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Abstract. This study suggests a method for computing the constitutive model for veins in 
vivo from clinically registered ultrasound images. The vein is modelled as a hyperelastic, 
incompressible, thin-walled cylinder and the membrane stresses are computed using strain 
energy. The material parameters are determined by tuning the membrane stress to the stress 
obtained by enforcing global equilibrium.  
In addition to the mechanical model, the study also suggests a preconditioning of the 
pressure-radius signal. The preconditioning computes an average pressure-radius cycle from 
all consecutive cycles in the registration and removes, or reduces undesirable disturbances. In 
order to overcome this problem, an approach is proposed that allows constitutive equations to 
be determined from clinical data by means of reasonable assumptions regarding in situ 
configurations and stress states of vein walls. The approach is based on a two-dimensional 
Fung-type stored-energy function that captures the characteristic nonlinear and anisotropic 
responses of veins. 

 
 

 
1 INTRODUCTION 

4.5% of the population is at risk of suffering a venous thromboembolism disease, with an 
approximate mortality rate of 11% ([2, 3]). Our general objective consists of studying a 
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serious pathology that has important consequences: deep vein thrombosis (DVT). The 
problems involved in modeling venous tissue have been largely ignored by biomechanics 
researchers, most of whose efforts have instead focused on determining constitutive models of 
the arterial tissue ([7, 11]). Venous and arterial walls have a similar structure and 
composition, the main difference between their respective walls being the thickness and fiber 
orientation of the medial zone. 

In this study, we determine a constitutive model of the venous wall tissue in its real life 
location inside the human body. In the future, we intend to study diseased venous walls and 
their relation to the origins of DVP. Some studies have modulated the mechanical properties 
of venous walls ([1, 9]), although these studies have only looked at these properties in 
laboratory conditions and in non-live tissue. 

Constitutive equations can be determined from experimental data regarding the diameter of a 
vessel segment that is subject to internal pressure and external axial force, and the load-free 
reference geometry of the vessel segment, including the wall thickness.
In the present study, if the membrane stresses are to be computed, two assumptions need to be 
made to overcome the limitations of the clinical data ([10]), 
(i) The in vivo conditions, the axial stretch of the vessel and the axial external force are 
constant and independent from internal pressure  
(ii) The ratio between the axial and circumferential stress is known at one internal pressure P.

2. METHODS 

2.1. Original Data 
To carry out the present study, we have used images captured by projecting ultrasound in real 
time, which is a typical method for clinically registering the pressure and radius. The 
ultrasound probe is lineal to 4.5 MHz and uses the MyLab Xview 70 high resolution image 
projection system (Esaote, Genoa, Italy). This new-generation ultrasound tool eliminates 
particles whilst preserving the information needed for diagnosis. We have used a time 
sequence of 10 seconds to register in a file of a healthy 40 year-old person. With this 
observation, we also obtain the internal pressure P.

2.2. Theoretical framework 
In general, veins and arteries have similar walls and a structure in three distinct layers: the 
intima, the media  and the adventitia. The media is the middle layer of the vein and consists of 
a complex three-dimensional network of smooth muscle cells, and elastin and collagen fibrils 
([4]). The mechanical properties of venous and arterial walls are different; for example, the 
pulsating behaviour of the arterial walls is absent from the venous walls. In venous walls the 
media layer is thinner than the arterial wall. Also, the fibre orientation of venous walls is not 
clear. Consequently, we use a non-fibre oriented model to approximate the constitutive 
equation of the venous wall. 
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In the femoral vein, the variation range of the pressure–inner diameter and the wall thickness 
at mean pressure is taken from clinical data. A two-dimensional (membrane) model 
describing the biaxial (i.e. circumferential and axial) response is to be determined. Employing 
a least-squares approach this can be achieved by minimizing the sum of the squared errors W: 

( ) ( )[ ]∑ −+−=
i

izzzziW 2mod2mod σσσσ θθθθ
(1)

In Eq.(1), the index i denotes the ith of the n data points, mod
θθσ  and mod

zzσ are the 
circumferential and axial Cauchy stresses predicted by the model, and θθσ  and zzσ  are the 
mean circumferential and axial Cauchy stresses of the wall computed directly from 
experimental data by enforcing equilibrium. 

Following the theory of hyperelasticity ([6]) the principal model stresses: 
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may be derived from the two-dimensional SEF ),( zλλψψ θ= and can be expressed in terms of 
the principal stretches θλ  and zλ  associated with the circumferential and axial directions, 
respectively. The circumferential and axial stretches are defined as mm Dd /=θλ  and 

Zzz /=λ ; whereby dm and Dm denote the actual and the referential (unloaded) mid-wall 
diameter of the vessel, and z and Z denote the actual and the referential length of a vessel 
segment. Note that Eq. (2) is only valid if the stress tensor and the strain tensor are coaxial. 
This is the case in the present study, which is restricted to axisymmetric geometry and 
boundary conditions. For ψ  a two-dimensional Fung-type SEF proposed by Von Maltzahn et 
al.(1984) is used as follows: 

)1(
2

−= QeCψ , (3)

where

22 2 zzzzzzz EcEEcEcQ ++= θθθθθθθ
(4)
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The SEF ψ  incorporates four constitutive parameters, C, θθc , zcθ  and zzc . The circumferential 
and axial Green–Lagrange strains θθE  and zzE  can be expressed in terms of the 
circumferential and axial stretches, that is, )1( 2

2
1 −= θθθ λE  and )1( 2

2
1 −= zzzE λ , respectively. 

