XI International Conference on Computational Plasticity. Fundamentals and Applications
COMPLAS X1
E. Oiiate, D.R.J. Owen, D. Peric and B. Suarez (Eds)

JOHNSON-COOK PARAMETER IDENTIFICATION FROM
MACHINING SIMULATIONS USING AN INVERSE
METHOD

AVIRAL SHROT* AND MARTIN BAKER'

*Technische Universitat Braunschweig
Institut fiir Werkstoffe
Langer Kamp 8, 38106 Braunschweig, Germany
e-mail: a.shrot@tu-bs.de

fTechnische Universitit Braunschweig
Institut fiir Werkstoffe
Langer Kamp 8, 38106 Braunschweig, Germany
e-mail: martin.baeker@tu-bs.de

Key words: Machining simulation, Johnson-Cook, Inverse determination

Abstract. The Johnson-Cook model is a material model which has been widely used for
simulating the chip formation processes. It is a simple 5 parameter material model which
predicts the flow stress at large strains, strain-rates and at high temperatures. These
parameters are usually identified by determining the flow stress curves experimentally,
and then using curve fitting techniques to find the optimal parameters to describe the
material behaviour. However the state-of-the-art experimental methods can only rely on
data obtained from strains of up to 50% and strain-rates of the order of 10® per second,
whereas in machining processes strains of more than 200% are reached at strain-rates of
the order of 10® or more. Therefore, the parameters obtained at much milder conditions
have limited applicability when simulating machining.

In this paper an inverse method of material parameter identification from machining
simulations is described. It is shown that by using the observables of a machining process
such as the chip shape and cutting forces, the underlying material parameters can be
identified. In order to achieve this, a finite element model of the machining process
is created and simulation is carried out using a known standard parameter set from
literature. The objective of the inverse method is to reidentify this set by using the chip
shape and cutting forces. An error function is created using the non-overlap area of the
chip shapes and the difference in the cutting forces. The Levenberg-Marquardt algorithm
is used to minimise the error function.

It has been shown before that multiple sets of Johnson-Cook parameter sets exist which
might give rise to indistinguishable chip shapes and cutting forces. In order to identify the
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parameter set uniquely, simulations are performed at widely varying cutting conditions
such as differing rake angles, cutting speeds and non-adiabatic conditions. Thus, material
parameters which represent the material behaviour over a wide range can be identified.

1 INTRODUCTION

In a conventional machining process the material from a workpiece is removed using a
harder tool material. Simulation of the material removal process by machining has been
extremely challenging due to the complex character of the process. The removed material
undergoes large plastic deformation (strains of more than 200%), at very high strain rates
(~ 10% s7! or more) and is accompanied by a temperature rise of hundreds of degrees
in the deformation zone. A number of material models have been suggested which take
into account the before mentioned issues. Identification of material parameters for such
models is usually done by material tests at varying strains, strain rates and temperatures.
Split Hopkinson Bar tests are widely used for conducting high strain rate tests. The
data obtained from such tests are used for parameter identification using curve fitting
techniques. However due to physical constraints the material is usually deformed only
upto 50% of plastic strain and at strain rates of the order of ~ 10® - 10* s=!. Therefore
when simulating the chip formation process, strains and strain rates are extrapolated over
several orders of magnitudes leading to erroneous simulation results.

The issue of material parameter determination for machining process has been ad-
dressed by different researchers. Jaspers and Dautzenberg [1] had proposed using Split
Hopkinson Bar data for determining material parameters. However, the shortcomings
of this method have been discussed in the previous paragraph. The approach of Tounsi
et al.[2] and Shatla et al. [3] depends on using a theoretical model for estimating the
material parameters. Howeve,r the problem with this approach is that theoretical models
are difficult to verify under the extreme conditions of large strains, strain rates and high
temperatures. Another problem in such an approach is that material parameters can be
varied to obtain a good match between the simulation results and experiments for a par-
ticular set of cutting conditions. However, when the cutting conditions are varied widely,
the results fail to match outside the domain where they have been explicitly matched.

