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Abstract. In phase field models for fracture a continuous scalar field variable is used to
indicate cracks, i.e. the value 1 of the phase field variable is assigned to sound material,
while the value 0 indicates fully broken material. The width of the transition zone where
the phase field parameter changes between 1 and 0 is controlled by a regularization pa-
rameter. As a finite element discretization of the model needs to be fine enough to resolve
the crack field and its gradient, the numerical results are sensitive to the choice of the reg-
ularization parameter in conjunction with the mesh size. This is the main challenge and
the computational limit of the finite element implementation of phase field fracture mod-
els. To overcome this limitation a finite element technique using special shape functions is
introduced. These special shape functions take into account the exponential character of
the crack field as well as its dependence on the regularization length. Numerical examples
show that the exponential shape functions allow a coarser discretization than standard
linear shape functions without compromise on the accuracy of the results. This is due to
the fact, that using exponential shape functions, the approximation of the surface energy
of the phase field cracks is impressively precise, even if the regularization length is rather
small compared to the mesh size. Thus, these shape functions provide an alternative to
a numerically expensive mesh refinement.

1 INTRODUCTION

Variational formulations of brittle fracture as suggested by Francfort and Marigo [1]
overcome some of the limitations of classical Griffith theory. However, a direct discretiza-
tion of such fracture models is faced with significant technical difficulties. A regular-
ized approximation by means of Γ-convergence as presented by Bourdin [2] offers a new
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perspective towards the computational implementation of the model. The core of the
regularization is the approximation of the total energy functional, in which a continuous
scalar field variable is introduced to indicate cracks, i.e. the value of 1 is assigned to
sound material and a value of 0 indicates fracture. With this crack field the regularized
model resembles a phase field model for fracture, where additionally a Ginzburg–Landau
type equation is used to describe the evolution of the crack field and cracking is addressed
as a phase transition problem. Similar phase field fracture models have been introduced
e.g. in [3, 4, 5, 6, 7, 8]. Differing in technical details all of these models introduce a
regularization length which controls the width of the transition zone where the crack field
interpolates between broken and unbroken material; i.e. the smaller the regularization
parameter, the smaller the transition zone and the higher the gradients of the crack field
in the vicinity of the cracks.

Numerical implementations are faced with the difficulty that the spacial discretization
has to be fine enough to resolve these high gradients of the crack field, which leads to
high computational costs for small values of the regularization parameter. On the other
hand the regularization length needs to be chosen sufficiently small in conjunction with
the global geometric dimension of the sample in order to get reasonable results. The most
common approach to meet the requirement for a sufficiently fine resolution on the one
hand and to keep the computation time within bounds on the other hand are adaptive
mesh refinement techniques as used e.g. in [9], where the mesh is only refined where it is
necessary, i.e. in the vicinity of a crack. Another approach to increase the efficiency of
the computations was introduced in [5], where Fourier transforms are used to solve the
linear part of the problem. However, this technique restricts the simulations to problems
with periodic boundary conditions.

In this work we follow a different approach which is inspired by [10], where exponential
finite element (FE) shape functions are introduced as an alternative to an extensive mesh
refinement in the simulation of extrusion processes. These special shape functions qualita-
tively capture the shape of the solution and thus allow a much coarser discretization than
the standard discretization using linear shape functions. In contrast to the simulation
of the extrusion process, where the exponential shape functions are used in one distinct
direction only, the discretization of the crack field in a two dimensional setting requires
an extension of the concept to the full 2d case.

2 A PHASE FIELD MODEL FOR FRACTURE

2.1 Governing Equations

The present phase field model of fracture is based on a regularized version of the
variational formulation of brittle fracture by [1] which was introduced in [11]. The core
of the regularization is the approximation of the total energy of a cracked linear elastic
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body Ω, with the stiffness tensor C and the cracking resistance Gc, by the functional

E(ε, s) =

∫

Ω

ψ(ε, s) dV =

∫

Ω

1

2
(s2 + η)ε · (Cε)

︸ ︷︷ ︸

=ψe(ε,s)

+Gc

(
1

4ǫ
(1− s)2 + ǫ|∇s|2

)

︸ ︷︷ ︸

=ψs(s)

dV . (1)

This energy as well as the energy density ψ are functions of the linearized strain tensor
ε = 1

