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Abstract. A new material model is proposed for the description of stress-softening ob-
served in cyclic tension tests performed on soft biological tissues. The modeling framework
is based on the concept of internal variables introducing a scalar-valued variable for the
representation of fiber damage. Remanent strains in fiber direction can be represented
as a result of microscopic damage of the fiber crosslinks. Particular internal variables
are defined able to capture the nature of soft biological tissues that no damage occurs
in the physiological loading domain. A specific model is adjusted to experimental data
taking into account the supra-physiological loading regime. For the description of the
physiological domain polyconvex functions are used which also take into account fiber
dispersion in a phenomenological approach. The applicability of the model in numerical
simulations is shown by a representative example where the damage distribution in an
arterial cross-section is analyzed.

1 INTRODUCTION

As a result of hypertension, overweight, rich alimentation, smoking, diabetes and stress,
biochemical and mechanical degenerative processes in arterial walls are followed by a lu-
men reduction referred to as stenosis. In severe cases such stenosis may result in heart
attacks, smoker’s legs or in strokes. To prevent such complications one frequently used
method of treatment is balloon dilatation accompanied by the implantation of a stent.
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Thereby, a balloon catheter is inserted into the affected artery and dilated with an in-
ternal pressure increase. After removing the balloon the luminal area remains enlarged.
During this procedure microscopic damage is induced in the vessel wall which is partly
responsible for the treatment success since it results in increased strains when unloading
to the state of physiological blood pressure again. Within the clinical context these effects
are referred to as controlled vessel injury, see, e.g., [5]. In order to improve insight into the
complex biomechanical processes during therapeutical interventions such as angioplasty
and for the optimization of treatment methods, the modeling of arterial tissues and re-
lated computer simulations are subject of current research.
Most experimental approaches dealing with the measurement of mechanical properties
of soft biological tissues are related to the analysis of loading within the physiological
domain. With respect to degenerative processes occurring during angioplasty especially
supra-physiological (therapeutical) loadings are required. These load levels are charac-
terized by loading conditions significantly higher than those that occur under normal
(physiological) conditions. In [19] first layer-specific experiments are performed under
supra-physiological conditions. In such experiments a pronounced softening hysteresis
is observed with respect to the stress-strain response. For the description of isotropic
softening there exist various models. One of the first representations of damage at large
strains is introduced in [20]. In order to describe damage, showing a saturating behavior
during repeated un- and reloading cycles for fixed maximum load levels, [13] introduced a
suitable model. An alternative phenomenological form of describing damage mechanisms
is linked with the notion of pseudo-elasticity. Thereby, the main idea is that different
loading branches are described by different strain-energy functions. As one of the first
works in this context one should mention [15]. With respect to soft biological tissues
a practical approach avoiding the usage of damage tensors is given in [17], where the
anisotropic damage can be described by scalar-valued variables. The model by [16] uses
scalar-valued variables as well and considers a stochastic framework on the basis of the
wavy structure of the collagen fibers. A model for the preconditioning of soft biological
tissues and the anisotropic Mullins effect is proposed in [7]. Another recent approach
provides the description of remanent strains after overstretch in the framework of finite
plasticity based on the assumption of remaining deformations at the micro-scale of the
fibers, see [9]. A particular damage behavior for the matrix material is taken into account
in e.g. [14] or [4]. These two contributions are formulated in terms of the continuum
damage mechanics, where the existence of an effective (ficticiously undamaged) strain en-
ergy function is postulated. Since this function is associated to the physiological regime,
where the response of soft biological tissues is hyperelastic, a polyconvex function should
be used because then the existence of minimizers of underlying variational problems is
guaranteed if additionally coercivity is ensured. In addition to that, quasiconvexity and
material stability are automatically fulfilled, cf. [18], where the first transversely isotropic
and orthotropic polyconvex functions are introduced. In [10] a first polyconvex model
for arterial tissues is proposed as an exponential function of the fourth mixed invariant
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of the right Cauchy-Green tensor and the structural tensor characterizing the material
symmetries. Further polyconvex models able to describe soft biological tissues which are
a priori stress-free in the (undeformed) reference configuration are proposed in, e.g., [1]
or [6].
Here, we focus on the construction of a new model able to describe the complex softening
hysteresis observed in experiments of soft biological tissues. The model is formulated in
terms of the continuum damage mechanics and reflects the anisotropic character of the
material. In addition to that, a rather low number of material parameters with physical
interpretability is introduced keeping the proposed model applicable. Please note that full
details regarding the model and numerical examples can be found in the original paper [3].

