
USING FUZZY HETEROGENEOUS NEURAL NETWORKS TO LEARN AMODEL OF THE CENTRAL NERVOUS SYSTEM CONTROLLlu��s A. Belanche Julio J. Vald�esDept. Llenguatges i Sistemes Inform�aticsUniversitat Polit�ecnica de CatalunyaJordi Girona Salgado, 1-3, Barcelona 08034, Spain.Phone: (34-93) 401-5644 Fax: (34-93) 401-7014fbelanche, valdesg@lsi.upc.esKeywords: Heterogeneous Neural Networks; Fuzzy Logic; Genetic Algorithms; Time-Series PredictionABSTRACT: Fuzzy heterogeneous networks based on similarity are recently introduced feed-forward neuralnetwork models composed by neurons of a general class whose inputs are mixtures of continuous (crisp and/orfuzzy) with discrete quantities, admitting also missing data. These networks have activation functions basedon similarity relations between inputs and neuron weights. They can be coupled with classical neurons inhybrid network architectures, trained with genetic algorithms. This paper compares the e�ectivity of thisfuzzy heterogeneous model based on similarity with the classical feed-forward one (scalar-product driven andusing crisp quantities) in a time-series prediction setting. The results obtained show a remarkable increasingperformance when departing from the classical neuron and a comparable one when confronted with other currentpowerful techniques, such as the FIR methodology.INTRODUCTIONThe notion of heterogeneous neurons was introduced in (Vald�es et al., 97) as a model accepting as inputs vectorscomposed by a mixture of continuous real-valued and discrete quantities, possibly also containing missing data.The other feature of this model departuring from the classical was its de�nition as a general mapping from whichdi�erent instance models could be derived. In particular, when the model is constructed as the composition oftwo mappings, di�erent instance models can be derived by making concrete choices of the transfer and activationfunctions. In this special case, whereas the classical neuron model uses dot product as transfer, and logistic (orhyperbolic tangent) as activation functions, the heterogeneous model uses as transfer a similarity or proximityrelation (Chandon et al., 81) between the input and the weight tuples, and a sigmoid-like automorphism of thereals in [0; 1] as activation. The choice of the speci�c similarity function should account for the heterogeneousnature of neuron inputs and the presence of missing data. This showed to be a reasonable brick for constructinglayered network architectures mixing heterogeneous with classical neurons, since the outputs of these neuronscan be used as inputs for the classical ones. Such type of hybrid networks was composed of one hidden layerof heterogeneous networks and one output layer of classical neurons. These networks were able to learn fromnon-trivial data sets with an e�ectivity comparable, and sometimes better, than that of classical methods, andexhibited a remarkable robustness when information degrades due to the increasing presence of missing data.A step further in the development of the heterogeneous neuron model was the inclusion of fuzzy quantitieswithin the input set, extending the former use of real-valued quantities of crisp character. This way, uncertaintyand imprecision can be explicitly considered within the model, making it more exible. In the context of a real-world application it was found that such neurons performed better by treating data with its natural imprecisionthan considering them as crisp quantities, as is usually the case. Also, the hybrid networks (with or withoutfuzzy inputs) outperformed those with classical neurons, even when trained with sophisticated procedures likea combination of gradient techniques with simulated annealing (Vald�es et al., 98).The purpose of this paper is then twofold: �rst, the introduction and study of di�erent hybrid architectures(composed of classical and heterogeneous neurons) and full heterogeneous architectures, not studied before inthe aforementioned work. Second, the application of these architectures to a problem of di�erent avour than



