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Abstract. Shape Memory Alloys (SMA) offer new perspectives in various fields such as
aeronautics, robotics, biomedicals, or civil engineering. Efficient design of such innovative
systems requires both adequate material models and numerical methods for simulating
the response of SMA structures. Whereas much effort has been devoted to developing
constitutive laws for describing the behaviour of SMAs, the structural problem (i.e. the
simulation of a three-dimensional SMA structure) has received far less attention, in spite
of substantial difficulties notably due to the strong thermomechanical coupling and the
presence of physical constraints on the internal variables. The time-discretization of the
evolution problem obtained is not obvious, and special care must be taken to avoid con-
vergence difficulties and ensure robustness of the numerical schemes. Computation time
and ease of implementation (for instance in an existing finite element code) also are ma-
jor issues that need to be addressed. In this communication are presented some recent
results in that direction. A central result is a recent time-discretization scheme for the
thermomechanical problem. A variational formulation is attached to the corresponding
incremental problem, allowing one to prove the existence of solutions for a large class
of usual SMA models. The variational nature of the problem at hand also calls for an
easy implementation in an existing finite element code, building on well-established de-
scend algorithms. Using that approach, the solution of the thermomechanical incremental
problem is typically obtained by solving a sequence of linear thermal problems and purely
mechanical (i.e. at prescribed temperature) nonlinear problems. That approach is fairly
general and applies for a wide range of SMA models. The numerical scheme for solving
the purely mechanical problem, however, strongly depends on the particular model that
is used. In a micromechanical modelling of SMAs, the phase transformation is described
locally by an internal vectorial variable which is physically constrained to satisfy a set
of inequalities at each point. We show that the corresponding incremental problem can
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be recast as a linear complementarity problem, for which efficient algorithms (such as
interior-point methods) are available. That reformulation essentially consists in a change
of variables. In terms of variational formulation, that approach amounts to replace a con-
vex but non-quadratic minimization problem with an equivalent quadratic minimization
problem.

1 COUPLED THERMOMECHANICAL EVOLUTIONS

We consider the evolution problem of an arbitrary SMA structure, in quasi-statics
and under the assumption of small strains. The structure occupies a domain Ω and is
submitted to body forces f d and tractions T d, the latter being applied on a portion ΓT

of the boundary. Prescribed displacements ud are imposed on ΓU = ∂Ω − ΓT . The
temperature θ is set equal to θd on a portion Γθ of ∂Ω, and the heat flux qd is imposed
on a portion Γq such that Γq ∩ Γθ = ∅ . On the remaining part Γr = ∂Ω − Γq − Γθ of
the boundary, the heat flux is given by K ′(θ − θR) where K ′ is a (positive) heat transfer
coefficient between the system and its environment. The functions f d, T d, ud, θd, qd

describing the thermomechanical loading depend on the position x and on the time t.
In the domain Ω, the heat flux q is supposed to satisfy the Fourier’s law with a thermal
conductivity K. The displacement, stress and temperature are denoted by u, σ and θ
respectively.

In a mesoscopic modelling of SMAs, the local state of the material is described by the
variables (ε, ξ, θ) where ε is a strain and ξ is a (possibly vectorial) internal variable
tracking the phase transformation. That variable ξ must generally satisfy a condition of
the form ξ ∈ T where T is a given bounded set (see Section 3 for an explicit example).
Denoting the free energy of the material by w and the dissipation potential by φ, the
evolution of the system is governed by the following system (see [2] and references therein
for more details) :

σ =
∂w

∂ε
, B = −∂w

∂ξ
, s = −∂w

∂θ
(1.1)

ε = (∇u + t∇u)/2 (1.2)

−K∇θ.n = qd on Γq, −K∇θ.n = K ′(θ − θR) on Γr (1.3)

u ∈ Ku , σ ∈ Kσ , ξ ∈ Kξ , θ ∈ Kθ (1.4)

B = Br + Bd (1.5)

