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Abstract. Multiscale model for hot–working, which can investigate the macroscopic me-
chanical behavior based on the microstructure evolution, has been developed by coupling
the finite element (FE) method and phase–field (PF) method. Here, the microstructure
evolutions in dynamic recrystallization are simulated by the multi–phase–field-dynamic
recrystallization (MPF–DRX) model. The microscopic simulations are performed in every
element used in the finite element simulations to calculate the macroscopic mechanical
behaviors.

1 INTRODUCTION

During hot–working of low–to–medium stacking fault energy metal, the dynamic re-
crystallization (DRX) occurs, where the plastic deformation due to dislocation accumula-
tion and the nucleation and growth of recrystallized grain occur simultaneously [1]. The
macroscopic mechanical behavior during DRX shows a characteristic stress – strain curve,
or single and/or multiple peak curves are generated depending on the initial grain size,
the strain rate and the temperature [2]. Because these macroscopic stress – strain curves
are largely affected by the microstructure evolution, it is key for the working process de-
sign to develop a multiscale numerical model for the hot–working. There are roughly two
kinds of multiscale method: one is by finite element method [3, 4, 5, 6, 7], which mainly
focuses on the macroscopic mechanical behavior, and the other is by grain growth model
[9, 10, 11, 12, 13, 14, 15, 16, 17], which focuses on the microstructure evolution.

In finite element simulations considering the DRX microstructure evolution during
hot–working [3, 4, 5, 6, 7], the information of microstructure, such as average grain size,
recrystallization volume fraction, stored energy (or dislocation density) and so on, is incor-
porated into the model through the constitutive equation and the DRX microstructural
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information is updated as a function of strain, strain rate and temperature. To increase
the accuracy of these models in more practical hot–working, it is key to properly incor-
porate the information of DRX microstructure evolutions, which largely depends on the
stress and thermal history, into the constitutive equation.

In DRX simulations using grain growth model [9, 10, 11, 12, 13, 14, 15, 16, 17], the
nucleation and growth of DRX grains, or realistic DRX microstructure evolution, are sim-
ulated and the macroscopic stress–strain curve is calculated from the average dislocation
density in the computational domain. As a grain growth model, Cellular Automata (CA)
is widely employed [9, 10, 11, 12, 13, 14, 15]. We have developed the MPF–DRX model
[16, 17] using multi–phase–field (MPF) method instead of CA and confirmed that the
MPF-DRX model can be applied to the transient deformation where strain and temper-
ature change rapidly during deformation [18].

In this study, we develop multiscale DRX model coupling above two types of DRX
models, where the DRX microstructure evolution is simulated by MPF–DRX model and
the macroscopic mechanical behavior is calculated by large deformation finite element
analysis, where the conventional J2–flow theory is used as the constitutive equation.

2 COUPLING OF MPF–DRX MODEL AND FE METHOD

Figure 1 shows an image of the multiscale simulation using MPF–DRX model and FE
method.

Finite Element Mesh
Computational domain for 

MPF-DRX

Figure 1: Image of multiscale simulation

The MPF–DRX simulations are performed in all finite elements used in FE simulation.
Because the crossed-triangle element is employed in the present FE simulation, in the
example of Fig.1, the computational domains with 196 numbers ( = 7×7×4 ) are prepared
and the MPF–DRX simulations are performed in all 196 domains. The equivalent strain
rate ˙̄ε and temperature T , which are different in every element, are transferred from
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FE simulation to MPF–DRX simulation and the tangent modulus dσ̄/dε̄ which is the
slope of the uniaxial stress–strain curve is transferred from MPF–DRX simulation to FE
simulation.

3 MPF–DRX MODEL

In the MPF–DRX model [16], the grain growth driven by stored energy is simulated
by the MPF method [21] and the local dislocation density evolution due to plastic de-
formation and dynamic recovery (DRV) is expressed by the Kocks–Mecking (KM) model
[19]. A macroscopic stress-strain curve is obtained from the Bailey–Hirsch equation [20]
using average dislocation density in all computational domain.

3.1 MPF model

A polycrystalline system including N grains is indicated by N phase–field variables.
The ith grain is indicated by the phase field φi, where φi takes values of 1 inside the ith
grain, 0 inside the other grains, and 0 < φi < 1 at the grain boundary. The evolution
equation of φi is expressed by [21]

φ̇i = −
n∑

j=1

2Mφ
ij

n

[
n∑

k=1

{
(Wik − Wjk) φk +

1

2

(
a2

ik − a2
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)
∇2φk

}
− 8

π

√
φiφjΔfij

]
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where n is the number of phase–field variables larger than 0 at the lattice point, aij,

Wij, and Mφ
ij are the gradient coefficients, the height of double–well potentials and the

phase–field mobilities related to the grain boundary thickness δ, grain boundary energy
γ and grain boundary mobility M , respectively, by

aij =
2

π

√
2δγ, Wij =

4γ

δ
, Mφ

ij
=

π2

8δ
M. (2)

Here, δ, γ and M are assumed to be constant at all boundaries and Eq.(2) is true only
for i �= j and the diagonal components are zero. The driving force Δfij can be obtained
as Δfij = 1/2μb2(ρi − ρj), where μ is the shear modulus, b is the magnitude of the
Burgers vector, and ρi and ρj are the dislocation densities in ith and jth adjacent grains,
respectively.