the pure classi�cation tasks addressed so far. For the present study, the availability of cardiology data froma patient and the knowledge of previous attempts to induce accurate models out of these data using FuzzyInductive Reasoning (Nebot et al., 98; Cueva et al., 97) brought an opportunity to confront the HeterogeneousNeural Network (HNN) with them.THE FUZZY HETEROGENEOUS NEURON MODELA fuzzy heterogeneous neuron was de�ned in (Vald�es et al., 98) as a mapping h : Ĥn ! Rout � R, satisfyingh(�) = 0 (� is the empty set). Here Rdenote the reals and Ĥn is a cartesian product of an arbitrary number ofsource sets. Source sets may be families of extended reals R̂ = R[fXg, extended fuzzy sets F̂i = Fi[fXg, andextended �nite sets of the form Ôi = Oi [fXg; M̂i =Mi[fXg, where each of the Oi has a full order relation,while the Mi have not. In all cases, the special symbol X denotes the unknown element (missing information)and it behaves as an incomparable element w.r.t. any ordering relation. According to this de�nition, neuroninputs are possibly empty arbitrary tuples, composed by n elements among which there might be reals, fuzzysets, ordinals, nominals and missing data. The form of the resulting input set for a fuzzy heterogeneous neuronis Ĥn =< R̂nr ; F̂nf ; Ôno;M̂nm >, with R̂0 = F̂0 = Ô0 = M̂o = Ĥo = �, n = nr + nf + no + nm andn > 0 (nr ; no and nm are the lengths of the corresponding cartesian products formed using the source setsR̂i; F̂i; Ôi;M̂i). Heterogeneous neurons will be classi�ed according to the nature of its image set (which mustnot be necessary restricted to a subset of the reals). In the present study, a model with an image set givenby Rout will be called of the real kind. The reason to consider in a �rst place neuron models of the real kindis their natural coupling with other classical neuron models (i.e. accepting only real inputs), thus leading tohybrid networks in a straightforward way.A particular class of heterogeneous submodels of the real kind was constructed by considering h as thecomposition of two mappings, that is, h = f � s , such that s : Ĥn ! R0 � R and f : R0 ! Rout � R. Themapping h can be considered as a n � ary function parameterized by a n � ary tuple ~̂w � Ĥn representingneuron's weights, i.e. h(~̂x; ~̂w) = f(s(~̂x; ~̂w)). In particular, function s represents a similarity and f a squashingnon-linear function with its image in [0; 1]. Accordingly, the neuron is sensitive to the degree of similaritybetween its input, composed in general by a mixture of continuous and discrete quantities possibly with missingdata. More precisely, s is understood as a similarity index, or proximity relation (transitivity considerations areput aside). That is, a binary, reexive and symmetric function s(x; y) with image on [0; 1] such that s(x; x) = 1(strong reexivity). The semantics of s(x; y) > s(x; z) is that object y is more similar to object x than z.Clearly, there are many possible choices for the s function, and in particular some of them are currently underinvestigation. The concrete instance of the model under study in the present paper uses as transfer function aGower-like similarity index (Gower, 71) in which the computation for heterogeneous entities is constructed as aweighted combination of partial similarities over subsets of variables. This coe�cient has its values in the realinterval [0; 1] and for any two objects i; j given by tuples of cardinality n, is given bysij = Pnk=1gijk �ijkPnk=1�ijkwhere gijk is a similarity score for objects i; j according to their value for variable k. These scores are in theinterval [0; 1] and are computed according to di�erent schemes for numeric and qualitative variables. The factor�ijk is a binary function expressing whether objects i, j are comparable or not according to their values w.r.t.variable k. It is 1 i� both objects have values di�erent fromX for variable k, and 0 otherwise. Additional weightsrepresenting the di�erential importance of variables can be introduced in the computation of this similarity,but they will not be considered here. Rather, Gower's original de�nitions for real-valued and discrete variablesare kept. For variables representing fuzzy sets, similarity relations from the point of view of fuzzy theory havebeen de�ned elsewhere (Klir et al., 88; Zimmermann, 92; Dubois et al., 97) and di�erent choices are possible.In our case, if Fi is an arbitrary family of fuzzy sets from the source set, and ~A; ~B are two fuzzy sets such that~A; ~B 2 Fi, the following similarity relation is usedg( ~A; ~B) = maxx (� ~A\ ~B(x))where � ~A\ ~B(x) = min(� ~A(x); � ~B(x)). For the activation function, a modi�ed version of the classical logistic isused, which is an automorphism of the real interval [0; 1].f(x; p) = ( �p(x�0:5)�a(p) � a(p) if x � 0:5�p(x�0:5)+a(p) + a(p) + 1 otherwise



where a(p) is an auxiliary function given by a(p) = �0:5+p0:52+4�p2 and p is a real-valued parameter controllingthe curvature, set in the experiments to 0.1. This family of functions is displayed in �gure 1. The trainingprocedure for the HNN is based on genetic algorithms (GAs), since the heterogeneity of the variables involvedand the non-di�erentiability of the similarity function prevent the use of gradient-based techniques.
