacement field, despite the excessive penetration of the contacting nodes at the corner
of the slave body, have a quite smooth pattern. However, the effective stresses are not
equally distributed over the structure and the formulation fails the test. The use of a
double pass NTS detection approach to reduce penetration leads to the locking of the
contacting surfaces. On the other hand, solving the contact constraints using the Dual
Mortar Method provides an exact displacement pattern and the stress field is constant,
see Fig. 4. The use of a non-linear material did not affect the quadratic convergence rate
of the relative residual force.

The solution of the block pile problem also emphasized the limitations of the NTS
approach, see Fig. 5. The pointwise nature of the contact enforcement, especially at the
block’s corner, made it very difficult to maintain the correct contact pairs. Eventually,
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Figure 3: Contact patch test - Lagrange.
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Figure 4: Contact patch test - Dual Mortar.

the corner nodes on the slave side went outside the limits of the master side domain.
When this happens, the slave node is no longer enforced. High levels of penetration are
reached, which also compromises the enforcement of the neighborings nodes. The results
obtained by the Dual Mortar method are shown in Fig. 6. The segment-to-segment
pairing, provided by the dual functions, compel the corner nodes to remain in contact.
The outcome is a smooth deformation of the entire structure and a uniform uniaxial stress
field.

4.2 Hertizian problem

The classical problem of Hertz is the second case of study. In this problem, a steel
cylinder is pressed into an aluminium† block. The initial contact area is very small
(non-conforming point contact) and a curved contact surface is present. The simulation
is conducted as a two-dimensional plane-strain analysis. Geometry of the problem and
finite element mesh are depicted in Fig. 7. Due to the symmetry, only half mesh is
analyzed. The block’s bottom surface is fixed. A friction coefficient of 0.1 was adopted
in this analysis. The great asset of this case study relies on the existence of an analytical
solution in the elastic domain. It is obtained from the Hertizian contact formulae for two
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Figure 5: Block pile problem - Lagrange.
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Figure 6: Block pile problem - Dual Mortar.

Figure 7: Hertizian problem.

cylinders, which defines the maximum contact pressure, Pmax, the contact width, a, and
the contact pressure along x-coordinate P as:

Pmax =

√

FE∗

2πR∗
, a =

√

8FR∗

πE∗
, P = Pmax

√

1−
(x

a

)

(14)

where the combined elasticity modulus, E∗, is obtained from the material parameters of
the punch (Ep) and the block (Eb) as follows:

E∗ =
2EpEb

Ep (1− ν2
b ) + Eb

(
1− ν2

p

)
.

(15)

and the combined radius, R∗, is evaluated from the radius of the cylinder, R1, and block,
R2, in a similar way, but since ⇒ R2 → ∞, the combined radius is reduced to the
cylinder’s radius,
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R∗ = lim
R2→∞

R1R2

R1 +R2

= lim
R2→∞

R1

R1/R2 + 1
= R1. (16)

In order to compare the numerical results and analytical solution, the analysis was
divided in two phases. In a first moment, a compressive point load F = 5kN is ap-
plied to the top of the cylinder. Under this load, only elastic strains will manifest, which
allows a direct comparison with the analytical solution. For the given numerical pa-
rameters, the expected results are: Pmax = 1577.32N/mm2 ; a = 2.018mm ; and

P = 1577.32
√

1−
(
x
a

)2
.

In the second phase of the analysis, the point load is raised to F = 12.5kN , which leads
to the appearance of plastic strains on both sides of the contact surface. The frictional
forces becomes more significant, making the limitations of the NTS discretization more
evident.

4.2.1 Elastic strains

In the first phase of the case study, the applied load yields a maximal Equivalent Stress
at x = 0 equal to 327kN/mm2. This pressure is below the yield stress of both material
employed, which assures that no plastic strains are in place. Also at this point, frictional
forces are negligible. The load is well transfered and a Relative Residual Norm of E-10
is quadratically achieved after 4 iterations for the Lagrange method and 3 iteration for
the Dual Mortar method. A comparison between the analytical solution and the results
provided by the numerical simulations is depicted in Fig. 8. Despite the oscillation of the
normal forces both results have a reasonable agreement.