Br ∈ ∂IT (ξ) , Bd ∈ ∂φ(ξ̇) (1.6)

K∆θ + Bd.ξ̇ − θṡ = 0 (1.7)
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where the sets Ku, Kσ, Kξ, Kθ are defined by

Ku = {u|u = ud on Γu}
Kσ = {σ|div σ + f d = 0 in Ω; σ.n = T d on ΓT}
Kξ = {ξ|ξ ∈ T in Ω}
Kθ = {θ|θ = θd on Γθ}

(2)

In (1), IT is the indicator function of the set T (equal to 0 in and infinite outside) et ∂
denotes the subdifferential [1]. In the heat equation (1.7), the thermomechanical coupling
is embedded both in the entropy-related term θṡ (which contains the latent heat effect)
and in the dissipative term Bd.ξ̇.

2 TIME-DISCRETIZATION OF THE EVOLUTION PROBLEM

2.1 Incremental problem

To solve a system such (1), one generally resorts to a space- and time-discretization
strategy. The space discretization is generally supplied by a finite element method. The
time discretization consists in introducing a finite time-step problem for estimating the
solution (u,σ, θ) at a given time t0 + δt, supposing that (u0, σ0, θ0) at time t0 are known.
For the system considered, a common finite time-step problem is supplied by the back-
wards Euler scheme, which can be formulated as follows:

(u, ξ, θ) verifies (1.1)-(1.4) at t0 + δt (3.1)

B = Br + Bd (3.2)

Br ∈ ∂IT (ξ) , Bd ∈ ∂φ
(
(ξ − ξ0)/δt

)
(3.3)

Kδt∆θ − θ0(s − s0) + Bd.(ξ − ξ0) = 0 (3.4)

where s0 = s(ε0, ξ0, θ0). A major drawback of this scheme is that the existence of a
solution to (3) is not guaranteed. Let us develop this point: if θ is known, then the purely
mechanical finite-step problem (3.1-3) has a solution. Similarly, if (u, ξ) is fixed, then the
thermal problem (3.4) also has a solution. However, one cannot ensure the existence of
a solution (u, σ, θ) to the coupled thermomechanical problem (3.1-4). This is intimately
connected to the non-existence of a variational formulation corresponding to (3).

Such difficulties can be avoided by using the following finite time-step problem:

(u, ξ, θ) verifies (1.1)-(1.4) at t0 + δt (4.1)

B = Br +
θ

θ0
Bd (4.2)

Br ∈ ∂IT (ξ) , Bd ∈ ∂φ
(
(ξ − ξ0)/δt

)
(4.3)

Kδt[∆θ +
∇θ0

θ0
.∇(θ0 − θ)] − θ0(s − s0) + Bd.(ξ − ξ0) = 0 (4.4)
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It can be verified that - just as the more intuitive scheme (3) - the incremental problem
(4) is a consistent time-discretization of (1), in the sense that (3) coincides with (1) in the
limit δt → 0 [3, 4]. Motivation of the scheme (3) is that a variational formulation can be
given, allowing one to study the existence of solutions. More precisely, it can be proved
that solutions of (3) are solutions of the following variational problem

find (u, ξ, θ) ∈ Ku ×Kξ ×Kθ such that for all (u∗, ξ∗, θ∗) ∈ Ku ×Kξ ×Kθ :
0 ≤ ∂F [u, ξ, θ].(u∗ − u, ξ∗ − ξ, θ∗ − θ)

(5)

where F(u, ξ, θ) = Fe(u, ξ, θ) + Fd(ξ, θ) + F θ(θ) and

F e(u, ξ, θ) =

∫

Ω

w(ε(u), ξ, θ) dω −
∫

Ω

f d.u dω −
∫

ΓT

T d.u da

Fd(ξ, θ) = δt

∫

Ω

φ
( θ

θ0

ξ − ξ0

δt

)
dω

Fθ(θ) =

∫

Ω

θs0 dω + δt

∫

Ω

K(−1

2

1

θ0
‖∇θ‖2 + (

‖∇θ0‖
θ0

)2θ) dω

−δt

∫

Γq

qd

θ0
θ da − K ′ δt

2

∫

Γr

(θ − θR)2

θ0
da

(6)