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Family of sigmoidal functions for heterogeneous neurons
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f(x,0.001)Figure 1: The family of sigmoidal functions f(x; p).DESCRIPTION OF THE PROBLEMThe cardiovascular system is composed of the h�modynamical system and the Central Nervous System (CNS)control. Whereas the structure and functioning of the h�modynamical system are well known and a number ofquantitative models have already been developed that capture its behavior fairly accurately, the CNS control is,at present, still not completely understood and no good deductive models exist able to describe the CNS controlfrom physical and physiological principles. The use of other approaches {like qualitative methodologies or neuralnetworks{ may o�er an interesting alternative to classical quantitative modeling approaches {such as di�erentialequations and NARMAX techniques{ for capturing the behavior of the CNS control. The CNS control modelis composed of �ve separate controllers: the heart rate controller, the peripheral resistance controller, themyocardial contractility controller, the venous tone controller, and the coronary resistance controller. All �vecontroller models are single{input/single{output (SISO) models driven by the same input variable, the CarotidSinus Pressure. In the present study, we will concentrate on the �rst of these signals, the heart rate. The inputand output signals of the CNS control were recorded with a sampling rate of 0.12 seconds from simulations ofthe purely di�erential equation model. The model had been tuned to represent a speci�c patient su�ering froman at least 70% coronary arterial obstruction, to agree with the measurement data taken from the patient. Thefull set of data consists of 7869 timed measurements. From these, the �rst 1500 were used as training set andthe immediately following 1000 as the test set to be forecasted. To give a graphical impression, the input andoutput variables of the heart rate controller subsystem are displayed in �gures 2 and 3. Note that both signalsexhibit high-frequency oscillations modulated by a low-frequency signal.EXPERIMENT SETUP AND RESULTSThe use of the heterogeneous neuron as a brick for con�guring network architectures can be done in severalways. In this paper, several architectures will be explored, in an attempt to clarify the e�ect of combining suchneurons with classical ones. In order to keep things manageable, however, we will restrict ourselves to networkswith one or no hidden layers. To this end, let us introduce the notation qx to denote a single layer of q neurons,where possibilities for x are: n (classical, scalar product and logistic activation), h (heterogeneous) and f (fuzzyheterogeneous). Similarly, pxqx denotes a network composed of a hidden layer of p neurons and an outputlayer of q neurons. In the present study, there is just one output to be predicted (the heart rate) so the outputlayer is always composed of a single neuron and the hidden layer (if any) will always have 3 neurons1. The1It should be noted that there has been no attempt to �nd better architectures (di�erent number of hidden-layer neurons and/ormore than one hidden layer) nor to improve GA performance on this particular problem by tuning its parameters or devising
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"pac.gpt"Figure 2: Input signal: Carotid Sinus Pressure.
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"pac.gpt"Figure 3: Output signal: Heart Rate Controller, measured in seconds between beats.architectures under study will then be: 1n; 1h; 1f ; 3n1n; 3h1n; 3f1n; 3n1h; 3n1f ; 3h1h and 3f1f . All of them weretrained with the same GA, in order to eliminate this source of variation from the analysis. The only di�erencebetween h and f neurons is that {according to the fuzzy HNN model presented{ the latter have their inputsand weights fuzzy�ed. In this experiment, original crisp data were converted into (triangular) fuzzy numbersin the form of a 5% of imprecision w.r.t. the original value2. In order to assess the performance of the di�erentHNN architectures, two other soft-computing approaches were also employed to infer a model for the task athand: a feed-forward neural network working in the complex plane and the aforementioned FIR methodology.A brief comment on both is due.The complex neural network (CNN) is an advanced model (Birx et al., 92,93) which operates in the complexplane, having inputs, weights and outputs given by complex numbers. They have been used very successfullyin the analysis of many complex dynamic systems and in di�cult classi�cation problems. In these networks,the transfer function is a direct translation of the scalar product to complex arithmetic. Let z = x + iy 2 Cbe the complex neuron net output as given by the scalar product. The squashing function used is given byf(z) = f(x+iy) = p x+i p y where p = tanh(px2+y2)px2+y2 . Following our terminology, we will use a 3c1c architecture,where c denotes a complex neuron. In this case, the output neuron will use a linear activation function. Thetraining procedure chosen is a powerful combination of simulated annealing with conjugate gradient-descent.The inductive reasoning methodology was �rst developed (Klir, 85) as a tool for general system analysis.Fuzzy measures were introduced in the late eighties, giving way to the FIR methodology. In the FIR approach,the qualitative systems are modeled by a special class of �nite state machines de�ned by an optimal mask and abehavior matrix, and the episodical behavior of the system is simulated by a technique called fuzzy forecasting. Inprevious studies of the data at hand, FIR capabilities were greatly increased by performing a Markov analysisin search of single-dependency variable-order signi�cant time delays (Nebot et al., 98). It was found thatin both input x(t) and output y(t) signals there were two speci�c time delays (1 and 6 sampling intervals),highly signi�cant from the point of view of exhibiting a Markov chain behavior when the continuous process isdiscretized. According to this, a training set consisting of four inputs x(t � 1); x(t� 6); y(t � 1); y(t � 6) andone output y(t) was constructed. This hybrid technique has been very successfully applied to the task at handthough using data from di�erent patients and controllers and di�erent training and test set regimes. Hence, forthe purpose of direct comparison, new runs of the FIR methodology were performed.For each neural architecture, �ve di�erent training trials were run using di�erent random initial populations,specialized operators. Although it is reasonable to believe that this would probably improve the results obtained with the complexnetwork (presented later on) and (specially) the HNN, our main concern was to compare both networks in a crude (perhaps morefair) way, using reasonable (although maybe not optimal) settings.2This percentage is probably an upper-bound for modern measuring devices.