In this paper a method for inverse determination of material parameters is proposed. In
Section 2 the Johnson-Cook material model is briefly described. In Section 3 the inverse
identification problem is explained along with the description of the error function to be
minimised and the finite element model that is used. The results are presented in Section
4. Finally conclusions are drawn in Section 5 and the line of future work is also suggested.

2 JOHNSON-COOK MATERIAL MODEL

The Johnson-Cook Model [4] is a five parameter material model which is used to
describe material behaviour over a large range of strains, strain rates and temperatures.
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Due to its simplicity and the low number of free parameters, this model is widely used in
machining simulations. The flow stress o is expressed as

n 3 T — Troom "
o= (A+B) |[1+0m ()| |[1- [ troom (1)
— €0 Tmelt - Troom
Elasto— Plastic term -~ 7\ —— /
Viscosity term Thermal softening term

where ¢ is the plastic strain, € is the strain rate, €y is the reference strain rate. 7' is
the temperature of the material, 7). is the melting point of the material and T, is
the room temperature. The empirical constants are as follows: A is the yield stress, B is
the pre-exponential factor, C' is the strain rate factor, n is the work-hardening exponent
and m is the thermal-softening exponent.

3 INVERSE IDENTIFICATION PROBLEM

The cutting force, chip shape, chip temperature etc are observables in a machining pro-
cess. These quantities are a function of the material behaviour and the cutting conditions.
Using finite element simulations and keeping the cutting conditions identical to the ma-
chining experiment, it might be possible to inversely determine the material parameters.
In order to test this hypothesis, a standard material parameter set is inversely reidentified
using machining simulations. A standard simulation is done using a material parameter
set from literature and while keeping the cutting conditions constant, test simulations are
carried out in order to identify the standard parameter set. This methodology was also
adopted because this way it was possible to keep the cutting conditions the same in case
of standard simulations and the test simulations.

The material parameters for the test simulations were systematically varied during
the inverse identification process. The inverse identification was conducted in two stages
where the goal is to minimise the error function which is expressed as a sum of squares of
non-linear functions. In the first optimisation stage the Levenberg-Marquardt algorithm
was used and the converged set from this stage is used as the starting set during the second
stage for which the Simplex algorithm is used. In a Levenberg-Marquardt algorithm, the
parameters are changed in the direction of the steepest descent which is determined by
evaluating a Jacobian. The amount of variation in this direction is determined by a
damping parameter which is reduced during the course of the optimisation process so as
to have a faster convergence and is increased when close to the minimum so that the steps
become smaller and the minimum is not overstepped. In case of the Simplex algorithm,
a simplex crawls towards the minimum using a set of reflection, expansion, contraction
and reduction steps. An exhaustive explanation of the two algorithms can be found in
literature [5, 6, 7].
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3.1 Error Function

The aggregate error function takes into account the chip shape and the cutting force.
The area of non-overlap between two chips is used as a measure of the chip shape error.
The difference in the cutting force between the standard case and the test case is the
measure of the cutting force error. In order to find the chip shape error, the standard
chip and the test chip are superimposed and the region of interest where non-overlap
is to be found is bound by a window. This region is then discretised by a number of
horizontal lines. The intersection of the horizontal lines with the chip outlines is found
out which gives the length of the line intercepted between the chip outlines. Using the
distance between the discretising lines and the intercepted length, the elemental area of
non-overlap is found which is summed over all the elemental areas to give the chip overlap
error (Figure 1). The chip overlap error and the cutting force error are combined using
a weighting factor w, which is used to balance the contribution of the two factors in the
overall optimisation, to give an aggregate error function ¢;(x) (Equation 2). The value of
w used in this paper is 1/500 mm? N~!. The error function y?(x) is obtained by summing
the square of the aggregate error functions over all the observations (Equation 3).

%) = [e )] + v [ef () )
) = 3600 = 33 (1600 + . el (0))° ®)

T
\ \

:T%:Ay = L/(n+1)

Outline of Chip 1
Outline of Chip 2

Y

Figure 1: Estimation of chip overlap error. The region of interest is discretised by n lines.