2
(∇u+ (∇u)T ), i.e. the symmetric part of the gradient of the displacements u and

the continuous scalar crack field s, which takes the value 1, if the material is undamaged,
and 0 if there is a crack. The degradation of the elastic energy in the bulk Ee =

∫

Ω
ψe dV

upon cracking is modeled by the factor (s2 + η), where the small positive parameter η is
introduced to obtain an artificial rest stiffness ηC at fully broken state (s = 0) in order
to circumvent numerical difficulties. The parameter ǫ, appearing twice in the surface en-
ergy Es =

∫

Ω
ψs dV , has the dimension of length and controls the width of the transition

zone between broken and unbroken material, where s interpolates between 0 and 1.

If body forces and inertia terms are neglected, the mechanical part of the problem is
described by the local balance law for the Cauchy stress tensor σ

divσ = 0 , (2)

plus the according boundary conditions σn = t∗n on ∂Ωt, where n is the outer normal
vector, and the material law (3) derived from the energy density ψ

σ =
∂ψ

∂ε
= (s2 + η)Cε . (3)

Interpreting s as order parameter of a phase field model, its evolution in time is assumed
to follow a Ginzburg–Landau type evolution equation, where ṡ is proportional to the
variational derivative of the energy density ψ with respect to s.

ṡ = −M ·
δψ

δs
= −M

[

sε · (Cε)− Gc

(

2ǫ∆s +
1− s

2ǫ

)]

(4)

The mobility factorM is a positive constant, which controls the dissipation in the process
zone. For sufficiently large values of M the solution of the evolution equation can be
considered as stationary. In order to take into consideration the irreversible character of
cracking, s(x, t) is fixed to 0 for all future times t > t∗ if it becomes 0 at any time t∗.

2.2 Evolution Equation in 1d

In a 1d setting, the evolution equation for a stationary (ṡ = 0) crack field reduces to

s′′ −
s

4ǫ2
= −

1

4ǫ2
, (5)
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Figure 1: 1d stationary crack field

if elastic contributions are neglected. With boundary conditions s(0) = 0 and s′(±∞) = 0
the analytic solution of Eq. (5) is given by

s(x) = 1− exp

(

−
|x|

2ǫ

)

(6)

Figure 1 illustrates the impact of the regularization length ǫ on the crack field s(x).
The smaller ǫ gets, the higher gradients and curvatures of the solution s(x) appear in the
vicinity of the crack at x = 0. The limit ǫ→ 0 yields a discontinuous function, which is 0
at x = 0 and 1 elsewhere.

3 NUMERICAL IMPLEMENTATION

3.1 Weak Forms

Starting point for the FE implementation of the coupled problem of mechanical balance
equation (2) and evolution equation (4) are the weak forms of these field equations. With
virtual displacements δu and δs, they read

∫

Ω

∇δu · σ dV =

∫

∂Ωt

δu · t∗n dA (7)

with prescribed surface traction t∗n on part ∂Ωt of the boundary and

∫

Ω

[

δs
ṡ

M
−∇δs · q + δs

(

sε : [Cε] +
Gc
2ǫ

(s− 1)

)]

dV = 0 (8)

with q = −2Gc ǫ∇s. The normal flux q · n is assumed to vanish on the boundary ∂Ω.

3.2 Finite Element Discretization

In a 2d setting the weak forms of the field equations (7) and (8) are discretized with 4
node quadrilateral elements with 3 degrees of freedom (ux, uy, s) per node. The displace-
ments u, the crack field s, as well as their virtual counterparts δu and δs are approximated
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by shape functions Nu

I , N
s
I , N

δu
I , and N δs

I , which interpolate the respective nodal val-
ues ûI , ŝI , δûI , and δŝI . Using Voigt–notation - denoted by an underline in the following -
the approximations read

u =

N∑

I=1

Nu

I ûI , s =

N∑

I=1

N s
I ŝI , δu =

N∑

I=1

N δu
I δûI , and δs =

N∑

I=1

N δs
I δŝI . (9)

Accordingly the approximations of the gradient expressions yield

ε =
N∑

I=1

[Bu

I ]ûI , ∇s =
N∑

I=1

[Bs
I ]ŝI , δε =

N∑

I=1

[Bδu
I ]δûI , and ∇δs =

N∑

I=1

[Bδs
I ]δŝI , (10)

where the derivative matrices

[Bu

I ] =





Nu

I,x 0
0 Nu

I,y

Nu

I,y Nu

I,x



 , [Bs
I ] =

[
N s
I,x

N s
I,y

]

, [Bδu
I ] =





N δu
I,x 0
0 N δu

I,y

N δu
I,y N δu

I,x



 , and [Bδs
I ] =

[
N δs
I,x

N δs
I,y

]

(11)

are obtained from the derivatives of the shape functions.

