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Abstract. A technique to solve the periodic homogenization problem is described 
systematically in this work. The method is to solve the cell problems by imposing eigenstrains 
in terms of a thermal or a piezoelectric strain to the representative volume element (RVE). 
Homogenized coefficients are then calculated from stress solutions of those cell problems. As 
a dual approach, an imposed stress field can also be applied to solve the cell problems. 
Numerical examples of characterization mechanical properties of complicated microstructure 
materials are examined. The obtained results show good agreements with the published data. 
Comparisons show that the technique in this study can be effectively used to characterize the 
mechanical properties of complex microstructured materials.  

 
1 INTRODUCTION 

Mechanical properties of complex microstructured materials can be characterized with the 
homogenization method which is a process of finding a homogeneous ‘effective’ material that 
is energetically equivalent to a microstructured heterogeneous material [1]. That means an 
object of the equivalent homogenized material behaves in the same manner as the origin one 
when it is subjected to usual loadings. Specifically, homogenization method aims to calculate 
effective elastic properties of highly heterogeneous media by averaging over an assumed 
statistical homogeneous volume. The conditions for such a volume to be chosen as a 
Representative Volume Element (RVE) are sufficiently large at the microscale and 
sufficiently small at the macroscale and structurally typical of the entire composite material 
on average [2]. For different approach, the RVE size affects the obtained results [3, 4]. 
However, when the ratio of the RVE size to the body dimensions under consideration tends to 
zero the results converge to exact solution. Among various approaches to predict the effective 
properties of composites, the mathematical homogenization method with the periodicity 
assumption over a basic cell (or a representative volume element) is preferable due to its 
rigorous mathematical background and the ease to implement [5-7]. Based on this method, 
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different approaches can be used to obtain the equivalent properties of the highly 
heterogeneous periodic media. Researches on the homogenization problems are devoted to 
either making an in-house code [5, 6] or writing user-subroutines in commercial softwares [8] 
to study some particular cases. These approaches, on one hand, are flexible and facilitated to 
the researchers and skillful software users, but on the other hand, can be burdensome to 
engineers who have less skill. 

In the present work we focus on a so-called eigenstrain technique to solve the 
homogenization problems using commercial FEM softwares. The eigenstrain technique solves 
the basic cell problems by applying a prescribed eigenstrain as a given local macroscopic 
scale strain at the material point associating with the basic cell. In co-operation with 
commercial FEM softwares, the eigenstrain technique can solve the homogenization problems 
regardless of using any user-subroutine. The method is then used to characterize the 
mechanical properties of some composite materials having complex microstructures. 

2 THE HOMOGENIZATION PROBLEM 
Generally, there are two different scales associated with microscopic and macroscopic 

behaviors to describe a microstructured heterogeneous composite material [9, 10]. The first 
one is a macroscale, denoted by the slowly varying global variables x , at which the 
heterogeneities are invisible. The other is for the material micro-architecture of 
heterogeneities size and referred as the microscale, denoted by the rapidly oscillating local 
variables y . To model a structure of such kind of material using the finite element method 
(FEM) one should utilize models with very fine mesh so that the details at the microscale size 
of heterogeneities can be captured. That leads to a very expensive computational cost and 
sometimes it is impossible to perform the analysis due to extremely high requirements of 
computer resources. Instead, a so-called homogenization process can be used to characterize 
the heterogeneous material as a homogenized one and then, the equivalent material properties 
are used in the simulation of the whole structure as in a normal FEM analysis [7]. 

Figure 1: The macroscale and microscale of the homogenization problem 

2.1 The problem formulation 
From the asymptotic expansion [7, 11], the homogenized elasticity tensor can be 

determined explicitly by: 
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with the periodicity condition defined by: If ( ) : -periodicivÎy Y y Y  or 

( ) ( )periv VÎy Y  then ( )iv y  takes equal values on the opposite faces of Y .