2 CONTINUUM MECHANICAL FRAMEWORK

In the reference configuration the body of interest is denoted by B ⊂ IR3 and parame-
terized in X; in the deformed configuration it is denoted by S ⊂ IR3 and parameterized
in x. The nonlinear deformation map ϕt : B → S at time t ∈ IR+ maps points X ∈ B
onto points x ∈ S. The deformation gradient F and the right Cauchy–Green tensor C

are defined by
F (X) := ∇ϕt(X) and C := F TF , (1)

with the Jacobian J := detF > 0. In case of hyperelastic materials we postulate the
existence of a strain-energy function ψ, defined per unit reference volume. In order to
obtain constitutive equations which satisfy a priori the principle of material objectivity,
the functional dependency ψ := ψ(C) is taken into account. Then we compute the second
Piola–Kirchhoff stresses and the Cauchy stresses by

S = 2∂Cψ and σ = J−1FSF T , (2)

respectively. A suitable framework for the description of anisotropic materials is the
concept of structural tensors. Therein, an additional argument tensor, the structural
tensor, is defined such that it reflects the symmetry group of the considered material.
We concentrate on fiber-reinforced materials, hence, we restrict ourselves to the cases of
transverse isotropy and to materials which can be characterized by a given number of
non-orthogonal preferred directions. In these cases we are able to express the material
symmetry of the considered body by a set of second-order structural tensors

M (a) := A(a) ⊗A(a) with a = 1...na , (3)

where na is the number of fiber directions. For the construction of specific constitutive
equations we focus on a coordinate-invariant formulation, thus, the invariants of the
deformation tensor and of the structural tensors are required. The explicit expressions
for the principle invariants of the right Cauchy–Green tensor are given by

I1 := traceC, I2 := trace[CofC], I3 := detC . (4)

3
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Let M (a) be of rank one and let us assume the normalization condition ||M (a)|| = 1 due
to |A(a)| = 1, then the additional invariants, the mixed invariants, are

J
(a)
4 := trace[CM (a)], J

(a)
5 := trace[C2M (a)] . (5)

For the construction of constitutive equations we obtain the possible polynominal basis
P1 := {I1, I2, I3, J

(a)
4 , J

(a)
5 }.

3 DAMAGE MODEL FOR SOFT BIOLOGICAL TISSUES

In arterial walls the tissues are basically composed of an isotropic ground substance
and mainly two embedded fiber families, which are typically arranged cross-wise helically.
This fiber-reinforcement can be taken into account by consideration of a strain energy
function of the type

ψ(I1, I2, I3, J
(a)
4 , J

(a)
5 ) := ψvol(I3) + ψiso(I1, I2, I3) +

2∑
a=1

ψti
(a)(I1, I3, J

(a)
4 , J

(a)
5 ) . (6)

The energy associated to the isotropic ground substance is represented by ψiso whereas
the fiber energy is denoted by ψti

(a). A weak interaction between the individual fiber
families is assumed and therefore the orthogonal response of the material is approximated
by the superposition of two transversely isotropic energies. The energy ψvol is a penalty
function accounting for the incompressibility constraint. Here, it is assumed that the
ground-substance is able to undergo significantly higher deformations before a dissipative
behavior is observed and therefore no damage is taken into account in the matrix. The
associated strain energy function is chosen as

ψiso = c1

(
I1

I
1/3
3

− 3

)
, (7)

where c1 > 0 is a stress-like material parameter. This function leads to an almost linear
stress-strain relationship which can be experimentally substantiated.
For the description of the damage-induced softening observed in experiments the main
damage evolution is assumed to be in the fibers since these are the main load-bearing
elements. Therefore, the transversely isotropic part is decomposed into the effective (fic-
ticiously undamaged) hyperelastic strain energy ψ0

(a) and a reduction term (1−D(a)) with

D ∈ [0, 1[ accounting for the microscopic damage evolution. In order to consider remanent
strains in the fibers when unloading the material a further decomposition into an external
and an internal function m and P is taken into account, respectively. Then we obtain

