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Abstract. A model of higher-order single crystal plasticity is presented and reviewed in
order to develop a corresponding finite-element framework. Contrary to the underlying
model of Gurtin [Int. J. Plast. 24:702-725, 2008], here rather than the slip rate, the slip
and its gradient constitute primary micro state variables. The resulting rate-dependent
formulation accounts for size effects through the free energy depending on density of
geometrically necessary dislocations. The relationship to multifield theories of continua
with microstructure is pointed out. With the presented finite-element approach, the
corresponding fully coupled initial-boundary value problem is solved monolithically, and
features of the model are illustrated in two preliminary numerical examples.

1 INTRODUCTION

The size-dependent behaviour of polycrystalline materials such as metals at grain sizes
of the order of tens to hundreds of microns is well documented. Such behaviour stems
from heterogeneities in crystallites and arise, for example, due to the existence of grain
boundaries, as well as due to impurities, inclusions, and other imperfections in the crystal
lattices. The appropriate modelling of behaviour at the microstructural level requires a
knowledge of the underlying dynamics of dislocations, and proper incorporation of such
dynamics and associated length scales into the model. Dislocation-based crystal plasticity
formulations capture size effects largely by including dislocation behaviour through an
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averaged field description of dislocation populations in crystals. Some representative
works in an extensive literature include [17, 9, 13, 6, 10, 12, 18]. Typically, the mutual
interaction of dislocations are captured in a back-stress term that counteracts the resolved
shear stress driving the flow of dislocations on the lattice glide planes.

The objective of this contribution is to develop finite element approximations of a
model of single-crystal higher-order plasticity due to Gurtin [10]. The model is based on
the use of geometrically necessary dislocation (gnd) densities as a field variable. However,
in contrast to the treatment in [10], instead of the slip rate, the slip constitutes a micro
state variable. The relationship between gradient of slip and gnd density is nevertheless
constructed in a way that is consistent with the dissipation inequality. The slip together
with macroscopic displacements are the primary unknown variables of the problem. It is
shown that the formulation has a relationship to multifield theories [3, 4]. Conforming
finite element approximations are based on a fully coupled, monolithic approach to solv-
ing the governing equations of the rate-dependent initial-boundary value problems. The
article closes with two preliminary numerical examples.

2 A MULTIFIELD CRYSTAL PLASTICITY FRAMEWORK

The model of higher-order crystal plasticity largely follows that due to Gurtin [10].

2.1 Kinematics

The starting point for the description of kinematical relations is the standard multi-
plicative decomposition

F = F e · F p (1)

of the deformation gradient F = ∇Xϕ into elastic and plastic parts F e and F p respec-
tively. Here x = ϕ(X, t) describes the motion from the material to the spatial configura-
tion and ∇X is the material gradient. The plastic deformation is assumed to be isochoric
implying detF p = 1. It follows that J := det(F ) = detF e > 0.

The spatial velocity gradient l = ∇xv may be decomposed additively according to

l = Ḟ · F −1 = le + F e · L̂p · F
−1
e (2)

in which

L̂p = Ḟ pF
−1
p . (3)

The elastic Cauchy–Green tensor

Ĉe = F t
e · F e = F−t

p ·C · F−1
p (4)

characterizes the deformation of the intermediate configuration, quantities in which are
denoted here and henceforth by �̂.
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The motion of dislocations in a single crystal takes place on a set of nS defined slip
systems, whereby an orthonormal pair comprising a slip direction ŝ

α and slip-plane normal
vector m̂

α
(α = 1, . . . , N) in the intermediate configuration precisely defines the α-th

system. It is useful also to introduce the Schmid (projection) tensor Ẑ
α
= ŝ

α⊗m̂
α
, which

is trace-free. For edge dislocations, the slip line direction l̂
α
is defined by l̂

α
= m̂

α × ŝ
α,

so that {m̂
α
, ŝα, l̂

α
} form a local orthonormal basis. In case of screw dislocations, the slip

line and the slip direction coincide to ŝ
α.

The plastic distortion-rate tensor L̂p is determined by the slip rates acting on each of
the slip systems according to

L̂p =

nS∑

α=1

γ̇α ŝ
α ⊗ m̂

α
=:

nS∑

α=1

γ̇αẐ
α
. (5)

The slip direction ŝ
α, slip plane normal m̂

α
and dislocation line direction l̂

α
may be

mapped to their counterparts sα, mα and lα in the current configuration by setting

sα = F e · ŝ
α , mα = (F e)

−t · m̂
α
, lα = F e · l̂

α
. (6)

2.1.1 Dislocation densities

The dislocations and their interactions are accounted for by fields of spatial densities of
dislocations. In the spirit of Gurtin [10] we define both the total density of dislocations,
ρα
�
, and the – polar – density of geometrically necessary dislocations (gnd), κα

�
, per unit

length, i. e.,, normalized by the Burgers vector length.
According to Nye [14], only the geometrically necessary dislocations are relevant to the

occurrence of size effects. Following [2], the gnd relates to the gradient of slip as

κ̇α
�
= ∇xγ̇

α · pα = ∇X γ̇α · F−1
p · p̂α with p̂

α =

{

−ŝ
α for edge dislocations (� = ⊥)

l̂
α

for screw dislocations (� = ⊙) .