Generally, we can obtain the solution kh
E =v c  by solving the six cell problems and then 

compute the homogenized elasticity coefficients according to (1). As an alternative, the 
homogenization problem (2) with periodicity conditions can be formulated in the following 
forms: 

For a given macroscopic strain E ,

( ) ( )
( ) ( ) ( )

per

per

   

,  

Find V such that
P

J J

ìï Îïïíï £ " Îïïî

E
E

E E E

v Y

v v v V Y

where ( ) ( )( ) ( )( )1
+ +

2
J d= òE

Y

v a E e v E e v y
Y

(3) 

Note that the problems (2) and (3) are equivalent. Moreover, the variational formulation 
(3) is equivalent to a problem of minimization with constraints: 
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Again, by solving 6 problems of formulation (3) or (4) with the imposed macroscopic 

strains ( ) ( )1
2
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homogenized coefficients are determined by: 

( )( )hom 1 1
kh

kh kh kh
ijkh ij ija d ds s= = = +ò ò T

Y Y

y a T e v y
Y Y

(5) 

2.2 Periodicity conditions 
Due to the periodicity of the composites, the microscopic displacement and stress fields are 

the Y  periodic solution. In the homogenization, the periodic boundary conditions must be 
imposed on the RVE to reflect the repeatability of the microstructure. For the symmetric 
inclusion or RVE, the periodic boundary condition leads to the ordinary constraints on the 
boundary of the RVE [6, 12]. For the non-symmetric inclusion or RVE, appropriate multi-
point constraints are imposed on the displacements of nodes on the boundary of RVE in order 
to produce the periodic boundary conditions [12, 13].  

The internal constraints among nodal degrees of freedom can be expressed by a set of 
constraint equations that must be introduced into the finite element equations. That is, the 
periodic boundary conditions can be treated as a set of constraint equations. To specify 
identical displacement for corresponding nodes on opposite edges, the elimination method can 
be used [12, 14]. The pairs of nodes on the opposite edges of the RVE can be linked by a 
constraint equation so that the opposite edges have identical deformed shapes. The periodicity 
conditions can be described by two sets of indices: 

{ }1 1 1 1
1 2, ,..., Mi i iI = , { }2 2 2 2

1 2, ,..., Mi i iI = (6) 

and a set of M constraint equations: 

1 2 1,2,...,
k ki i

k Mu u= = (7) 

The multi-point constrains for RVE can be equivalently expressed in the matrix form by [12] 

=Pu 0 (8) 

where P  is the transformation matrix whose entries are equal to zero except 
1 21 i I I= " Î ÈijP

{ }1 2 1 1,2,...,
k ki i

k M= - " ÎP

{ }2 1 1 1,2,...,
k ki i

k M= - " ÎP

(9) 

For the system of N  degree of freedom (DOF) with M  constraint equations, the resulting 
transformation matrix should be ( )N N M  . Figure 2 illustrates the periodicity conditions 
with constraints on the boundary of the RVE in a 2D case with 2 DOFs at each node. The 
arrows represent the coupling degrees of freedom for identical nodes on opposite sides. The 
displacements at corner nodes are fixed. 
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Figure 2: The periodicity constraints on boundary of a 2D RVE  

Let 1u  be the free components of u , and 2 3,u u  the components that are linked by the 
periodicity conditions. Then, we have the cell problem in discretized form: 

=
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The elimination method to handle the periodicity conditions is easy to implement. 
However, the bandwidth of the stiffness matrix is seriously increased. It is recommended to 
use the skyline or sparse storage method for a better computing performance. Commercial 
FEM softwares supply utilities to handle with such constraint. The CP command in ANSYS®

and MPC function in MSC. PATRAN® can be used to define the periodicity conditions. 
Moreover, for particular problems with symmetric microstructure, only a part of the unit cell 
is modeled and the periodicity conditions can be reduced to the conventional boundary 
conditions [6]. A study on alternative methods and comparison of computing time among 
them can be found in [15]. Method to ensure strain-periodicity for a hexagonal unit cell by 
imposing the kinematic boundary conditions is also introduced [16]. 
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2.3 The eigenstrain technique 
The eigenstrain terminology is first defined by Mura [17] to indicate non-elastic strains as 

thermal expansion, phase transformation, initial strains, plastic strains, etc. The eigenstrain 
method is named due to the fact that this technique solves the basic cell problems of 
homogenization by applying an eigenstrain as a given local macroscopic scale at the material 
point associating with the basic cell. The fact that the elementary macroscale strain state is 
achieved by applying an appropriate eigenstrain makes this method distinct to the isostrain 
method in which specific displacements are imposed on the boundary to obtain the 
macroscale strain states. The displacements imposed on the corresponding boundary in the 
cell problems to achieve the elementary macroscale strain states are 

kl
i ik lyf d= (11) 