3.2 Finite Element Model

The two-dimensional adiabatic finite element model for machining simulation was made
using the commercial finite element software ABAQUS 6.9-1 and consisted of a rigid tool
meshed with R2D2 elements and a workpiece meshed with four node CPE4R elements
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Figure 2: Finite Element Model showing the boundary conditions and the non uniform meshing

(Figure 2). The workpiece was partitioned into three regions such that the top region
formed the chip, the bottom region the machined workpiece and the intermediate region
comprised of damageable elements which were removed from the simulation after a critical
shear strain of 2.0 is exceeded. The cutting speed is fixed at 33.3 m/s and the simulation
is conducted for 0.040 ms during which 500 frames are recorded. Friction is neglected
throughout the simulation. In order to ensure that the optimisation takes into account a
wider range of cutting conditions, two different values of rake angles were used, viz. 1°
and 10°. The material properties used for the simulation have been shown in Table 1 and
Table 2. The thermal properties of the material have been taken from [8].

12404 x 103

Cp = 92.78 + 0.7454T + ) kg ' K™! (4)

Table 1: Material properties for HY 100 steel [9, 10, 11]

Density [kgm™] 7860
Young’s Modulus [GPa] 205
Poisson’s Ratio 0.28

Table 2: Johnson-Cook parameters for HY 100 steel [9, 10, 11] used in the standard simulation

A [MPa] | B [MPa| C m n Trnetr K] | Troom [K] | €0 [s71]
316 1067 0.0277 | 0.7 | 0.107 1500 300 3300
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The elements on the workpiece after coming in contact initially with the tool get
badly crushed thereby reducing the characteristic length of such elements. This in turn
reduces the stable time increment and thus increases the total simulation time. As a
solution to this problem, the first 10% length of the workpiece is meshed with rectangular
elements of dimensions 8.5 x 6.25 pm. The rest of the workpiece is meshed with square
elements of dimensions 6.25 x 6.25 ym. The workpiece is finely meshed with 32 elements
across the uncut chip thickness. A C++ code is written to read the deformed chip shape
coordinates and the cutting force values. The values thus obtained are used with the
minimisation algorithms which are available in the GNU Scientific Library [12]. From the
two simulations which are conducted for the different rake angle values 15 observations,
from frames 486 to 500, are taken from each to evaluate the error function.

4 RESULTS AND DISCUSSIONS

In order to keep the problem moderately difficult, only 3 Johnson-Cook parameters,
viz. A, B and n, are reidentified. Three different starting parameter sets are chosen for
inverse identification. The first set is reasonably close to the standard parameter set, the
second and the third sets are far from the standard parameter set (refer Table 3).

Table 3: Standard and Starting parameter sets

A B n
Standard Set 316 | 1067 | 0.107
Starting Set Case 1 | 250 | 900 | 0.020
Starting Set Case 2 | 800 | 50 | 0.400
Starting Set Case 3 | 50 50 | 0.400

For the first stage of optimisation the Levenberg-Marquardt algorithm is chosen as it
gives faster convergence towards the standard set. Transformed optimisation parameters
are used as they were found to give better convergence [13].

4.1 Optimisation parameters

During a high speed machining process the material heats up due to the plastic work
done. Since the process is very fast, the heat cannot be conducted away from the shear
zone sufficiently quickly. The effective material behaviour due to the continuous heating
of the material can be expressed by using adiabatic stress-strain curves, which can be
drawn after taking into account the adiabatic heating of the material. The adiabatic
stress-strain curves can be used to explain the chip formation process [14] and therefore
they can also aid in determining the optimisation parameters for inverse determination.

Johnson-Cook parameters A and B can be varied from the standard values A, and
Bg in order to estimate the deviations between the corresponding adiabatic stress-strain
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Figure 3: Contour plot for ;s

curves. The root mean squared error (Equation 5) between the curves expressed as

adia A7B — UVadia A87Bs
Bre(4, B) = 100l >m‘” S (5)

is a measure of such deviations. Here 044;,(A, B) is the set of points lying on the adiabatic
stress-strain curve from parameters A and B, A, and B, are the target Johnson-Cook
parameters and M is the total number of points. || e || is the Euclidean norm.