(7)

Here a pullback from the spatial form to the intermediate configuration has been carried
out. The respective subscript � ∈ {⊥,⊙} identifies either edge or screw dislocations.

Remark 1. The formulation by Gurtin [10] bases on the slip rate να as the primary

micro state variable, the gradient of which corresponds to the gnd rate. Contrarily, we

assume the slip itself and its gradient as primary micro quantities, for which we develop

the governing equations, the variational formulation and computational algorithm. Our

choice is particularly beneficial as it reduces the complexity of the computational treatment.

Remark 2. In [7] the relationship between GND density and slip gradient is assumed to

take the form

κα
�
= ∇̂γα · p̂α

3
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in which ∇̂ denotes the gradient with respect to the intermediate configuration. In the

absence of the notion of a placement vector in the intermediate configuration, the nature

of the gradient term is not clear. Likewise, a spatial relation of the form

κα
�
= ∇xγ

α · pα ,

which is used by some authors, does not imply nor is implied by (7).

2.2 Free energy, dissipation inequality, stresses and microstresses

Dissipation inequality. The spatial form of the local dissipation inequality is

D = σ : le +

nS∑
α=1

(ξα ·∇xγ̇
α + πα γ̇α)− J−1Ψ̇ ≥ 0 in Bt . (8)

In the material configuration this inequality reads

D0 = 1

2
Ŝe : L

p
v
(Ĉe) +

nS∑
α=1

(ξα0 ·∇X γ̇α + πα
0 γ̇

α)− Ψ̇ ≥ 0 in B0 (9)

with the Lie derivative Lp
v
(Ĉe) = F p

−t ·Ċ ·F−1
p =

˙̂
Ce+2[Ĉe ·L̂p]

sym [16] and ξα
0 = F−1 ·ξα.

The free energy Ψ̂ is assumed to depend on the elastic tensor Ĉe and the set �κ of dislo-
cation densities. This motivates the definition of a macrostress Ŝe and vector microstress
ξα
en according to

Ŝe = 2
∂Ψ̂

∂Ĉe

, ξαen := J−1 ∂Ψ̂

∂κα
�

pα . (10)

By assuming that the microstress is purely energetic (that is, ξα = ξα
en: see also [15]), the

dissipation inequality (9) reduces to

Dred =

nS∑
α=1

παγ̇α ≥ 0 , (11)

A flow rule for πα will be specified later.

Macro- and micro-force balances. Balance equations are derived from a principle of
virtual power [10]. The macroforce balance or equilibrium equation is expressed in terms
of the first Piola-Kirchhoff stress and the referential body force 0 as

DivP + f 0 = 0 in B0 . (12)

This equation is supplemented by the boundary conditions u = up on ∂Bu
t and P ·N = t

p
0

on ∂Bp
0 , in which ∂Bu

t and ∂Bp
0 are non-overlapping parts that cover the boundary ∂B0.

4



856

C. B. Hirschberger, B. D. Reddy

The microforce balance is given for each slip system α in the spatial configuration by

div ξα − πα + σα = 0 on α in Bt (13)

In the material configuration this reads

Div ξα
0 − πα

0 + σα
0 = 0 on α in B0 . (14)

Here σα
0 is the resolved shear stress defined by

σα
0 =

[
Ĉe · Ŝe

]
: Zα (15)

and Div = F−1 : ∇X .
Dirichlet and Neumann boundary conditions are assumed to be γα = γp on ∂Bν

0 and

ξα
0 ·N = tξα0 on ∂Bξ

0 . For an overview on the choice of micro-hard and micro-free boundary
conditions, see e. g., [7] and references cited in this work.

Remark 3. The macro- and microforce balance equations may also be derived by adopting

a micromorphic or microfield continuum approach [11, 3], in which the energy functional

corresponding to the incremental problem is written as the sum of the free energy Ψ̂ and

the dissipative flow potential Υ , which generates the dissipative microforce through the

incremental form of the relation [15]

πα =
∂Υ

∂γ̇α
. (16)

2.3 Constitutive relations

Based on an underlying hyperelastic material, the crystal plasticity constitutive frame-
work relies on the choice of a free energy and the definition of a flow rule or dissipation
function.