The corresponding macroscale (average) strain components due to the imposed 
displacements are given by 

( ) ( )

( )1 1
2 2

1

1 1

kl kl kl
ij
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i j j i
j i

ij
ij Y

Y Y

T e

n n
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e dy
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Y Y

ff
f f

f f

¶

= =

æ ö¶ ÷ç¶ ÷ç ÷= + = +ç ÷ç ÷¶ ¶ç ÷çè ø
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ò ò
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It is worth noting that, for the isostrain method, the periodicity condition of the fluctuating 
displacement in the cell problem doesn’t hold strictly, i.e. 

( ) 0¹ve kl (13) 

This is because the imposed displacements constraint to obtain the elementary macroscale 
strain and the periodicity condition constraint cannot be applied simultaneously on the same 
boundary.

To achieve at the same time the macroscale elementary strain state and the periodicity 
condition, the eigenstrain method shows to be a most suitable way. An applied eigenstrain 
plays the role of the macroscale elementary strain and the periodicity condition discussed in 
Section 3 will be satisfied by constraining the displacements of nodes on the boundary. 
The eigenstrain klT can be either a thermal strain as in [18] or a piezoelectric strain: 

kl kl kl
thermal T= = DT e a        or kl kl kl

piezo= = ET e d (14) 

where kla  is the thermal expansion coefficient vector, TD  is the temperature difference, kld
is the piezoelectric strain matrix and E  is the electric field vector. For example, to obtain the 
macroscale strain state 11T  the corresponding thermal expansion coefficient is 

{ }11 1,0,0,0, 0, 0
T

=a  and the temperature 1TD =  if the eigenstrain is chosen as a thermal 
strain. If a piezoelectric strain is applied then the piezoelectric strain matrix is  
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ê ú
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ê ú
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d (15) 

and the electric field vector is { }1,0,0
T

=E . Similarly, the other macroscale strain states can 
be achieved by applying an appropriate eigenstrain with the corresponding fictitious material 
properties kla  or kld . In general, the steps to solve the cell problems with a commercial FE 
software using the eigenstrain technique can be summarized as follows 

1. Build the model of the basic cell. 

2. Define and assign the material properties for each constituent. 

3. Control the meshing process so that nodes are identical located on opposite faces/sides 
of the cell model. 

4. Apply the periodicity conditions. 

5. Assign the fictitious material properties to the whole model to achieve a desired 
elementary macroscale strain state (the eigenstrain). 

6. Solve the problem. 

7. Calculate the homogenized elasticity coefficients using stresses at Gauss points of the 
elements according to: 

( ) ( ) ( )

hom

1

1

1

kl
ijkl ij

NGP
kl
ij GP GP GP

GP

a dy

y w y J y

s

s
=

=

= å

ò
YY

Y

(16) 

where ( )kl
ij GPys  is the stress component, ( )GPw y  and ( )GPJ y  are the weight and 

Jacobian at the sampling points GPy , respectively.  

3 NUMERICAL EXAMPLES 
In this section, two numerical examples are investigated to validate the proposed 

technique. The demonstrations are done by using various commercial softwares. 

3.1 Composite material with randomly distributed spherical particle 
The unit cell model is first generated by GeoDict2009® (licensed by Dr. Andreas 

Wiegmann at ITWM, Germany, www.geodict.com) and then transferred into the FE 
environment, e.g. MSC. PATRAN® as shown in Figure 3. The particle volume fraction is 
30%, the radius of particles to unit cell length size ratio is chosen as L/D = 10/3 [19]. The 
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material properties of constituents are given in Table 1. 

