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Abstract. In this paper, so as to reproduce the dynamic recrystallization, the dislocation-
crystal plasticity model devotes to a deformation analysis and multi-phase-field one to 
nucleus growth calculation. First, we place a few nuclei on the parent grain boundaries, i.e., 
high dislocation density site. Next, carrying out the simulation, dislocations start to 
accumulate in accordance with the deformation. Introducing the energy of dislocations stored 
locally in the matrix into the phase-field equation, the placed nuclei begin growing. In the 
region where the phase transitions from the matrix to the recrystallized phase, the values of 
dislocation density, crystal orientation and slip are reset. Moreover, applying the above 
information to the hardening modulus and crystal bases of the crystal plasticity model, the 
deformation is calculated again. With the progress of deformation, the dislocation density 
increases even inside the growing nuclei. Also, on the basis of the results obtained by the 
multiphysics simulation, we discuss the microstructure formations dependent on applied 
deformation.  
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1 INTRODUCTION 

The mechanical properties of metals are significantly affected by microstructures formed 
during recrystallization in rolling processes. Especially, the nucleus growth that occurs during 
the warm- or hot-rolling is known as the dynamic recrystallization (See fig. 1). First, applying 
plastic deformation to materials, cell structure is formed and then, subgrains are formed by 
pair annihilation and rearrangement of dislocations in the dynamic recovery stage. Next, in 
the nucleation stage, subgrain groups on the boundaries between parent grains coalesce to 
nuclei due to grain boundary migration. This mechanism is called bulging. During this 
process, stress-strain curve describes the hardening because of dislocation accumulation due 
to plastic deformation shown in fig. 2. However, once nucleus growth starts and recrystallized 
phase expands, decrease of dislocation density causes softening of materials. If a further 
deformation is given to the materials, the stress-strain curve sifts to the rehardening due to 
dislocation accumulation in the recrystallized new phase. With this mechanism, stress-strain 
curve during dynamic recrystallization is known to have multi-peaks. For control of 
mechanical properties in materials design, it is industrially important to predict numerically 
the dynamic recrystallization. 

In the previous work [1], the authors developed a simple multiphysics model of the 
dynamic recrystallization by coupling the KWC type phase-field model and dislocation-
crystal plasticity one that can express the dislocation accumulation by calculating GN crystal 
defects (GN dislocation density and GN incompatibility). Also, we conducted a computation 
for a single nucleus on the basis of this model. However, it cannot predict the growth of a 
number of nuclei because the KWC type phase-field model hardly deals with different nuclei. 
In addition, there still exists a problem about how to update the crystal orientation of the 
region that change into recrystallized phase from matrix since the initial orientation was given 
to such area in the previous simulation. 

So as to work out the above problems, in this study, we adopt a multi-phase-field model to 
extend the material model to an enhanced type suitable for a lot of nuclei. Therein, a 
modification is conducted for the free energy of bulk to be a double well type considering the 
stored dislocation energy as a driving force of recrystallization. Next, we develop a 
multiphysics model combining the multi-phase-field model and dislocation-crystal plasticity 
one through the crystal orientation and the dislocation density. Using the present model, a 
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numerical simulation is carried out assuming a FCC polycrystal with a few nuclei on the 
parent boundaries subject to a compressive load in hot-rolling. In this calculation, the current 
orientation considering deformation is given to the region where the phase changes into 
recrystallized phase from matrix. 

2 MATERIAL MODELS 

2.1 Phase-field model 

In order to express the growth of a number of nuclei, the multi-phase-field model is 
adopted in this study. By use of the model, it is possible to calculate growth of a lot of grains 
simultaneously. Setting the order parameter for grain   as (0 1)    , and considering 
the interface field [2] defined as        and sum of   all over the phases, such 
as 1


  , the evolution equation of   is obtained as 

2 2 2

1 1( )

1 ( , ) ( , ){ ( ) }
2

N NM f f
t N

    
   

 
   

      
   

  
     

     (1)

where N is the total number of the grains, M 
  the mobility of the interface between grains 

  and   and   the diffusion constant of the interface between grains   and  . For the 
free energy of bulk ( , )f    , the function is employed such that  

( , ) ( , ) ( ) {1 ( , )} ( ) ( , )r mf p f p f W q                      (2)

where W   is the energy barrier between grains   and  . In addition, ( )rf   and ( )mf   are 
stored dislocation energies in recrystallized grain and matrix, respectively. Because of 