2.3.1 Free energy

The free energy per reference volume is assumed to comprise an elastic or macro-energy
Ψ̂macro and a defect or micro-energy Ψ̂micro:

Ψ̂ = Ψ̂macro(Ĉe) +

nS∑
α=1

Ψ̂micro(κα
�
) . (17)

This yields the stress and energetic microstress via the definitions (10). For the sake of
simplicity, latent hardening effects are neglected in the energetic part, and will instead be
captured in the dissipative microforce via the flow rule .

5



857

C. B. Hirschberger, B. D. Reddy

Due to the relatively small elastic deformations in crystal plasticity, it suffices to choose
for the macro-energy a St. Venant–Kirchhoff relation

Ψ̂macro =
λ

8
tr2(Ĉe − I) +

1

4
µ[Ĉe − I]2 . (18)

However, following Gurtin [10], the micro-energy is formulated for both edge and screw
dislocations as

Ψ̂micro(κα
�
) = 1

2

Ns∑
α=1

(C1κ
α
⊥)

2 +
(
C2κ

α
⊙

)2
. (19)

With the choices C1 =
µR2

8[1−ν]
and C2 =

µR2

4
, the relation of [8] is retrieved (see [7] for the

relationship between the two approaches).

2.3.2 Flow rule and slip resistance

Due to the physically well-established assumption that all dislocations are mobile all
the time, hence we choose a viscoplastic flow rule. Various options are available: for
example,

πα = Sα

(
|γ̇α|

γ̇α
0

)m

sgn(πα) . (20)

The slip resistance Sα is given in [10] by the evolution equation

Ṡα =
∑
β

hαβ(S)|γ̇β| (21)

in which hαβ is a matrix of hardening moduli and S denotes the array [S1, . . . , SnS
]t for

nS slip systems. See also [1] for further details.

3 NUMERICAL FRAMEWORK FOR CRYSTAL PLASTICITY

A conforming finite element approximation is used to solve the initial-boundary value
problem, with the displacement u and slips γα being the unknown variables.

Finite-element approximations. In a standard Bubnov–Galerkin approximation, the
test and trial functions of both unknowns are discretized with the same shape functions:
thus

uh =

nu
en∑

J=1

Nu
JuJ , δuh =

nu
en∑

I=1

Nu
I δuI , γh =

nγ
en∑

L=1

Nγ
LγL , δγh =

nγ
en∑

K=1

Nγ
KδγK , (22)

with provision for different orders of interpolation of the displacement and slips.
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Table 1: Algorithm for the crystal plasticity material routine

1. The approximate exponential map with a backward Euler approximations gives

F n+1
p = [I −Λn+1]−1F n

p where Λn+1 =

nS∑

α=1

∆γ
αẐ

α

2. Obtain elastic right Cauchy–Green deformation tensor Ĉe from

F n+1
e = F n+1 · (F n+1

p )−1 Ĉ
n+1

e = (F n+1
e )

t
· F n+1

e

3. Obtain the GND density from

κ
αn+1 = κ

αn + [∇X∆γ
α · F−1

p · ŝα]n+1

4. Obtain the stress, microstress and resolved shear stress from

Ŝ
n+1

e = 2
∂Ψ

∂Ĉ
n+1

e

, ξα0
n+1 = (Jn+1)−1(F n+1)−1

(
∂Ψ

∂κα

)n+1

, σ
α

0
n+1 =

[

Ĉ
n+1

e · Ŝ
n+1

e

]

: Ẑ
α

3. Obtain the microforce πα
0 from the evolution

π
αn+1 = S

α

(
|∆γ

α|

∆t γ̇α
0

)m

sgnπα

Finite-element residual and iterative solution. A spatial discretization of the weak
form of the macro and micro balance (12) and (14) yields the element residuals

ru h
0I (u

h) = fu h
0intI − fu h

0surI − fu h
0volI

.
= 0 (23)

rγα h
0K (γαh) = fγα h

0intK − fγα h
0surK

.
= 0 (24)

that have to vanish at equilibrium. The internal and external macro forces at nodes I are
assembled from the element contributions, which from the weak form of (12) are

fu h
intI =

nel

A
e=1

∫

B0

P ·∇XN
u
I dV, fu h

surI =
nel

A
e=1

∫

∂B0

t0N
u
I dA, fu h

volI =
nel

A
e=1

∫

B0

f0N
u
I dV (25)