Table 1. Material properties of constituents 

E (GPa) n 
Particle 450 0.17 
Matrix 70 0.3 

     
(a) The GeoDict2009® model             (b) The FE model showing inclusions 

Figure 3: The GeoDict2009® model and the FE model of the RVE 
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Figure 4: Converged results with respect to the mesh density 

The GeoDict2009® program generates voxel (cubic) elements with the periodic option in x, 
y and z direction to guarantee the periodicity constraints of opposite faces. Calculation has 
been made with different mesh configurations and reported in Figure 4. Due to the random 
property of the distribution of particles in the model and the usage of voxels to approximate 
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the spherical geometry, the obtained results have a slight difference compared to the referred 
ones. However, the discrepancy is acceptable, about 7%, 3% and less than 1% for the 
25x25x25, 50x50x50 and 75x75x75 mesh configurations, respectively. 

Although the GeoDict2009® model approximates the geometry with certain errors by using 
voxel elements, we can have a benefit of using such cubic elements. The homogenized 
coefficients determined by equation (16) are now evaluated with less effort by using the 
constant value 1/8 of the element volume for the Jacobian. 

3.2 Glass/alumina two phase material with imperfect bonding 
In previous example, matrix and inclusion in the composite are assumed to be perfectly 

bonded and, therefore, there is no separation between them. However, consideration of the 
damage of the interface is necessary to accurately predict the behavior of multiple phase 
composites. One of the methods to consider the debonding at the interface is to use interface 
elements (or cohesive elements) which are currently provided in several commercial 
softwares to simulate the onset and propagation of delamination. These elements have zero 
thickness and are modeled at the interface of the constituents of a composite material. The 
constitutive behavior of these elements is usually expressed in terms of tractions versus 
relative displacements between the top and bottom edge/surface of the elements (traction-
separation curves). Several constitutive laws have been proposed in the literature to express 
the behavior of these elements [20].  

(a)       (b) 

Figure 5: (a) The RVE model; (b) A typical exponential traction-separation curve to model the decohesive 
phenomenon at the fiber/matrix interface 

In this example we characterize the properties of the glass/alumina composite with 
consideration of the imperfect bonding of the constituents. The model in this example is based 
on the reference [21] where the isostrain method is used to obtain the homogenized properties. 
The cohesive elements are modeled along the interface of constituents. A typical FE model of 
the RVE with the fiber volume fraction of 45% is shown in Figure 5a. The matrix (Em = 68 
GPa, nm =0.21) and the fiber (Ef  = 340 GPa, nf = 0.24) are considered as isotropic 
materials. A typical exponential traction-separation curve, shown in Figure 5b, is applied for 
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the constitutive behavior of the cohesive elements. The maximum normal traction at the 
interface is tmax = 1000MPa, the corresponding critical normal and shear opening 
displacement are dn = dt = 1 mm. These two cohesive parameters are identified from the 
experiment work in [21].  

Figure 6: Elastic modulus of the composite with different fiber volume fractions 

An increase of the fiber volume fraction, in a natural way, increases the elastic modulus of 
the material as shown in Figure 6. The imperfectly bonded interface made the structure softer 
and, therefore, the predicted modulus is smaller than that in the case of the perfectly bonded 
interface. When a perfect bonding is assumed, the prediction using the current method and the 
one in the reference are very close to each other up to a value of the fiber volume fraction 
about 20%. After that value, the results by the isostrain method in [21] are always higher than 
the predictions by the eigenstrain method in this study. The gaps keep increasing when the 
fiber volume fraction is larger. In the case of the imperfect bonding at the interface, results 
from the current method and the reference one are both well matched to the experimental 
data.

4 CONCLUSIONS 
The eigenstrain technique to characterize mechanical properties of complex 

microstructured materials is presented in the current study. The method can be applied with 
conventional FE softwares. Numerical examples have been investigated to verify the method. 
The main advantage of this method is simplicity and applicability for engineers who have less 
programming skills to use any commercial software at hand to characterize the mechanical 
properties of multiphase composite materials with complex microstructure regardless of using 
any user-subroutine. 
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