Figure 8: Contact stress - Elastic strains. Figure 9: Contact stress - Plastic strains.
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4.2.2 Plastic strains

On to the second phase, under the action of a vertical force of 12.5kN, the contact
surface includes plastic deformation and the friction forces becomes considerably higher.
Results are shown in Fig. 9 and Table 2. The stress distribution predicted by the NTS-

Table 2: Results of Hertizian problem - Plastic strains.

Lagrange Dual Mortar
TOTAL Cylinder 0.433 0.431

DISPLACEMENT [mm] Block 0.432 0.431
AVERAGE Cylinder 0.184 0.182

DEFORMATION Block 0.416 0.431
CONTACT LENGTH [mm] 3.178 3.198

Increment Iteration Relative residual norm (%)
1 0.575085E-01 0.836091E-02

1 2 0.140132E-04 0.739726E-06
3 0.212436E-06 0.922262E-10
4 0.172358E-10
1 0.213476E-01 0.223108E-03

100 2 0.510660E-04 0.198341E-07
3 0.399832E-09 0.135704E-11
4 0.340939E-12
1 0.354716E-01 0.754524E-04

200 2 0.485938E-03 0.917062E-08
3 0.337746E-06 0.896271E-12
4 0.852251E-11

Lagrange method is no longer liable. Oscillations of normal forces reduced the results
accuracy. The convergence rate is also decreased. On the other hand, since the number
of contacting nodes increased, the results obtained using the Dual Mortar method have a
better distribution of loads over the contact surface. Normal and tangential forces follow
a relatively smoother pattern and convergence rate remained faster.

4.3 Conical extrusion

The problem undertaken in this example is an elasto-plastic stress analysis of an
aluminium‡ cylindrical billet. The billet is pushed a total distance of 177.8mm through
a rigid conical die which has a wall angle of 5 degrees, see Fig. 10. The objectives are
to predict the displacement of the billet material, the forces generated during the extru-
sion process and also the effective plastic strain distribution of the deformed billet. By
analyzing the evolution of these variables it is also possible to assess the performance of

9
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the Lagrangian Method and the Dual Mortar method when the contacting body is in the
presence of frictional forces and plastic strains.
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Figure 10: Conical extrusion - Geometry.
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Figure 11: Conical extrusion - Plastic Strain.
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Figure 13: Frictional forces.

The Equivalent Plastic Strain obtained by the Dual Mortar method is shown in Fig.
11. The higher plastic deformation is found at the upper left side of the billet with
a maximal value of 1.39. The final contact surface length is 257.33mm. A graphical
representation of the extrusion force (measured from the reaction at the billet bottom) is
shown in Fig. 12, the deviation between the two methods is very small. The convergence
rate achieved was similar to the one obtained in section 4.2.2. Nevertheless, the evolution
of the friction forces obtained by the Lagrangian method, see Fig. 13, shows the typical
oscilation, which is due to the finite element discontinuities along the contact surface. This
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drawback is mitigated by the segment-to-segment approach of the Dual Mortar method,
which performs better.

5 CONCLUDING REMARKS

The results presented emphasize the benefits of using a dual basis for the lagrangian
multipliers. The evaluation of the gap function as a semi-continuous weak integral yields
a much better enforcement of constraints in the normal direction. This advantage leads
to a more accurate evaluation of the contact forces, not only in the normal direction but
also the reactions in the tangential direction as well. Additionally, it contributes to the
correct fulfillment of the additional nonlinearity sources, i.e. sharp contact, friction plastic
strain and friction forces. Furthermore, the superior correlation between the contacting
bodies will promote a smaller initial value for the residual forces which will lead to a faster
solution. The results suggest that the use of a higher order finite element/mortar element
would also improve the effectiveness of the method, especially when dealing with sharp
contact surfaces and curved surfaces. Such an improvement is necessary for solving contact
problems between solids with irregular surfaces and with a higher friction coefficient, which
may be a topic for future work.
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