ψti
(a) := m(P (C, D(a))) with P = (1−D(a))ψ

ti,0
(a) − c , (8)
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wherein the constant value c represents the value of the effective energy in the reference
configuration. For the external and effective strain energy function we choose

m(P(a)) =
k1
2k2

{
exp

(
k2�P(a)�

2
)
− 1

}
, ψti,0

(a) = κ I1 + (1− 3 κ)J
(a)
4 , c = 1 (9)

such that for the undamaged case (D = 0) the well-known strain energy function [10]
together with the fiber dispersion approach introduced in [8] is obtained. This approach
is incorporated in order to account for distributed fiber orientations, which is controlled by
adjusting the parameter κ ∈ [0, 1/3]. If κ = 0 then a perfectly transversely isotropically
distributed orientation is obtained. Please note that the Macauley bracket �(•)� = 1

2
[(•)+

|(•)|] in (9)1 filters out positive values. Preliminary mechanical experiments of cyclically
overstretched soft biological tissues show that if the maximum load level is fixed in a cyclic
tension test, then the stress hysteresis converges to a “saturated” response curve. This
behavior has to be modeled by an appropriate choice of the damage function D, which
is assumed to depend on the fictitiously undamaged (effective) energy ψti,0

(a) , cf. [2], such
that evolution of damage is activated in the loading and reloading processes. This can be
achieved by defining the internal variable

β(a) :=
〈

β̃(a) − β̃ini
(a)

〉

with β̃(a) =

∫ t

0

〈

ψ̇ti,0
(a) (s)

〉

ds , (10)

with β̃ini
(a) being the internal variable at an initial damage state in order to make sure

that the damage evolution starts when entering the supra-physiological domain. Clearly,
β̃ini
(a) is the value of β̃(a) at each material point reached for the situation where the damage

evolution starts. In arterial walls this should be the case when the upper edge of “normal”
blood pressure is attained. The time associated to the loading history is denoted by
s ∈ IR+; t ∈ IR+ defines the actual loading situation. Then the internal variable (10)
enters the damage function

D(a)(β) = Ds,(a)

[

1− exp

(
ln(1− rs)

βs
β(a)

)]

with Ds,(a) ∈ [0, 1[, rs ∈ [0, 1[, βs > 0 ,

(11)
cf. [12]. Herein, the only material parameter βs is the value of the internal variable β
which is reached at a certain fraction rs of the maximal damage value Ds,(a) for a fixed
maximum load level. We consider a fraction of rs = 0.99 and thus, βs represents the
value of internal variable at a damage value which can be interpreted as saturated. The
response of the damage function (11) converges to a maximum value of damage Ds,(a),
which is in turn not a specified number but rather a function increasing the maximally
reachable damage value for increased maximum load levels. For convenience we consider
the same type of function and define

Ds,(a)(γ(a)) = D∞

[

1− exp

(
ln(1− r∞)

γ∞
γ(a)

)]

with D∞ ∈ [0, 1[, r∞ ∈ [0, 1[, γ∞ > 0 .

(12)
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The parameter γ∞ represents the value of the internal variable γ reached at the fraction
r∞ = 0.99 of D∞; D∞ denotes a predefined converging limit for the overall damage value.
In order to take into account that Ds,(a)(γ) remains unaltered for cyclic processes under
fixed maximum load levels we consider the internal variable

γ(a) = max
s∈[0,t]

〈
ψti,0
(a) (s)− ψti,0

(a),ini

〉
, (13)

which is defined as the maximum value of effective energy reached up to the actual state.
Herein, ψti,0

ini,(a) denotes the effective strain energy at an initial damage state obtained at
the limit of the physiological domain. This expression leads to the saturation criterion

φ(a) :=
〈
ψti,0
(a) − ψti,0

(a),ini

〉
− γ(a) ≤ 0 . (14)

Since D∞ will be usually a number close to 1, the proposed damage model gets along
with the two material parameters βs and γ∞, which have to be adjusted to experimental
data.
The second Piola-Kirchhoff stresses are then computed from

S = 2
∂ψ

∂C
= Svol + Siso +

2∑
a=1

Sti
(a) , (15)

with the individual abbreviations

Svol = 2
∂ψvol

∂C
, Siso = 2

∂ψiso

∂C
, Sti

(a) = m′(1−D(a))S
ti,0
(a) and S

ti,0
(a) = 2

∂ψti,0
(a)

∂C
. (16)

It is emphasized that in the physiological (hyperelastic) regime where D(a) = 0 the strain
energy function is polyconvex and coercive and ensures therefore the existence of mini-
mizers and material stability.

