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Summary Thermal measurements under multiaxial cyclic loadings are used herein to predict 
multiaxial fatigue properties. Two models describing random microplasticity activation via a 
Poisson Point Process. The thermal response is interpreted as the “mean” behaviour of the 
microplastic activity, whereas the fatigue limit relies on the weakest link assumption. The first 
model is based upon a yield surface approach to account for stress multiaxiality at a 
microscopic scale. The second one relies on a probabilistic modelling of microplasticity at the 
scale of slip-planes. Both models are identified on thermal results and a uniaxial mean fatigue 
limit, and then validated using fatigue limits as well as thermal responses in the case of 
tension-torsion loadings on tubular specimens made of medium carbon steel. They predict 
well hydrostatic stress, volume and proportional multiaxial effects. The model with 
microplasticity described at the scale of slip-planes also offers a good prediction of non-
proportional mean fatigue limits (~ 5% error) whereas the other model is less predictive 
(~ 17% error). 

1 INTRODUCTION 

The thermal measurements under cyclic loadings, usually referred to as “self-heating 
tests,” [1-10] offer a neat and pragmatic way to predict high cycle fatigue properties without 
the drawback of the long-lasting traditional fatigue tests. Several models, from early empirical 
to recent approaches [11] based on microplasticity activation have been proposed to better 
understand and consolidate this link. 

This paper focuses on two of these two-scale models developed for multiaxial loadings. 
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The first model is based upon a yield surface approach [12,13] to account for stress 
multiaxiality at a microscopic scale. The second one relies on a probabilistic modelling of 
microplasticity at the scale of slip-planes [14-16]. 

Both probabilistic descriptions are based on a Poisson Point Process. With this type of 
approach, the thermal response is linked to the “mean” behaviour of the microplastic activity, 
whereas the fatigue limit relies on the weakest link assumption. For the presented models, this 
implies that the fatigue limit is eventually described by a well-known Weibull model, which 
directly explains the influence of the stress heterogeneity and the volume effect on the fatigue 
results. From a thermal point of view, the influence of the stress heterogeneity is also taken 
into account, but with different formulae. Last, the influence of the hydrostatic stress is also 
described, thanks to the chosen intensity of the Poisson Point Process. For the first model, this 
intensity depends on the mean hydrostatic stress, and the normal stress to the considered plane 
for the second model.  

Both models are validated using fatigue limits as well as thermal responses in the case of 
tension-torsion loadings on tubular specimens made of medium carbon steel. Both thermal 
effects and mean fatigue limit predictions are in good agreement with experimental results for 
proportional and non-proportional tension-torsion loadings. The conceptual difference 
between the two models implies a major difference of prediction capacity when non-
proportional loadings are concerned, the mean fatigue limit prediction error of the critical 
shear stress approach being three times less than that with the yield surface approach. A 
notable advantage of the proposed models is that their identifications do not require non-
proportional fatigue results, though they can predict them. 
 
2 PROBABILISTIC BASIS OF THE MODELS 

In metallic polycrystalline alloys, the physical process of damage initiation is usually 
governed by intragranular microplasticity. At that scale, the microplastic activity is not 
homogeneous because of local stress fluctuations (grain orientation and surrounding 
influence) and local plastic threshold. To model the onset of microplasticity, a set of 
elastoplastic sites randomly distributed within an elastic matrix is considered. For the sake of 
simplicity, no spatial correlation is considered herein. HCF damage is assumed to be localized 
at the mesoscopic scale and is induced by microplastic activity (in the grains whose 
orientation is favourable). The distribution of active sites (i.e., sites where microplasticity 
occurs) of volume Vs is modelled by a Poisson Point Process [17-21]. The probability of 
finding k active sites in a domain Ω of volume V reads 

( ) [ ] [ ] Vλexp
k!
VλΩP *

k*
*
k −

−
=  

(1) 

where !*  is the intensity of the Poisson Point Process and !*V  is the mean number of active 
sites. The intensity of the process depends on the loading level, and its form is detailed later. 
The relationship between the stress tensor in a site where microplasticity occurs, ! , and the 
macroscopic stress tensor !  is given by the localisation law [22,23] 

! = !" 2µ 1""( )!p  (2) 
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where pε  is the corresponding plastic strain tensor (assumption of additive decomposition of 
strain with an elastic and a plastic part) and µ the shear modulus. !  is given by Eshelby’s 
analysis of a spherical inclusion in an elastic matrix [24].  