( ) ( )r mf f  , Eq. (2) can rewritten in the form  

( , ) {1 ( , )} ( ) ( , )f p f W q                (3)

where ( )f   is the difference between stored dislocation energies in recrystallized phase and 
matrix defined as ( ) ( ) ( )m rf f f    . Using the local stored energy of dislocations sE , 

( )f   can be represented as ( ) s s sf E E E      . For simplify, we set s sE E   when the 
phase   is the recrystallized grain and   the matrix, and s sE E    when the phase   is the 
matrix and   the recrystallized phase, where sE  is the local energy of stored dislocation 

Figure 2 Illustration of stress-strain curve during 
dynamic recrystallization 
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calculated by  

( *) 2

*

1
2s sE E b 

 

     (4)

where ( *)  is the dislocation density for the slip system *  (explained later.),   the shear 
modulus and b  the magnitude of burgers vector. First, we consider a bi-phase problem to 
obtain ( )p   and ( )q  . The conditions that ( )f   is the double well function with the driving 
force of sE  are (0) sf E , (1) 0f  , (0) 0f    and (1) 0f   . On the above conditions, 

( )q   is determined as 2 2( ) (1 )q     . While, we choose ( )p   as 
1 1 2( ) {(2 / ) (2 / ) 3}(1 )p e e e e e e          . Moreover, replacing   and 1   with   and 

  respectively to extend these functions to suitable forms for a multi phases problem, 
( , )p     and ( , )q     are obtained as follows. 

22 2{1 ( , )} ( 3)p e e e e
e e
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2.2 Dislocation-crystal plasticity model 
The elastic-viscoplastic constitutive equation of crystal plasticity model is given by 
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where 


T , eC , D , ( *)
s
P  and ( *)  denotes the Mandel-Kratochvil rate of Cauchy stress, the 

anisotropic elastic modulus tensor, deformation rate tensor, Schmid tensor and the slip for slip 
system *, respectively. The evolution equation of flow stress ( *)g   and the hardening 
modulus ( * *)h    dependent on dislocation density are written in the forms 
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where ( * *)   is the interaction matrix, ( *)L   the dislocation mean free path, and a and c the 
numerical parameters. A model depending on dislocation density is adopted for ( *)L  . The 
dislocation density ( *)  is defined by ( *) ( *) ( *) ( *) ( *)

0 G R
    

        , where ( *)
0
  is the 

initial dislocation density, ( *)
G
  and ( *)

  the norms of GN dislocation density tensor and GN 
incompatibility tensor, respectively and ( *)

R
  the density of annihilated dislocations [3]. 

3 SIMULATION METHOD 

In the multiphysics simulation, crystal deformation and nucleus growth are taken into 
account simultaneously. First, the dislocation-crystal plasticity simulation is conducted for 
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prediction of formation of subdivisions and micro shear bands induced by plastic compression. 
On the basis of the information of nucleation obtained by the above calculation, it is 
reproduced that the nuclei generated at a nucleation site start to grow by the driving force, i.e., 
the stored dislocation energy, through the phase-field simulation. The evolution of order 
parameter due to nucleus growth can be obtained. During this process, in the area where the 
phase transition from matrix to new phase, the dislocation density should be initialized so as 
to be the value of sufficiently annealed metal. The information of nucleus growth such as the 
dislocation density is introduced into the dislocation-crystal plasticity simulation again. The 
dislocation density and the crystal orientation are changed by deformation. Giving the updated 
information back to Eq. (1), the nucleus growth simulation can be carried out. The 
information of dislocation density is introduced into Eq. (1) through the stored dislocation 
energy expressed by Eq. (4). Same operations are repeated, and dynamic recrystallization 
simulation is conducted. 

4 SIMULATION RESULTS AND DISCUSSIONS 
In this simulation, 10% compressive deformation is applied to 80m×80m polycrystal 

aluminum plate under plane strain condition. Considering hot worming process, 2 nuclei are 
placed on the parent grain boundaries in the initial condition (See figs. 3). The Asaro’s 2-slip 
model is employed and the values of the initial dislocation densities in the matrix and the 
nuclei are 2

0 1 m    and 2
0 0.001 m   , respectively (See fig. 4). In this study, the 

dislocation-crystal plasticity simulation is carried out by FEM and multi-phase-field model by 
FDM so that the developed dynamic recrystallization model is calculated by the FEM-FDM 
hybrid analysis. The number of the finite elements is 2682 and the number of the finite 
difference grid 40401. In this paper, following 2 cases of simulations are performed: (a) the 
case that the recrystallization area has the initial crystal orientation and (b) the case that the 
recrystallization area has the current crystal orientation, i.e., the crystal orientation averaged 
among the values of neighbor elements. 