3.2 Dislocation evolution and macroscopic stress

The accumulation of dislocations due to plastic deformation and DRV is expressed by
the KM model [19] as the relationship between the local dislocation density ρi in the ith
grain and the true strain ε;

dρi

dε
= k1

√
ρi − k2ρi. (3)

Here, the first term on the right–hand side expresses the work hardening, where k1 is a
constant that represents hardening. The second term is the DRV term, where k2 is a
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function of the temperature T and the strain rate ε̇. [9] . Macroscopic stress is related to
the average dislocation density ρ̄ as

σ = αμb
√

ρ̄, (4)

where α is the dislocation interaction coefficient of approximately 0.5. From eqs. (3) and
(4), a macroscopic stress–strain curve can be determined.

3.3 Nucleation of DRX grains

It is assumed that the nucleation of recrystallized grains occurs only with the bulging
of a grain boundary in the present model. Therefore, when the dislocation density at a
grain boundary exceeds its critical value ρc, or

ρc =

(
20γε̇

3blMτ 2

)1/3

, (5)

nuclei are in placed at a grain boundary by following the nucleation rate per unit area of
a grain boundary [9]

ṅ = cε̇d exp(−ω

T
), (6)

where τ = 0.5μb2 is the line energy of a dislocation, l is the mean free path of mobile
dislocation expressed by l = 10/(0.5

√
ρ0), [9] and c, d and ω are constants.

4 FINITE ELEMENT METHOD

To evaluate the macroscopic mechanical behavior during hot–working process, the
elasto–plastic large deformation simulation is performed by finite element method. Here,
the conventional J2–flow theory is employed as the constitutive equation, where the elastic
strain rate ε̇e

ij and plastic strain rate ε̇p
ij are derived from the generalized Hook’s low and

the flow low and the Mises yield function, respectively. The relation between the Jaumann

rate of Kirchoff stress Sij and strain rate ε̇ij is indicated as follow:

Sij =

(
De

ijkl −
2G

g
σ′

ijσ
′
kl

)
ε̇kl, (7)

where De
ijkl, σ′

ij and G are the elastic coefficient tensor, the deviatoric Cauchy stress
tensor and shear modulus expressed as G = E/ {2 (1 + ν)}, respectively. In addition, g is
expressed by
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3
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)
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3

2
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ijσ
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where, taking into account the uniaxial test and non–compressibility,

1

h
=

3

2
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E

)
, (9)
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can be obtaind. Here, Et is the tangential coefficient in the true stress and true strain
curve, or Et = dσ/dε, and is calculated in the MPF–DRX simulation. Therefore, in
the present FE simulation, we don’t need the uniaxial constitutive equation obtained by
uniaxial test, which is required in the normal FE simulation.

Because the strain rate dependency is contained in the MPF–DRX simulation, the
strain rate independent constitutive equation is used in the FE simulation. In this study,
furthermore, an isothermal condition is assumed and, therefore, the thermal conduction
equation is not shown here.

5 NUMERICAL SIMULATIONS

To confirm the accuracy of the present model, the uniaxial compression simulations in
a plane stress condition of copper [18] are performed for a single crossed–triangle element.
The constant strain rates ε̇ are set to be 0.001, 0.003, 0.01, 0.03 and 0.1/s in the isothermal
condition T = 800 K. The time step is determined as Δt = Δx2/

(
4a2Mφ

)
from Eq.(1).

Because the strain increment Δε is calculated as Δε = ε̇Δt, Δε changes depend on the ε̇.
Young’s modulus E is derived as E = 0.5αμbk1 from Eqs.(3), which is a gradient of true
stress and true strain curve at ε = 0, and (4) and Poisson’s ration is set to be 0.3.
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Figure 2: Stress–strain curves calculated by MPF–DRX model and FE method

Figure 2 shows the true stress and true strain relations for five different strain rates.
Although the present simulation is compression, stress and strain are indicated as positive
value. From Fig.2, the characteristic stress–strain curves in DRX, where the transition
from the multiple peaks to the single peak occurs with increasing the strain rate, can
be observed. Red lines are the results of MPF–DRX simulation and blue lines are the
results of FE simulation used the results of MPF–DRX simulation. The good agreements
between red and blue lines are confirmed especially in slow strain rate region.

Figure 3 shows the DRX microstructure evolution for ε̇ = 0.01/s. The color indicates
the DRX cycle defined in Ref. [17].
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(a) ε = -0.1 (b) ε = -0.2 (c) ε = -0.5 (d) ε = -1.0

Figure 3: DRX microstructure evolutions (ε̇ = 0.01)

From Figs.2 and 3, it is confirmed that the present model can simulate the microstruc-
ture evolution and the macroscopic mechanical behavior simultaneously. However, the
results shown in Figs.2 and 3 can be calculated only by the MPF–DRX model. The
novel point of the present coupling model is that the model can simulate the different mi-
crostructure evolution for every finite element in the nonuniform deformation simulation.

6 CONCLUSIONS

The novel multiscale model, which can evaluate the macroscopic mechanical behavior
based on the microstructure evolution considering the DRX in hot–working process, has
been developed. Here, the MPF–DRX model has been incorporated into the large de-
formation FE method with the conventional J2 flow theory as the constitutive equation.
The uniaxial compression simulations using one crossed–triangle element were performed
to confirm the accuracy of the developed model.

As future work, the model will be extended to the nonuniform and nonisothermal
deformation condition.
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