4 NUMERICAL EXAMPLES

In this section numerical examples are provided. First, the proposed model is adjusted
to uniaxial tension tests performed with test stripes taken from the media of a human
carotid artery in order to show that the model is able to capture the mechanical behavior
of arterial tissues. Second, a circumferential overstretch of an atherosclerotic artery is
simulated in order to analyze the distribution of damage through the arterial wall.

4.1 ADJUSTMENT TO EXPERIMENTAL DATA

Uniaxial tension tests are performed on two test stripes taken from the media of a
human carotid artery, where one stripe is extended in circumferential and the other one

6
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c1 k1 k2 α1 α2 κ βf D∞ γ∞ βs

[kPa] [kPa] [-] [kPa] [-] [-] [ ◦] [kPa] [kPa] [-]

physiological 6.56 1482.38 564.81 - - 0.16 37.03

supra-physiological 7.50 1266.57 400.0 - - 0.19 35.05 0.99 6.71 1e-8

Table 1: Material parameters of the proposed model for the media of a human carotid artery in the
purely physiological and in the supra-physiological loading domain.

in axial direction. The proposed model is adjusted to the experimental data by minimizing
the least-square function

r̄(α) =

ne∑
e=1

√√√√ 1

nmp

nmp∑
m=1

(
σexp(λ

(m)
1 )− σcomp(λ

(m)
1 ,α)

max[σexp]

)2

, (17)

wherein σexp and σcomp denote the experimentally measured and modeled Cauchy-stresses,
respectively; λ1 = F11 denotes the stretch in the tension direction which coincides with
the x1-direction. Two experiments, i.e. tension in circumferential and axial direction
(ne = 2) are considered and a number of nmp measuring points are taken into account.
The material parameters are arranged in the vector α and identified by minimizing r̄. In
order to incorporate incompressibility the penalty term ψvol = p(I3−1) is included in the
strain energy function, where p can be interpreted as a pressure-like Lagrange multiplier.
The angle between the fiber orientation and the circumferential direction is treated as
a fitting parameter and is defined to be βf . In order to weight the two experiments
in a representative manner the differences are normalized by the maximal values of the
experimental stresses reached for the actual loading cycle. For the minimization problem
sequential quadratic programming is applied.
In the first instance, only the hyperelastic, physiological regime is considered. Here, the
number of measuring points is nmp = 49 for the axial and nmp = 43 for the circumferential
tension test. The resulting hyperelastic material parameters are listed in the first row of
Table 1. Fig. 1a shows the corresponding hyperelastic stress-strain response of the model
compared with experimental data. As can be seen in this figure the model lead to an
accurate match of the experimental data. Furthermore, the model response is adjusted
to experimental data for significantly increased loadings such that the supra-physiological
domain can be analyzed. For this purpose cyclic uniaxial tension tests in circumferential
and axial direction are considered. The results of the experiments are shown in Fig. 1b.
A strong anisotropy as well as a pronounced softening hysteresis is observed.
For the least-squares fit the hyperelastic parameters given in Table 1 (physiological) serve
as estimators for the definition of suitable bounds for the hyperelastic parameters. Then,
the hyperelastic as well as the damage parameters are adjusted. Due to this procedure,
the fit provides the parameters given in the second row of Table 1. Fig. 1c shows the
resulting response of the proposed model. We observe a good qualitative and quantitative
correlation with the experiments.

7
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4.2 NUMERICAL SIMULATION OF ATHEROSCLEROTIC ARTERY

In the following a numerical example for the anisotropic damage model described above
is given by a numerical simulation of an atherosclerotic arterial wall. A stenosis caused by
atherosclerosis is mostly treated by a balloon-angioplasty in combination with stenting. In
this context, a high internal (supra-physiological) pressure acts on the arterial wall during
inflating an inserted dilatation-catheter. The purpose of this section is to simulate such
an arterial overexpansion in a two-dimensional approximation which basically enables the
investigation of the influence due to the circumferential overstretch.
Therefore, a two-dimensional geometrical model with an average diameter of approxi-
mately one centimeter is used and computed with 6048 triangular elements with quadratic
ansatz functions. The model is constructed based on hrMRI (high resolution magnetic
resonance imaging). The considered cross-section is shown in Fig. 2a, where the dis-
cretization and the particular components are depicted.