By a standard argument for finite element approximations the nodal values δûI and δŝI
of the virtual quantities δu and δs drop out of the system of equations, leading to the
nodal residuals

[RI ] =

[
Ru

I

Rs
I

]

=

∫

Ω





[Bδu
I ]Tσ

N δs
I

ṡ

M
− [Bδs

I ]
Tq +N δs

I

(

s εT· (C ε) +
Gc
2 ǫ

(s− 1)

)



 dV . (12)

The time integration of the transient terms is performed with the implicit Euler method.
Together with the nonlinear character of the phase field model this yields a nonlinear
system of equations, which has to be solved in every time step ∆t. This is done with
a Newton–Raphson algorithm, which requires the derivation of the consistent tangent
matrix

[
SIJ

]
which has the following structure:

[
SIJ

]
=

[
KIJ

]
+

1

∆t

[
DIJ

]
. (13)

The stiffness matrix
[
KIJ

]
and the damping matrix

[
DIJ

]
are obtained by derivation of

the nodal residuals
[
RI

]
with respect to the nodal values (ûJ , ŝJ) and (ˆ̇uJ , ˆ̇sJ), respec-

tively.

[
KIJ

]
=

∫

Ω





[Bδu
I ]T (s2 + η)C [Bu

J ] [Bδu
I ]T2sC εN s

J

N δs
I 2s(C ε)T [Bu

J ] 2Gc ǫ [B
δs
I ]

T [Bs
J ]+N

δs
I

(

εT·Cε+
Gc
2 ǫ

)

N s
J



dV (14)
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Figure 2: Node and edge numbering of the quadrilateral element in global (left) and natural coordinates
(right)

and
[
DIJ

]
=

∫

Ω

[
0 0

0
1

M
N δs
I N

s
J

]

dV . (15)

If the same shape functions are chosen for the approximation of actual values and the
virtual quantities, i.e. Nu

I = N δu
I and N s

I = N δs
I , the system matrix

[
SIJ

]
becomes sym-

metric. This is due to the fact, that the constitutive law (3) as well as the evolution
equation (4) are derived from a potential. Different shape functions however, render a
non-symmetric system matrix

[
SIJ

]
.

4 EXPONENTIAL SHAPE FUNCTIONS

The standard implementation with 4 node quadrilateral elements makes use of the
linear Lagrangian shape functions

N lin
I (ξ, η) =

1

4
(1 + ξIξ)(1 + ηIη), I = 1, ..., 4 (16)

with (ξI , ηI) according to Fig. 2 for all the shape functions Nu

I , N
δu
I , N s

I , and N
δs
I as well

as for the approximation of the geometry in the isoparametric concept

x =

N∑

I=1

N lin
I x̂I . (17)

In [12] it is shown that triangular elements with linear shape functions overestimate the
surface energy by a factor

f(h/ǫ) = 1 + h/4ǫ , (18)

where h is the edge length of the elements. As a sufficiently good approximation of the
surface energy is crucial in order to obtain reasonable results, this yields the necessity of a
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Figure 5: Solution of the 1d stationary evolution equation with n = 4 (left), n = 8 (middle) and n = 16
elements (right)
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Figure 6: Evaluation of the surface energy

in Fig. 5. While there is almost no visible error in the solutions with exponential shape
functions, the linear shape functions fail to adequately resolve the transition zone even
for the smallest tested element size h = L/16.

5.2 Surface Energy of an Edge Notched Sample

For the first numerical assessment of the 2d exponential shape functions, the station-
ary evolution equation is solved on the domain L× L under the constraint s(x, y) = 0
if (x, y) ∈ [0, L/2]× {0}. Again, the regularization length is set to ε = 0.01L, and no
mechanical loads are applied. A regular mesh with square elements is used for the dis-
cretization.