3 ELASTOPLASTIC BEHAVIOUR 

3.1 Yield surface approach 
The assumptions of the first model are chosen so that it presents a reduced number of 

parameters and closed-form formulae as its uniaxial predecessor [4]. Microplasticity is 
modelled at a microscopic scale and is described by a yield surface, normality rule and linear 
kinematic hardening 

f = J2 S!X( )!! y " 0

!" p = !# #f
#S

!X = 2
3
C !" p and X " p = 0( ) = 0

 

(3) 

where J2 is the second stress invariant, S the deviatoric stress tensor, X  the back stress, C the 
hardening parameter,! y  the yield stress and !!  the plastic multiplier. 

The magnitude of the intrinsic dissipated energy ! !0
eq,! y( )  in a site over a loading cycle is 

calculated for a given value of the yield stress, von Mises’ equivalent stress amplitude 
!0
eq =max

t
J2 !(t)"!m( ) , and a mean stress !m  given by 

( )[ ] ( )( )[ ]IzttraceMaxMinYtJMaxMinIIS
tztYmmm −+−=+=Σ )(Σ

3
1)(Σ2,1

. 
(4) 

As for previous models proposed by the authors, the intensity of the Poisson Point Process 
describing the activation of microplasticity follows a power law of the equivalent stress 
amplitude 

m

m

eq

IS ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+
Σ

=
,10

0

0

 
V
1 

α
λ , (5) 

where α, m and V0 S0
m are three material parameters, and I1,m the mean hydrostatic stress over 

a given cycle. Von Mises’ equivalent stress amplitude is chosen because of the isotropy of the 
material tested hereafter. The power-law dependence is chosen because the onset of 
microplasticity follows a power-law of the applied stress [25] and because this form leads to a 
Weibull model when combined with the weakest link assumption [4,11]. The hydrostatic 
stress dependence is introduced to account for the mean stress effect on self-heating 
measurements and on fatigue properties. 

It is now possible to calculate the global (mean) dissipated energy Δ in a domain Ω of 
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volume V, i.e., first calculate the intrinsic dissipated energy ! !0
eq,! y( )  of one site, integrate it 

over the whole population of active sites [11] to obtain the total dissipated energy ( )eq
0ΣD , 

and then integrate it over the whole domain Ω. In the case of uniform proportional loading, 
this calculation is straightforward and a closed-form solution is found [26] 

! =  4m VS

h(m +1)(m + 2)
"effdiss( )

m+2

V0 S0
m  with )2/(

,1
0

0
)2/(1

2

1
+

+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

Σ
=Σ mm

mM

eq
M

m
m

effdiss

I
S

G

α
, (6) 

 

where h is a parameter gathering the different thermal-related parameters. 
This expression is identical to uniaxial homogeneous situation, except that uniaxial stress 

amplitude is changed to !effdiss , the effective dissipative stress amplitude, where Gm+2 is a 
dissipation heterogeneity factor. The latter factor can be calculated in the case of proportional 
loading 

∫
+
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,10

,10
2 dV)(

)(V
1

eq
M

eqm

m

mM
m

M
MIS

IS
G

α

α
, 

(7) 

 

and requires a numerical integration for non-proportional loadings. 

3.2 Critical shear stress approach 

From now on and for the sake of clarity, every variable of the present model having an 
equivalent in the yield surface approach is denoted with !! , e.g. !0

eq and !!0
eq . Microplasticity is 

here modelled at the scale of slip planes based on Schmid’s criterion 

0- y ≤ττ , 
(8) 

with τy  the critical shear stress and ! =" : a  the (resolved) shear stress for the considered 
direction defined by 

 )nmmn(
2
1a tt +=

, 

(9) 

where n  is the direction normal to the considered plane, and m  the in-plane slip direction. 
The shear stress τ for the considered direction is related to the macroscopic shear stress T by 
the same localization law as before [15]  

pγβ)(1µTτ −−= , 
(10) 

where ! p is the plastic slip ( !! p = " p a ). One direction thus becomes active when the shear 
stress amplitude T0  is greater than the critical shear stress ! y , which is assumed to be a 
random variable.  