Assume in particular that (i) the free energy w is convex in (u, ξ) and concave in θ, (ii)
the dissipation potential φ is positively homogeneous of degree 1 (which corresponds to
a rate-independent dissipative behaviour). Note that those assumptions are satisfied by
a wide range of SMA models (see Section 3 for some examples). In such a situation, the
problem (5) can be rewritten as

max
θ∈Kθ

J(θ) (7)

where
J(θ) = Fθ(θ) + min

(u,ξ)∈Ku×Kξ

{F e(u, ξ, θ) + Fd(ξ, θ)} (8)

Moreover, the maximization problem (7) admits some solutions (provided adequate func-
tional spaces are chosen for Ku, Kξ, Kθ), which ensure existence of solutions to the ther-
momechanical incremental problem (4) .

2.2 A maximization approach

To solve a problem such as (3) or (4), a general strategy is to solve directly the lo-
cal equations using a Newton-Raphson algorithm. In such a framework, a partitioning
approach is often used: the mechanical and the thermal subproblems are decoupled and
solved successively until convergence. The global convergence of such methods is not
ensured, and in practice one can face difficulties of convergence when for instance the
initial guess is not close enough to the solution. Observe that, in the case of (4), such
strategies ignore the variational nature of the problem at hand. As an alternative, using
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the variational formulation of the problem, the solution of (4) can notably be found by
solving the maximisation problem (7). A lot of well-known methods can be used to solve
such a problem, some of them being built-in functions of scientific calculation softwares.
Such methods (such as BFGS for instance) are iterative and require the computation of
J and its gradient J ′ (or at least of an ascend direction). In this regard, note from (8)
that the calculation of J(θ) amounts to solve the minimization problem

min
(u,ξ)∈Ku×Kξ

F e(u, ξ, θ) + Fd(ξ, θ) (9)

for which the local equations (expressing the stationarity of the functional) read as

u ∈ Ku , σ ∈ Kσ , ξ ∈ Kξ

Bd ∈ θ

θ0
∂φ(

ξ − ξ0

δt
) , Br ∈ ∂IT (ξ)

σ =
∂w

∂ε
, B = −∂w

∂ξ
B = Bd + Br

(10)

Those equations correspond to the backwards Euler scheme for an isothermal problem,
with a dissipation potential set equal to (θ/θ0)φ. The calculation of J(θ) is thus equiva-
lent to solving a incremental problem at a fixed temperature field. It can be proved that
the calculation of the gradient J ′(θ) is equivalent to solving a linear thermal problem. As
a conclusion, using the variational framework described so far, the solution of the ther-
momechanical incremental problem can be obtained by solving a sequence of mechanical
problems at a fixed temperature field (for evaluating J(θ)) and linear scalar problems
(for evaluating J ′(θ)). Therefore, that methods allows for a simple implementation of
the thermomechanical problem, provided a solver for the isothermal problem is available.
That last point is the focus of the next section.

3 CASE OF MICROMECHANICAL SMA MODELS

3.1 Micromechanical modelling

In most of micromechanical models of monocrystalline shape memory alloys, the in-
ternal variable ξ is taken as (ξ1, · · · , ξn) where n is the number of martensitic variants
and ξi denotes the volume fraction of martensitic variant i. The volume fraction ξ0 of
austenite is given by ξ0 = 1 − ∑n

i=1 ξi. Since each volume fraction ξi (i = 0, · · · , n) must
be positive, the variable ξ is required to take values in the convex and closed subset T of
Rn defined as