Arch. 1n 1h 1f 3n1n 3h1n 3f1n 3n1h 3n1f 3h1h 3f1fAvg. 2.150e-02 9.855e-04 5.723e-04 1.640e-03 1.114e-04 7.817e-05 2.621e-03 1.594e-03 1.661e-04 7.683e-05Best 9.965e-04 9.657e-04 3.510e-04 1.216e-03 9.405e-05 6.652e-05 2.603e-03 1.036e-03 9.424e-05 6.527e-05Table 1: MSE errors for the di�erent HNN architectures.in an attempt to reduce the e�ect of a specially lucky (or unlucky) strike by the GA. Average and best MSEs ontest set were then calculated. The CNN was given 50 di�erent annealing tries and the �nal (overall best) resultis the one displayed (tables 1 and 2). Notice the decrease of MSE in orders of magnitude due to the increasingpresence of heterogeneous neurons, until a comparable (and slightly better) performance to the obtained by theFIR and the CNN is reached. Although this �nal error is not the best, it is probably very close.Architecture FIR 3c1cBest 2.095e-04 8.136e-05Table 2: MSE errors for FIR and the CNN.CONCLUSIONS AND FUTURE WORKThe study and prediction of time-varying processes is a fundamental problem with a long tradition in theliterature. In this paper, we have shown how the use of fuzzy heterogeneous networks can signi�cativelyincrease the accuracy of the models obtained. These networks have been compared to the FIR methodologyand a complex neural network for the task at hand, and the overall results are promising. Clearly, a full studywith a richer set of data from other patients and controllers deserves future work. Most important, the useof GAs to �nd the weights of the networks is not perhaps the best choice. As general and versatile functionoptimizers, these algorithms constituted our initial choice. Although a �ner tuning of the GA parametersand a clever design of specialized genetic operators would de�nitely improve performance (as a consequenceof introducing problem-speci�c knowledge) we believe that other evolutionary techniques (namely, a form ofevolution strategies) would better suit the problem of minimizing a (non-di�erentiable) error function that hassuch an heterogeneity in its constituting variables (recall both inputs and weights are heterogeneous), many ofthem continuous, di�cult for the binary coding of the GA. Another possibility would be to devise a di�erentiablesimilarity function, so the bunch of gradient-descent methods would be available, and a de�nite comparison withthe best of classical neural networks could be made. These two points are the subject of our future research.REFERENCESBirx, D., Pipenberg, S. 1992. Chaotic oscillators and complex-mapping feedforward networks for signal detection in noisy envi-ronment. Int. Joint Conf. on Neural Networks, Baltimore, MD.Birx, D., Pipenberg, S. 1993. A complex-mapping network for phase sensitive classi�cation. IEEE Trans. on Neural Networks,4:1, pp 127-135.Chandon, J.L, Pinson, S. 1981. Analyse Typologique. Th�eorie et Applications. Masson, pp. 254.Cueva J., Alqu�ezar R., Nebot A. 1997. Experimental comparison of fuzzy and neural network techniques in learning models of thecentral nervous system control. Proc. EUFIT'97, 5th European Congress on Intelligent Techniques and Soft Computing, pages1014-1018, Aachen, Germany.Dubois D., Prade H., Esteva F., Garc��a P., Godo L., L�opez de M�antaras R. 1997. Fuzzy set modeling in case-based reasoning. Int.Journal of Intelligent Systems (to appear).Gower, J.C. 1971. A General Coe�cient of Similarity and some of its Properties. Biometrics 27, 857-871.Klir, G.J. 1985. Architecture of Systems Problem Solving. Plenum Press, New York.Klir, G.J., Folger T.A. 1988. Fuzzy Sets, Uncertainty and Information. Prentice Hall Int. Editions.Nebot A., Vald�es J.J., Guiot M, Alqu�ezar R., Vallverd�u M. 1998. Fuzzy inductive reasoning approaches in the identi�cation ofmodels of the central nervous system control. Proc. EIS'98, Int. Conf. on Engineering of Intelligent Systems, Tenerife.Vald�es J.J, Belanche, Ll. 1998. Fuzzy Heterogeneous neurons for Imprecise Classi�cation Problems. LSI Research Report LSI-98-33-R. Universitat Polit�ecnica de Catalunya. Dept. of Languages and Information Systems.Vald�es J.J, Garc��a R. 1997. A model for heterogeneous neurons and its use in con�guringneural networks for classi�cationproblems.International World Conference on Arti�cial and Natural Neural Networks IWANN'97, Lecture Notes in Computer Science 1240,Springer Verlag, pp 237-246.Zimmermann H.J. 1992. Fuzzy set theory and its applications. Kluver Academic Publishers, p. 399.