Likewise, the internal and external micro forces stemming from (14) for each slip system
α are determined at nodes K as

fγαh
intK =

nel

A
e=1

∫

B0

ξα
0 ·∇XNγ

K + [πα
0 − σα

0 ]N
γ
K dV α = 1, . . . , nS (26)

fγα h
surK =

nel

A
e=1

∫

∂B0

t
ξ
0 N

γ
K dA α = 1, . . . , nS (27)

The energetic stresses P and ξα
0 are obtained from the free energy (10). The Schmid stress

(15) and the dissipative micro force (20) follow from an Euler-backward time integration
for the update on the plastic deformation, as summarized in Table 1.
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With these ingredients, the time-dependent problem is solved incrementally for the
unknown u and γα using an iterative global Newton-Raphson iterative solution procedure

[
DuJ

ruh
0I DγL

ruh
0I

DuJ
rγαh
0K DγL

rγαh
0K

]
·

[
∆uJ

∆γL

]
= −

[
ruI

rγK

]
(28)

with tangent stiffness matrices D•r◦0 quantifying the sensitivity of the nodal residua ◦ ∈
{u, γα} with respect to the nodal unknowns • ∈ {u, γα}.

4 NUMERICAL EXAMPLES

The numerical algorithm for the present crystal plasticity framework is demontrated
in two benchmark-type problems. At this stage, the simulations are restricted to single
slip, with a extension to multiple slip as part of future work.

4.1 Single slip in a shear layer

We first study a shear layer with one slip system under an angle of θ = π/3, similar
to the problem studied for example in [12]. Omitting periodic boundary conditions, a
slip profile with little boundary influences is produced by choosing a relative broad shear
layer. Unit values are used for material parameters in these preliminary computations.

Macroscopically, a lateral displacement u1 is prescribed at top and bottom in opposite
directions, and homogeneous Neumann boundary conditions are prescribed on the other
two sides. To mimic the dislocation distribution within the shear layer, homogeneous
micro Dirichlet, i. e.,”micro-hard” boundary conditions, γ = 0, are chosen at the top and
bottom boundary. On the other hand the left and right boundaries obey homogenous
micro Neumann boundary conditions, tξα = 0, often referred to as ”micro free”.

Neglecting the lateral boundary region, we concentrate on the central region of the
boundary value problem. Within the shear layer with approximately homogeneous macro
deformation, the shear problem correctly reflects the zero slip at the boundaries and a
non zero slip over the height profile of the shear layer. Moreover, the gnd density is
larger near the boundaries which reflects the pile-up of positive and negative dislocations
against a dislocation-impenetrable boundary.

4.2 Single slip in a micro composite

The typical example of a model composite presented in [5] comprises a composite
material with rectangular elastic particles embedded in a plastically deforming matrix.
Such a double-symmetric problem can be reduced to the symmetric unit cell shown in
2(a). The elastic inclusions are modelled by prescribing zero slip within these subdomains,
and the cell is subjected to simple shear loading.

While the macroscopic displacement exhibits a slightly heterogeneous deformation,
the slip is, naturally, zero within the elastic inclusions and strongly heterogenous in the
plastic matrix material. The slip particularly localizes horizontally just above and below

8



860

C. B. Hirschberger, B. D. Reddy

the inclusion. Due to the limitation to single slip and the modelling of gliding mechanisms
only, dislocations from the left bottom cannot propagate to the top right region (Fig. 2(e)).
Instead dislocations pile up against the elastic inclusions with different signs, as shown in
2(f).

5 CONCLUSION

In this short contribution, we present a multifield-type single crystal plasticity theory
at finite strain, similar to the formulation of [10]. The presented governing equations stem
from the choice of the the displacement, the plastic slip (rather than its rate [10]) and
its gradient as the primary macro and micro state variables. With a thermodynamically
consistent relationship between dislocation density rate and slip rate, the free energy,
however, is formulated in terms of the gnd density, which is directly related to the
gradient of slip. For this framework we provide a corresponding finite-element framework
that employs both the displacement and the plastic slip as primary nodal degrees of
freedom and hence is a strongly coupled problem. Results based on initial computations
indicate that the fully coupled algorithm based on a conforming finite element framework
is robust. Current work is concerned with the extension to multiple slip, and the use of
alternative forms of the hardening law based on total dislocation densities.
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Figure 1: Shear layer with single slip at θ = 60 and micro-hard boundary conditions for the slip.
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Figure 2: Micro composite unit cell with elastic inclusions and single slip at θ = 0.
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Figure 1: Shear layer with single slip at θ = 60 and micro-hard boundary conditions for the slip.
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Figure 2: Micro composite unit cell with elastic inclusions and single slip at θ = 0.
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