Figure 6 shows an evaluation of the surface energy Es associated with the computed
crack field. Regular meshes within the range of 2× 2 to 400× 400 elements were used
for the discretization. The results are compared to the error estimate (18) for the tri-
angular elements with linear shape functions (black dotted line). The reference solution
Es = 0.51017344300GcL was computed with standard linear shape functions and a non-
uniform mesh with square elements of edge length h = 7.1429 · 10−4L in the vicinity the
crack. The performance of the tested linear shape functions is slightly better than it is to
be expected from the error estimate. However, especially for discretizations with only few
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Figure 7: Simulation setup: contour plot of initial crack field (left) and finite element mesh (right)

elements both versions using the exponential shape functions perform significantly better.
A crucial point for the performance of the exponential shape functions is a sufficiently
precise computation of the integrals in the residuals (12), the stiffness matrix (14), and the
damping matrix (15). For standard linear 4 node elements, usually the Gauß quadrature
formula with 2 integration points per direction is used to compute the integrals. Yet,
the performance of the exponential shape functions can easily be improved by employing
a higher order quadrature method, e.g. a quadrature with 10× 10 Gauß points as was
used to obtain the results in the right plot of Fig. 6. Thus, a major part of the error
in the surface energy computed with exponential shape functions and 2× 2 Gauß points
(Fig. 6, middle) is due to the quadrature error.

5.3 Peel Off Test

In this simulation the performance of the exponential shape functions is tested under
mechanical loading, i.e. the whole set of coupled equations has to be solved..e. the whole
set of coupled equations has to be solved. The mixed formulation (lin/exp) yields an
unsymmetric system matrix, which is computationally more expensive. As the results
obtained by the pure exponential formulation in sections 5.1 and 5.2 are very similar,
the mixed formulation is dismissed in the following. The sample depicted in Fig. 7 is

loaded by a linear increasing displacement load u∗(t) =
√

GcL
2µ

· t. A dimensional analysis

shows that with this scaling of the displacements, the geometric length L and the cracking
resistance Gc can be factored out of the equations. If additionally the mobility M is chosen
large enough to assume quasi-static cracking, the solution of the coupled problem only
depends on the ratio of the Lamé constants λ/µ (here: λ = µ) and the regularization
parameter ε in conjunction with L (here: ε = 0.0005L). The discretization in x-direction
is done with 150 elements. A varying number of n elements plus one row of elements of
fixed height, to model the initial crack, discretize the structure in y-direction, see Fig. 7.
Gauß quadrature with 5× 5 integration points was used for the integration.

The two left plots in Fig. 8 show the evolution of the elastic energy with respect to
the load factor t for different values of n. The elastic energy increases with the loading
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Figure 8: Elastic energy and failure load

until rupture occurs and it drops to zero. Impressively, the simulation with only n = 2
elements in y-direction already gives a qualitatively good result, when the exponential
shape functions are employed. Using the standard linear shape functions, no rupture
is observed in the simulation with n = 2 elements up to a load factor of t = 3, which
is about twice the actual critical loading. Also the simulation with n = 16 elements still
overestimates the critical loading by far. Only the simulations with more elements produce
as accurate results as the simulations with the exponential shape functions. The right
plot of Fig. 8 compares the computed failure loads. The overestimation of the critical load
value of the linear shape functions stems from the overestimation of the surface energy
associated with the initial crack.

6 SUMMARY

The aim of this work was to provide an alternative to expensive mesh refinement in
finite element simulations of a phase field model for fracture in cases where the regular-
ization parameter is very small. To this end special shape functions, which capture the
analytical stationary solution of the 1d crack field, were derived and implemented into a
2d element of a finite element code. Through their dependence on the ratio of element size
and regularization parameter, the exponential shape functions are able to adjust to the
crack field for virtually arbitrarily small values of the regularization length. This allows
for computations with very small values of the regularization parameter, which would
require an extensive mesh refinement, when standard linear shape functions are used.
The effectiveness of the proposed technique has been demonstrated in numerical examples.
In all simulations the usage of the exponential shape functions resulted in a considerable
reduction of the level of refinement, yet their full potential only reveals itself if a suf-
ficiently precise quadrature method is employed for the computation of the occurring
integrals.
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