T = {ξ ∈ Rn|ξi ≥ 0 ∀i; ξ.1n ≤ 1} (11)

where 1n is the vector of Rn with all its components equal to 1. Most of micromechanical
SMA models are based on free energy functions of the form

w(ε, ξ, θ) =
n∑

i=0

ξiwi(ε, θ) + hmix(ξ) (12)
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where w0(ε, θ) = (1/2)ε : L : ε is the free energy of the austenite (with L symmetric
positive definite) and

wi(ε, θ) =
1

2
(ε − εtr

i ) : L : (ε − εtr
i ) + c(1 − log

θ

θ0

) + λT
(θ − θT )

θT

(13)

is the free energy of the martensitic variant i. In (13), εtr
i is the transformation strain of

martensitic variant i, c is the heat capacity, θT is the transformation temperature, and
λT is the latent heat of the austenite → martensite transformation at temperature θT .
The term hmix in (12) is the interaction energy between the different variants. In the
following, we will consider interaction energy hmix of the form

hmix(ξ) =
1

2
(εtr.ξ) : L : (εtr.ξ) + (J − J tr).ξ +

1

2
ξ.H .ξ (14)

where H ∈ Rn×n is symmetric positive and J is a given vector of Rn. In such case, w is
convex in (u, ξ). Functions of the form (14) have notably been used in [5, 6] with H and
J equal to 0, in which case the obtained expression of w can be proved to be a rigorous
lower bound on the effective free energy that would be obtained from relaxation [5, 7].
Concerning the dissipation potential, a classical choice, directly inspired from crystalline
plasticity, is to take φ as

φ(ξ̇) = G+.〈ξ̇〉+ + G−.〈ξ̇〉− (15)

where 〈x〉+ is the positive vector whose component i is max(0, xi). Similarly, for any
vector x, 〈x〉− is the positive vector with components max(0,−xi). In (15), G+ and G−

are two given positive vectors of Rn.

3.2 Space discretization

In the following, we discuss the implementation of the general approach presented in
Section 2 for the class of micromechanical SMA models introduced in the preceeding
subsection. We focus on the problem (9), for which the temperature field θ is fixed. As
explained in Section 2, that purely mechanical problem is indeed the central building
block for solving the thermomechanical incremental problem.

The problem (9) is solved by a Galerking approach, i.e. (9) is replaced by

min
(u,ξ)∈K̃u×K̃ξ

F e(u, ξ, θ) + Fd(ξ, θ) (16)

where K̃u and K̃ξ are finite-dimensional subsets of Ku and Kξ, respectively. Any u ∈ K̃u

admits a representation of the form

u(x) = Mu(x).v (17)

where v ∈ RM and Mu : Ω �→ R3×M is a given function. The vector v would typically
correspond to the nodal displacement vector if the finite element method is used. The
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admissibility conditions u = ud on Γu might set restrictions on the admissible values of the
vector v. However, to simplify the presentation, we assume that ud = 0, so that the vector
v can be considered as free from any constraint. Concerning the space discretization of
ξ, we assume here that functions in K̃ξ are piecewise constant. More precisely, we assume

the existence of a decomposition Ω =
⋃N

i=1 Ωi such that any ξ ∈ K̃ξ takes a constant value
(denoted by ξi) on Ωi. In such case, functions ξ in K̃ξ can be written as

ξ(x) =
N∑

i=1

χi(x)ξi (18)

where χi is the characteristic function of Ωi and ξi ∈ T . The vector (ξ1, · · · , ξN) is
denoted by ξ.

Substituting (17) and (18) in the expression of F e + Fd, the problem (16) takes the
form

min
v∈RM ,ξ∈T N

1

2
v.K.v +

1

2
ξ.B.ξ − v.C.ξ − v.F u + ξ.F ξ + Φ(ξ − ξ0) (19)

where the matrices K and B are both symmetric positive definite, the former corresponding
to the standard stiffness matrix (see [10] for more details). The function Φ that appears
in (19) is the convex function defined by

Φ(ξ) =

∫

Ω

θ

θ0
φ(

N∑
i=1

χi(x)ξi)dω =
N∑

i=1

piφ(ξi) with pi =

∫

Ωi

θ

θ0
dω (20)