The components of the artery are identified by hrMRI examination and histological
analysis, namely the nondiseased intima, fibrous cap (Ifc), i.e. the fibrotic part at the
luminal border, fibrotic intima at the medial border, calcification (Ic), lipid pool (Ilp),
nondiseased media, diseased fibrotic media and adventitia (Adv), cf. [11]. For the nu-
merical investigation the nondiseased intima with its less significant mechanical behavior
is neglected and the fibrotic intima at the medial border and the diseased fibrotic me-
dia are combined to fibrotic media (Mf). The parameters for the media originate from
Section 4.1 and the parameters for the adventitia are adjusted analogously to cyclic ex-
periments such that the parameters given in Table 2 (Adv) are obtained. Unfortunately,
for the fibrous cap and the fibrotic media no data is available for the supra-physiological
regime and therefore the model is adjusted to the physiological data given in [11] and the
same damage parameter identified for the media are taken. The lipid pool is assumed
to be a butterlike, incompressible fluid not able to sustain shear stress. For the nearly
rigid calcificated regions an average Youngs Modulus of 12(+-4.7) MPa is regarded. No
damage is considered within the calcification and the lipid regions, because here dam-
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Figure 1: Uniaxial tension tests of the media of a human carotid artery in circumferential (1) and axial (2)
directions: a) Comparison of the constitutive model response with experimental data in the physiological
range; Cyclic uniaxial tension tests: b) experimental data and c) results of the constitutive model.
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age plays a minor role. An overview of all parameters are listed in Table 2. For the
nondiseaed and fibrotic media, the adventitia and the fibrous cap, which sustain damage
evolution, the parameters rs = r∞ = 0.99 are taken into account. In order to enforce
the incompressibility constraint, the penalty function ψvol = ε1

(
Iε23 + I−ε2

3 − 2
)
is used,

where the parameters ε1 and ε2 are chosen such that detF = 1 ± 1% in the numerical
simulation. For the simulation, first an internal pressure of 24.0 kPa (=̂ 180.0 mmHg)
representing the upper edge of the physiological regime and simultaneously an axial pre-
stretch of 2% is applied. This situation is defined to be the initial damage state meaning
that damage evolution starts after a pressure higher than 24.0 kPa. In a further step the
internal pressure is increased up to 150.0 kPa (=̂ 1125.0 mmHg) in order to simulate the
overexpansion of the artery. After that the internal pressure is decreased till reaching a
pressure of p = 24.0 kPa again, i.e. the natural state after a balloon-angioplasty. Here, no
circumferential eigenstrains are considered because their order of magnitude is relatively
small compared to the stresses resulting from the overstretch and their influence on the
situation after the overstretch is assumed to be negligible. In Fig. 2b the distribution of
the normalized damage variable D(1)/maxD(1) is depicted at an internal blood pressure
of 180 mmHg after the overstretch. A damage concentration in the healthy part of the
media and the fibrous cap are observed. In addition to that the remaining strains under
physiological blood pressure are significant by comparing the cross-section area A of the
lumen before (A0 ≈ 0.11 cm2) and after (A ≈ 0.17 cm2) the overexpansion. The resulting
increase of the blood lumen due to the overstretch is 0.17/0.11 ≈ 1.5.
Remark: this simulation of an arterial wall can only be interpreted as an illustration that
the proposed model provided in this contribution is able to be implemented in finite-
element simulations. Although the qualitative distribution of damage may be reasonable
the quantitative results are not necessarily realistic due to the lack of experimental data
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media

fibrous cap b)
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Figure 2: a) Cross section of the arterial model discretized with 6048 quadratic triangular finite elements;
the components are: adventitia (Adv), nondiseased media, fibrotic media (Mf), fibrous cap (Ifc), lipid
pool (Ilp), calcification (Ic); b) normalized damage variable D(1)/maxD(1) with maxD(1) = 0.1048 of a
loaded artery after overexpansion at an internal pressure of p = 24 kPa (180 mmHg).