Figure 5 depicts stress-strain curve obtained by this simulation. In the both cases of 
simulations, stress-strain curves with oscillations are observed, in which the hardening and 
softening occur by deformation and by grain growth, respectively. In fig. 5, the arrow of (a) 
shows the result of the simulation in the case that the recrystallization area has the initial 

Figure 4 Initial distribution of 
dislocation density 
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prediction of formation of subdivisions and micro shear bands induced by plastic compression. 
On the basis of the information of nucleation obtained by the above calculation, it is 
reproduced that the nuclei generated at a nucleation site start to grow by the driving force, i.e., 
the stored dislocation energy, through the phase-field simulation. The evolution of order 
parameter due to nucleus growth can be obtained. During this process, in the area where the 
phase transition from matrix to new phase, the dislocation density should be initialized so as 
to be the value of sufficiently annealed metal. The information of nucleus growth such as the 
dislocation density is introduced into the dislocation-crystal plasticity simulation again. The 
dislocation density and the crystal orientation are changed by deformation. Giving the updated 
information back to Eq. (1), the nucleus growth simulation can be carried out. The 
information of dislocation density is introduced into Eq. (1) through the stored dislocation 
energy expressed by Eq. (4). Same operations are repeated, and dynamic recrystallization 
simulation is conducted. 

4 SIMULATION RESULTS AND DISCUSSIONS 
In this simulation, 10% compressive deformation is applied to 80m×80m polycrystal 

aluminum plate under plane strain condition. Considering hot worming process, 2 nuclei are 
placed on the parent grain boundaries in the initial condition (See figs. 3). The Asaro’s 2-slip 
model is employed and the values of the initial dislocation densities in the matrix and the 
nuclei are 2

0 1 m    and 2
0 0.001 m   , respectively (See fig. 4). In this study, the 

dislocation-crystal plasticity simulation is carried out by FEM and multi-phase-field model by 
FDM so that the developed dynamic recrystallization model is calculated by the FEM-FDM 
hybrid analysis. The number of the finite elements is 2682 and the number of the finite 
difference grid 40401. In this paper, following 2 cases of simulations are performed: (a) the 
case that the recrystallization area has the initial crystal orientation and (b) the case that the 
recrystallization area has the current crystal orientation, i.e., the crystal orientation averaged 
among the values of neighbor elements. 

Figure 5 depicts stress-strain curve obtained by this simulation. In the both cases of 
simulations, stress-strain curves with oscillations are observed, in which the hardening and 
softening occur by deformation and by grain growth, respectively. In fig. 5, the arrow of (a) 
shows the result of the simulation in the case that the recrystallization area has the initial 
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crystal orientation while (b) the result of the simulation in the case that the recrystallization 
area has the current crystal orientation. It can be seen that the case (b) describe slightly higher 
rate of hardening than the case (a). The above difference might be explained that the 
simulation (b) shows higher rehardening rate than (a) because the deformation is taken into 
account in the simulation (b) more than (a). Also, fig. 6 describes the temporal distributions of 
crystal orientation. In the both results from the simulations (a) and (b), the nuclei grow along 
the parent grain boundaries where the dislocations store significantly, shown as the arrows in 
figs. 6 (a) (ii) and (b) (ii). Furthermore, figs. 7 are the enlarged figures of the rectangulars in 
figs. 6 (a) (iv) and (b) (iv). Figures 7 (i) and (ii) denote the distributions of dislocation density 
and crystal orientation, respectively. From figs. 7 (a) (i) and (b) (i), it is noted that the 
distributions of dislocation density are similar to each other. On the other hand, from the 
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distributions of crystal orientation in figs. 7 (a) (ii) and (b) (ii), the growing nucleus at the 
lower left is not affected by deformation while the one in fig. 7 (b) is affected by deformation. 
Here, the white lines in fig. 7 (b) (i) mean nucleus-matrix boundaries and the boundaries 
between the recrystallized area whose crystal orientation does not change from its initial 
crystal orientation and the one whose crystal orientation does change from its initial crystal 
orientation. The area surrounded by white lines would be a nucleation site if the grain 
boundary misorientation were higher than 15°. 

5 CONCLUSIONS  
- Simulating dynamic recrystallization by coupling the multi-phase-field model and the 

dislocation-crystal plasticity model, it can be reproduced that a few nuclei grow 
responding to the distribution of dislocation density and crystal orientation. 

- Givining the averaged value of neighbor elements to the region that transitions to 
recrystallized phase from matrix, it can be possible to calculate considering the 
change of crystal orientation due to deformation. 
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