On plotting E,,,s w.r.t parameters A and B, a valley containing the minimum is seen
to run in the direction of (A — B) (Figure 3). Consequently the direction (A + B) is the
direction of steepest ascent. New parameters K and L are defined such that

K=A+DB (6a)
L=A-B (6b)

Using the transformed parameters (Equations 6a and 6b), the Johnson-Cook equation
can be rewritten as

UZ(K;LH(;LE") FET) (7)

en-pren@l- ()] e

The effectiveness of using such modified optimisation parameters has been shown in
earlier papers [13, 15].

where
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4.2 Simulation results

The starting parameter sets for the inverse identification have been shown in Table 3.
In the first stage of optimisation Levenberg-Marquardt algorithm was used. The initial
chip shapes and cutting forces are different from the standard chip shapes and cutting
forces (specially in Case 3). The chip shapes at the end of each optimisation stage has
been shown in Figure 4 and Figure 5. The standard chip is represented in green and
the test chip in red. At the end of the first stage the chip shapes (Figure 4(a), 4(b) and
5(a), 5(b)) and cutting forces (Figure 6(a) and 6(b)) show substantial improvement. This
was found to work consistently well with all the three cases. The test adiabatic stress-
strain curves are also seen to come closer towards the standard adiabatic stress-strain
curve (Figure 7(a), 7(b) and 7(c)). At the end of the first stage the solution could not be
further improved by using the Levenberg-Marquardt algorithm.

SISTSY

a) Starting set b) Stage 1 c) Stage 2

Figure 4: Chip shapes (rake +10°) at different stages of optimisation for Case 3

In order to further improve the solution and checking the feasibility of reidentifying the
parameters robustly, a second stage of optimisation was carried out using the downhill
simplex algorithm. At the end of the optimisation, the chip shapes (refer Figure 4(c)
and 5(c)), the cutting forces and the adiabatic stress-strain curves were found to match
exactly (Figure 7(a), 7(b), 7(c)). Despite having a near perfect match of chip shapes,
cutting forces and adiabatic stress-strain curves, the converged Johnson-Cook parameter
sets are not unique [16]. Some non-unique parameter sets can be eliminated by using wide
ranges of cutting conditions.

5 CONCLUSION

In this paper a two stage inverse material parameter determination method was dis-
cussed. An error function was defined by taking into account the chip shape and the
cutting force. Levenberg-Marquardt and Downhill Simplex methods were used for the
minimisation of the error function. The two stage optimisation process is found to be
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Figure 5: Chip shapes (rake 0°) at different stages of optimisation for Case 3

Cutting Force Comparison
(Rake0°) - Case 3

300
250 -
200 -
150 -
100 -
50 -

Cutting Force (N)

Starting Stage 1 Stage 2 Standard

Cutting Force Comparison

(Rake +10°) - Case 3

300

250
200

150 -
100 -

Cutting Force (N)

50 -

0 -

Starting Stage 1l Stage2 Standard

(a) Rake angle = 0°

(b) Rake angle = 10°

Figure 6: Cutting force at the end of different stages of optimisation

Table 4: Converged parameter sets at the end of stage 1 and stage 2

Case 1 Case 2 Case 3
A B n A B n A B n
Stage 1 || 287.11 | 935.36 | 0.080 || 943.6 | 435.6 | 0.306 || 650.6 | 549.3 | 0.151
Stage 2 || 449.4 | 943.9 | 0.126 || 942.4 | 445.3 | 0.309 || 707.7 | 684.4 | 0.180
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Figure 7: Adiabatic stress-strain curves at different stages of optimisation

robust as the original chip shape and cutting force can be reidentified after starting from
substantially different initial parameter sets. It is also observed that after optimisation,
the adiabatic stress-strain curve of the converged parameter set matches that of the stan-
dard parameter set. It was also observed that the converged parameter sets were not
unique.

Thus using inverse identification techniques, it is possible to identify material parame-
ters. In order to eliminate some of the non-unique parameter sets, the cutting conditions
must be varied widely. Further work must be done in order to find the good search
directions which lead to quicker identification of material parameters. Such improved
optimisation strategies can substantially reduce the computational costs.
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