The function in (19) being quadratic with respect to v, the minimization with respect to
v in (19) can be performed in closed form. The problem (19) is found to reduce to

min
ξ∈T N

1

2
ξ.K′.ξ − ξ.F ′ + Φ(ξ − ξ0) (21)

with
K′ = B − CT .K−1.C , F ′ = CT .K−1.F u + F ξ (22)

It can be verified that the symmetric matrix K′ is positive [10]. Consequently, the function
to minimize in (21) is convex (but not quadratic) with respect to ξ. Using standard results
from convex analysis [1], the problem (19) can be rewritten as

−K′




ξ1
...

ξN




+ F ′ =




Br
1

...
Br

N




+




Bd
1

...
Bd

N




ξi ∈ T , Br
i ∈ ∂IT (ξi) , Bd

i ∈ pi∂φ(ξi − ξ0
i ) for i = 1, · · · , N

(23)

The issue of practically solving that problem is the focus of the next subsection.
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3.3 Formulation of a linear complementarity problem

The identity matrix of Rn×n is denoted by In, and E denotes the nN ×N matrix with
the following block structure

E =




1n 0 0

0
. . . 0

0 0 1n


 (24)

For latter reference, we also introduce the two vectors G̃
+

and G̃
−

of RnN defined by

G̃
+

=





p1G
+

...
pNG+





, G̃
−

=





p1G
−

...
pNG−





(25)

Consider now a solution (ξj, B
r
j , B

d
j )1≤j≤N of (23) and define

α+
j = pjG

+ − Bd
j , µ+

j = 〈ξj − ξ0
j〉+

α−
j = pjG

− + Bd
j , µ−

j = 〈ξj − ξ0
j〉−

γj = 1 − 1n.ξj

(26)

Since T takes the form (11) and Br
j ∈ ∂IT (ξj), there exists zj ∈ R and aj ∈ Rn [10] such

that
Br

j = zj1n − aj , zj ≥ 0 , aj ≥ 0 , aj.ξj = zj(1 − ξj.1n) = 0 (27)

Define

α± =




α±
1
...

α±
N


 , µ± =




µ±
1
...

µ±
N


 , a =




a1
...

aN


 , γ =




γ1
...

γN


 , z =




z1
...

zN


 (28)

Setting k = (3n + 1), we consider the two following vectors of Rk:

s =




α+

α−

ξ
γ


 , x =




µ+

µ−

a
z


 (29)

Using the relations (23), it can be verified that (x, s) are solution of the problem

Find x ∈ Rk and s ∈ Rk such that s = M.x + q , s ≥ 0 , x ≥ 0, s.x = 0 (30)

where M ∈ Rk×k and q ∈ Rk are defined by

M =




K′ −K′ −InN E
−K′ K′ InN −E
InN −InN 0 0
−ET ET 0 0


 , q =




G̃
+ − F ′ + K′.ξ0

G̃
−

+ F ′ − K′.ξ0

ξ0

1N − ET .ξ0


 (31)
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Conversely, it can easily be verified that any solution of (30) generates a solution of
the incremental problem (23), so that the two problems (23) and (30) are equivalent.
The motivation of that reformulation is that (30) is a standard problem in mathematical
programming. It is known as a Linear Complementarity Problem (LCP) and has been
extensively studied [8, 9]. In particular, efficient numerical algorithms, such as interior-
point methods, have been developed and are now available in various toolboxes. That
reformulation thus allows for an easy and efficient way of solving the incremental problem,
building on existing algorithms suited to large-scale problems. Is should be mentionned
that solving a LCP amounts to solve a quadratic minimization problem (with linear
constraints). As a consequence, the change of variables (26) allows us to turn the convex
but non quadratic problem (23) into an equivalent quadratic problem, easier to solve.
Some examples of numerical simulations are presented in [10].

It would be interesting to study if the proposed method could be extended to more
sophisticated micromechanical models, in order to account for crystalline texture [7] or
large strain effects [11].
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