The same sequence of calculation is needed to express the global dissipated energy !! , 
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except that now an angular integration over all directions in space is necessary. The intensity 
of the Poisson Point Process follows a power law of the macroscopic shear amplitude 
integrated over all angular directions in space (defined by the solid angle ! ) [15] 

( )
( )( )∫+

= dΘΘ2T
Iα~S~V~

1λ~ m~

0m~

max1,00 , 
(11) 

where !m , !!  and !V0 !S0( )
m

 are three parameters depending on the considered material, and 

I1,max the maximum hydrostatic stress over a given cycle. The global dissipated energy !!  is 
expressed in a similar way as for the first model  

!! =  4 !m !VS
!h( !m +1)( !m + 2)

!"effdiss( )
!m+2

!V0
!S0
!m  with !!effdiss =

!G !m+2
1/( !m+2) !!0M

eq

1+ !!!S0
I1,maxM

"

#
$

%

&
'

!m/( !m+2) , (12) 

 

where !h  is a parameter gathering the different thermal-related parameters of the model. The 
dissipation heterogeneity factor is defined as 

!G !m+2 =
1
V

!S0 + !! I1,maxM
!S0 + !! I1,max (M )

!

"
##

$

%
&&

m !'0
eq (M )
!'0M
eq

!

"
#

$

%
&

!m+2

(( !m+ 2)dV
!
)  with ∫

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+ dΘ

)M(Σ~
)ΘM,(2T2)m~κ(

2m~

eq
0

0 . (13) 

 

where )2m~( +κ  represents the distribution of activated directions. 
The definitions of equivalent stresses are not the same for the two models ( eq

0Σ is von 

Mises’ equivalent stress, whereas eq
0Σ
~  is Tresca’s equivalent stress). Moreover the expression 

of !Gm+2 is different from Gm+2 since it includes the integration of the distribution of activated 
directions. This implies a numerical calculation, and a complete closed-form solution is no 
longer available. Aside from this little drawback, the hypotheses of this model make it 
intrinsically more relevant from a non-proportional point of view as will be shown in the next 
sections. 
 
4 SELF-HEATING RESPONSE 

The thermal response of the model corresponds to the “mean” point of view of the 
previous described microplastic onset, i.e., the temperature is linked to the global dissipated 
energy. The * notation is used in the following equations of the section to clarify that they 
may be used for any of the two models (heat conduction equation is the same in both cases). 
Since the uniformity of the temperature in the specimen is a relevant assumption in the 
present case [27], the mean dissipation Δ* is introduced in the following simplified heat 
conduction equation 

c
f *
r

eq ρ
Δ

τ
θ

θ =+ , (14) 
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where refspecimen TT −=θ  is the mean temperature variation with respect to the reference 
temperature refT , τeq a characteristic time depending on the heat transfer boundary conditions 
[28], ρ the mass density, c the specific heat and fr the loading frequency. The thermoelastic 
term is not considered since it vanishes over one cycle and only mean steady-state 
temperatures are needed. For both models, the mean (uniform) steady-state temperature 
θ reads  

( )
( )

*

*

m*
0

*
0

2m*
effdiss

**

*
*

SV )2m()1m(
m

+

++
=

Σ
ηθ  with 

*

*
Seqr*

h
V

c
f4
ρ

τ
η = . (15) 

This expression is similar to that for uniform tensile loading except for *
effdissΣ term, and only 

three parameters are needed to describe the thermal response.  
 
5 HIGH CYCLE FATIGUE RESPONSE 

The weakest link theory is considered to describe the fatigue limit. The failure probability 
is then given by the probability of finding at least one active site in domain Ω. From 
Equation (1), the failure probability is thus given for both models by 

⎥
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⎤

⎢
⎢
⎣
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−−= ∫
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λ dVVexp1P **
F . (16) 

5.1 Yield surface approach 

By using Equation (5), the failure probability is related to the loading amplitude 
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. (17) 

which corresponds to Weibull’s model [29,30]. This expression is simplified using a stress 

heterogeneity factor Hm, defined by 
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Equation (16) becomes 
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where meff VHV =  denotes the effective volume. From this expression, and as for the previous 
self-heating models proposed by the authors [4], the fatigue limit features are derived 
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where ∞Σ  is the mean fatigue limit, ∞Σ  the standard deviation and CV the coefficient of 
variation. 