Fung-type SEFs have been used successfully to model the mechanical responses of numerous 
veins from various species and anatomical sites. Substituting Eq.(4) for Eq.(2) leads to 
explicit expressions for mod

θθσ  and mod
zzσ  as functions of the principal stretches θλ , zλ and the 

constitutive parameters C, θθc , zcθ  and zzc . Note that ψ  is convex if and only if zzz ccc θθθ <2 ,
0>θθc  and 0>zzc  (for a derivation see [6]). 

The circumferential and axial mean wall stress θθσ  and zzσ  can be determined by enforcing 
global equilibrium. Thus, 

h
rP

=θθσ ,
π

πσ
)2(

2

hrh
FPr

zz +
+

= (5)

where h is the actual wall thickness, r is the actual inner radius, P is the transmural pressure 
and F is the external axial force. Substituting these expressions in θθσσ /zzk =  the external 
axial force F can be determined explicitly as: 

APkkPrF +−= )12(2 π (6)

where, according to assumption (ii), the stress ratio k is known for a particular pressure P
associated with the actual radio r and πrhA = .

2.3. Calculus 

The constitutive parametersC , θθc , zcθ  and zzc  have to be determined as variables from a 
nonlinear zero function in order to determine the minimum error function. We consider the 
function W as the function of error, we want to obtain the minimum of this function or the 
zero of this function’s derivative. To do so we will use the Levenberg-Marquardt method for 
the non-linear least squares problems [8]. Thus, we will considererC , θθc , zcθ  and zzc  as 
variables in the function W, that is ),,,( zzz cccCW θθθ , so that its minimum will be found in 
values that verify that 0),,,( =∇ zzz cccCW θθθ

that is: 
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where W∂ / x∂  are the partial derivative of function W by the variable x. Now we need to 
apply the Newton-Raphson method to the function W∇  in dimension 4: 

10)())((' )()()1()( ≥=∇+−∇ + kXWXXXW kkkk (8)

where 'W∇  is the Jacobian 44×  matrix. We take ),,,( 0000)0(
zzz cccCX θθθ=  where 

),,,( 0000
zzz cccC θθθ  are the values obtained in [10] for arteries. This is a linear system of 

equations for )1( +kX , and given that 'W∇  is a non-singular matrix, it can be solved using a 
normal lineal system method. 
A simple verification shows the local minimum property of the value obtained (we apply a 
small perturbation to our final value). 

3. RESULTS 

We obtain values for the constitutive parametersC , θθc , zcθ  and zzc ; and (using the 
constitutive model) we can obtain information on the unloaded referential geometry (inner 
diameter D) and the in situ boundary force F for each observation (see Table 1). 

Table 1: Computed inner diameter D; external axial force F; constitutive parameters C, θθc , zcθ  and zzc .

With the specified constitutive parameters summarized in Table 1, the SEFs turn out to be 
convex, which is a crucial property that ensures mechanically and mathematically reliable 
behaviour. Specific constitutive equations are obtained by substituting the constitutive 
parameters in Eq.(2). The relations between the pressure and the inner diameter computed 
from the constitutive models are approximately the same as the observed values (Fig.1). The 
biaxial response (Fig.2) shows the anisotropy and nonlinearity between the axial and 
circumferential stretches. 

 D(mm) F(N) C(kPa) θθc zcθ zzc
Femoral Vein 8.8 1.14 14.37 2.08 1.39 1.01 
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Figure 1:  Pressure–inner diameter cycles (marked by 
squares) from the values for the femoral vein. The 
solid line indicates the pressure–inner diameter 
relation predicted by the constitutive model. 

Figure 2:  Circumferential (thick lines) and axial (thin 
lines) Cauchy stress contours in the (mid-wall) stretch 
plane for the femoral vein from a non pathologic 
subject.

4. CONCLUSIONS 

This is the first attempt to provide constitutive equations for human veins and the femoral 
vein in particular. The mechanical behaviour of human arteries has already been described, 
but this is not the case for human veins. Consequently, we have used the results obtained in 
[9] to develop a new constitutive model for human veins.  
In this study we have tried to show a simple method for determining constitutive parameters 
for the biaxial stretch states of human vein walls (Fig.2) in a specific subject (Fig.1). 
The proposed approach is based on providing information about the axial values (axial 
stretch, external axial force and axial stress) that is not contained in clinical data. Evaluating 
the predictive capability of constitutive equations requires changes in the boundary 
conditions, that is, in the pressure and stretches. However, it is possible to alter the boundary 
conditions in a tolerable way. Obviously, future research in this area could compare several 
constitutive model approximations in various subjects, each one from a different risk 
population. Even so, the particular conditions for a specific patient can change; blood pressure 
can be elevated through exercise or diminished by pharmacological methods. The specificity 
of this method allows a specific model for each patient. 
These models try to characterize the nonlinear anisotropic material responses and the in-situ 
boundary conditions, because the original data are measurements of stretches in-situ. This fact 
will promote future research into potential thrombosis risk factors and parameters for 
monitoring pharmacological therapies, etc. Despite inherent limitations the present approach 
demonstrates a reasonable way to determine constitutive equations for human veins that 
would otherwise not be available.
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