9



773

Daniel Balzani, Gerhard A. Holzapfel and Sarah Brinkhues

c1 k1 k2 κ βf D∞ γ∞ βs

[kPa] [kPa] [-] [-] [ ◦] [kPa] [kPa] [-]

Adv 4.0 1640.23 115.63 0.097 45.60 0.99 10.84 7.36

Mf 21.12 1951.48 925.37 0.095 25.55 0.99 6.52 0.37

Ifc 24.12 4778.44 1023.59 0.12 53.18 0.99 6.52 0.37

Ic 2250.0 – – – – – – –

Ilp 2.5 – – – – – – –

Table 2: Hyperelastic and damage parameters of the other components.

and the two-dimensional approximation of the three-dimensional artery.

5 CONCLUSION

An anisotropic damage model for soft biological tissues was presented able to describe
stress-softening hysteresis and remanent strains in the collagen fibers after unloading. A
specific constitutive model was given and by defining suitable internal variables an un-
damaged physiological loading regime could be taken into account. The resulting strain
energy function is polyconvex and coercive in the physiological (hyperelastic) regime and
guarantees therefore the existence of minimizers of variational problems. The proposed
model has been adjusted to cyclic uniaxial tension tests of the media and adventitia of
a human carotid artery and an accurate matching was observed. Furthermore, a cir-
cumferential overstretch of an atherosclerotic artery was simulated in order to show the
performance of the proposed model in finite element calculations.
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damage model for fibered biological soft tissues, International Journal for Numerical

Methods in Engineering (2007) 69:2036–2057.

10



774

Daniel Balzani, Gerhard A. Holzapfel and Sarah Brinkhues

[5] Castaneda-Zuniga, W, Pathophysiology of transluminal angioplasty. Improvement of

myocardial perfusion (Eds.: Meyer, J. and Erberl, R. and Rupprecht, H. J.), Martinus
Nijhof (publisher), Boston (1985).

[6] Ehret, A. and Itskov, M., A Polyconvex Hyperelastic Model for Fiber-Reinforced
Materials in Application to Soft Tisues, Journal of the Mechanics and Physics of

Solids (2007) 42:8853–9963.

[7] Ehret, A. and Itskov, M., Modeling of Anisotropic Softening Phenomena: Application
to Soft Biological Tissues, International Journal of Plasticity (2009) 25:901–919.

[8] Gasser, T.C., Ogden, R.W. and Holzapfel, G.A., Hyperelastic modelling of arterial
layers with distributed collagen fibre orientations, Journal of the Royal Society In-

terface (2006) 3:15–35.

[9] Gasser, T.C. and Holzapfel, G.A., Finite element modeling of balloon angioplasty
by considering overstretch of remnant non-diseased tissues in lesions, Computational

Mechanics (2007) 40:47–60.

[10] Holzapfel, G. A., Gasser, T.C. and Ogden, R.W., A new constitutive framework
for arterial wall mechanics and a comparative study of material models, Journal of
Elasticity (2000) 61:1–48.

[11] Holzapfel, G.A., Sommer, G. and Regitnig, P., Anisotropic Mechanical Properties
of Tissue Components in Human Atherosclerotic Plaques, Journal of Biomechanical

Engineering (2004) 126:657–665.

[12] Miehe, C., Discontinuous and continuous damage evolution in Ogden-type large-
strain elastic materials, European Journal of Mechanics, A/Solids (1995) 14:697–
720.

[13] Miehe, C. and Keck, J., Superimposed finite elasticviscoelasticplastoelastic stress
response with damage in filled rubbery polymers. Experiments, modelling and al-
gorithmic implementation, Journal of the Mechanics and Physics of Solids (2000)
48:323–365.

[14] Natali, A.N., Pavan, P.G., Carniel, E.L. and Dorow, C., A transversally isotropic
elasto-damage constitutive model for the periodontal ligament, Computer Methods

in Biomechanics and Biomedical Engineering (2003) 6:329–336.

[15] Ogden, R.W. and Roxburgh, D.G., An energy-based model of the Mullins effect, Pro-
ceedings of the First European Conference on Constitutive Models, (Eds.: Al Dorf-
mann and Alan Muhr), A. A. Balkema (publisher), Rotterdam, Brookfield (1999)
23–28.

11



775

Daniel Balzani, Gerhard A. Holzapfel and Sarah Brinkhues
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