The stress Hm and dissipation Gm+2 heterogeneity factors have intrisincally different 
meanings. However their expressions are very similar in the case of proportional loadings [see 
equations (18) and (7)]. Moreover the high value of the exponent m (m = 12 for the present 
material) induces very close values of these factors, even more for loadings with uniform 
mean hydrostatic stresses. This means that the combined effects of direction and 
heterogeneity of loading are nearly the same for fatigue and self-heating results, which makes 
easier the interpretation of self-heating results. 

On the contrary, Hm and Gm+2 can be very different for non-proportional loadings. 
Considering two uniform loadings with the same equivalent stress amplitude and the same 
mean hydrostatic stress, the first one proportional and the second one non-proportional, Hm 
factors are identical but Gm+2 factors can be very different. 

5.2 Critical shear stress approach 
With the second model the failure probability corresponds to the probability of finding at 

least one active slip direction in the given volume. The failure probability is thus related to 
the shear stress amplitude by 

!PF  =  1 - exp - 1
!V0

2Ta
!S0 + !! I1,max

!

"
##

$

%
&&

!m

d'(
!
( dV

)

*

+
+

,

-

.

.
 . (21) 
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Last the mean fatigue limit is expressed (CV is the same as for the previous model)  
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where ∞Σ  is the mean fatigue limit, ∞Σ  the standard deviation and CV the coefficient of 
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Note that 2m~G
~

+  and m~H
~  are a priori different because of the influence of the hydrostatic 

stress. The values of these factors are however again nearly identical because of the high 
value of m~  for proportional and non-proportional loadings. 

The identication of m* is performed using equation (15), so that the values of m and m~  are 
identical, and so the relative fatigue scatter is the same for both models (i.e., same CV value). 
The mean fatigue limits are different because equations (20) and (24) account for the 
influence of several parameters on fatigue properties in different ways. 
 
6 EXPERIEMENTAL APPLICATION 

Both models depend on three parameters to predict the fatigue limits, and a last one to 
account for self-heating under cyclic loadings. They are applied to the case of AISI 1045 
medium carbon steel tubes under tension-torsion loadings. In that case, the macroscopic stress 
tensor depends only on the radius r of the specimen and is defined by 

 !zz = !11, 0 sin(2!frt)+!m

 !!z =!12, 0
r

Re

sin(2!frt +" )
 

(25) 

where Σ11,0 and 3 Σ12,0 = tan(φ) Σ11,0 are the tensile and shear stress amplitudes, ϕ the phase 
lag between shear and normal stresses, Σm the mean tensile stress, and Re the external radius 
of the specimen. The hydrostatic pressure is uniform over the volume of the specimen, so that 
the two heterogeneity factors of the both models have the same expression for proportional 
loadings, i.e. mm HG =  and m~m~ H~G~ = . In the next section, the identification procedure is 
presented, and a comparison of predictions with experimental fatigue results. 

6.1 Identification 
Identification is based on self-heating curves obtained with the same procedure as for 

previous self-heating tests [4,11,12,27]. During the test, the amplitude of loading is step-wise 
constant, and increases once the differential temperature is stabilised. One pure torsion 
loading and one pure tension with non-zero mean stress are applied. The steady-state 
temperature is plotted as a function of the loading amplitude in Figure 1. As for other steels 
[4,11,12,27], each curve has a first part that shows virtually no change in temperature, 
whereas in the second part the temperature increases significantly with the stress amplitude. 
This transition is reported to be a rather good estimation of the mean fatigue limit for steels in 
uniaxial homogeneous case [4,6,7,8]. Moreover it has been shown that the gradual increase of 
temperature is linked to the fatigue scatter [4]. The relatively short duration of self-heating 
tests (in comparison with traditional fatigue tests) makes them not only interesting for 
academic studies, but also very attractive for industrial purposes. 

Both models depend exactly on the same parameters, namely, m * describes the scatter of 
fatigue results and the slope (in a log-log plot) of the self-heating temperature response, η ∗ a 
scale parameter for the thermal response, α * accounts for the effect of the mean hydrostatic 
stress on self-heating and fatigue properties, and V0

* S0
*( )
m*

 the scale parameters for the fatigue 
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response. All parameters are identified using the 2 self-heating tests and one fatigue limit that 
may concern any type of geometry or loading. Figure 1 shows the identification for both 
approaches. 

 

	
  
(a) 

	
  
(b) 

  
(c) (d) 

Figure 1: Identification of m and α  using torsion (a) and tension with mean stress (b) self-heating curves. 
Identification of !m  (c) and !!  (d) using the same curves. 

No non-proportional loading results are needed for this identification. Any couple of 
loading paths may be used to identify parameters m*, η∗  and α∗ as long as their mean (resp. 
maximum) hydrostatic stresses over a given cycle are different.  

The last (scale) parameter of each model is obtained by using a mean fatigue limit and 
Equation (20) for the yield surface approach, or Equation (24) for the critical shear stress 
approach. This value is obtained for tensile loadings (φ = 0° and Σm = 0) when fatigue limits 
are evaluated for 5 x 106 cycles. Staircase tests are performed on 15 smooth and round 
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samples machined from the same steel bar as before. Stress steps are equal to 10 MPa. The 
measured mean fatigue limit is 262 MPa. 

6.2 Validation 
Models are first validated from a thermal point of view. A pure tension (zero mean stress) 

and a non-proportional (constant von Mises’ equivalent stress at mean radius 
(φ = 48°, ϕ = 90°)) self-heating tests are performed. Figure 2 shows self-heating curves as a 
function of von Mises (a), yield surface (b) and critical shear stress (c) equivalent stress 
amplitudes. For both models all curves collapse onto one another when the definition of the 
equivalent stress is used. This result means that both hydrostatic stress and non-proportional 
thermal effects are well predicted. 

Mean fatigue limit prediction is then checked using three different series of staircase tests 
(target: 5 x 106 cycles). The first one is a pure torsion loading, the second one a proportional 
loading (φ = 48° and Σm = 0) and last one a non-proportional loading (φ = 48°, ϕ =90°). 
Comparison between experimentally obtained mean fatigue limits and predicted ones is 
shown in Table 1, using the relative prediction error defined as 

! 

" #
exp $ " #

pre( ) " #
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are in good agreement with experimental results, except for the yield surface model, which is 
non-conservative for non-proportional loading. 
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Figure 2: Thermal validation: self-heating curves for different equivalent stress amplitude. 

Table 1: Fatigue validation. Relative prediction errors of both models. 

Loadings (Σm = 0) Prop. (φ = 90°) Prop. (φ = 48°) N-prop. (φ = 48°, ϕ = 90°) 

eq
0Σ (MPa) 277 267 205 

Critical shear stress model 6% 7% -5% 

Yield surface model 9% 6% -17% 
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7 CONCLUSION 
The present paper was focused on a comparison of two multiscale models whose 

parameters are tuned thanks to self-heating data, and subsequently used to predict multiaxial 
high cycle fatigue properties. The first model uses an equivalent stress to account for stress 
multiaxiality at the microscopic scale, whereas the second one relies on a description of 
microplasticity at the scale of slip-planes. 

Both thermal and fatigue behaviours are well described by each model. They account for 
the influence of the stress heterogeneity, the volume effect and the hydrostatic stress. Relative 
errors are small for each experimental validation, even though the “identification cost” is low 
(and the same for each model), thanks to the information extracted from the self-heating tests. 

The distinction between the yield surface and critical shear stress approaches is nearly 
impossible from a thermal point of view (see Figures 2 (b) and (c)), whereas an important 
difference appears as along as non-proportional fatigue limit is concerned. The interest of the 
critical shear stress approach is clearly shown, lowering (in absolute value) the prediction 
error from –17% to –5% without the addition of new parameters. This is due to its 
microplastic activation description, combining probabilistic onset and slip-planes approach, 
which leads to very close dissipation and stress heterogeneity factors. 

A next step of this work will be the prediction of multiaxial fatigue life with the critical 
shear stress approach and the application to industrial cases.  
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