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Abstract. To simulate numerically a failure process, a new kind of model which combines
the two traditional approaches (damage and fracture mechanics) has been proposed in the
literature. The basic idea of these hybrid strategies is to employ regularised continuous
models to describe the first stages of failure and discontinuous models to deal with the
possible development of cracks.

Here, a new combined approach is presented. In order to describe damage inception
and its diffuse propagation, an implicit gradient-enhanced continuum model based on
smoothed displacements is used, where two different displacement fields coexist: (a) the
standard displacements uuu and (b) the gradient-enriched displacement field ũ̃ũu, which is the
solution of a partial differential equation with uuu as the source term. Once the damage pa-
rameter exceeds a critical value, the continuous model is coupled to a discontinuous one.
The eXtended Finite Element Method (X-FEM) is used to describe the growing cracks,
whose direction of propagation is prescribed by the steepest descent direction of the dam-
age profile and whose cohesive law is defined according to an energy balance. Therefore,
the energy not yet dissipated by the continuous bulk is transmitted to the cohesive inter-
face thus ensuring that the energy dissipated by the structure remains constant through
the transition.

1 INTRODUCTION

To simulate numerically failure of quasi-brittle materials, two different kinds of ap-
proaches have usually been employed: (a) damage mechanics, which belongs to the family
of continuous models and (b) fracture mechanics, which belongs to discontinuous models.
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On the one hand, if damage mechanics analyses are carried out, the first stages of a
failure process can be described. But these continuous models, which are characterised by
a strain softening phenomenon, do not correctly reflect the energy dissipated in the frac-
ture process zone [1]. Numerically, if stress-strain laws with softening are used, physically
unrealistic results are obtained. To overcome this limitation, regularisation techniques
may be employed to introduce non-locality into the model, either by integral-type [2, 3]
or gradient-type [4, 5] approaches. However, if continuum models are used to describe
the final stage of failure, numerical interaction between the physically separated parts of
the body remains thus obtaining unrealistic results.

On the other hand, by means of fracture mechanics analyses, the last stages of failure
may be described. These discontinuous models, which are based on the cohesive zone
concept [6], can deal with evolving cracks and material separation but do not allow to
describe neither damage inception nor its diffuse propagation [7].

In order to achieve a better description of the entire failure process, a new kind of
model which combines these two traditional strategies has emerged [8–12]. The basic
idea of these hybrid strategies is to use damage mechanics in order to characterise strain
localisation and the accumulation of damage and fracture mechanics in order to deal with
the possible formation of evolving macrocracks.

In this work, a new contribution in this direction is presented, see Figure 1. A gradient-
enhanced damage model based on smoothed displacements [13] is used for the continuum.
When the damage parameter exceeds a critical threshold Dcrit, this regularised continuum
model is coupled to a discontinuous one: a propagating crack, which is modelled by means
of the X-FEM [14, 15], replaces the damaged zone and avoids formation of spurious dam-
age growth. The discontinuity is completely characterised by the regularised continuum.
On the one hand, the crack evolves according to the direction dictated by the steepest
descent direction of the already formed damage profile. On the other hand, its cohesive
law is defined by means of an energy balance in such a way that the energy which would
be dissipated by the continuum is transferred to the crack.

An outline of this paper follows. The new continuous-discontinuous methodology is
formulated in Section 2. In Section 3, the energy criterion used to define the cohesive
crack is presented. To validate the proposed methodology, a three-point bending test is
carried out in Section 4. In order to restrict attention to the proposed energy balance, a
local continuum bulk is considered in Section 4.1. In Section 4.2, the same benchmark
test is carried out with a non-local continuum bulk. The concluding remarks of Section 5
close this paper.

2 MODEL FORMULATION

2.1 Discontinuous displacements

Consider the domain Ω bounded by Γ = Γu ∪Γt ∪Γd, as shown in Figure 2. Prescribed
displacements are imposed on Γu, prescribed tractions are imposed on Γt and the boundary
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Figure 1: Proposed continuous-discontinuous strategy.

Γd consists of the boundary of the crack.

Figure 2: Notations for a body with a crack subjected to loads and imposed displacements.

By means of the X-FEM, the displacement field uuu can be decomposed as

uuu (xxx) = uuu1 (xxx) + H (xxx)uuu2 (xxx) in Ω̄ = Ω ∪ Γ (1)

where uuui (xxx) (i = 1, 2) are continuous fields and

H (xxx) =

{
1 if xxx ∈ Ω̄+

−1 if xxx ∈ Ω̄− (2)

is the Heaviside function centred at Γd. The continuous part uuu1 (xxx) corresponds to the
displacement field without any crack, while is the discontinuous displacement H (xxx)uuu2 (xxx)
the additional field that models the crack.

3
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A similar decomposition holds for the smoothed displacements �u�u�u
�u�u�u (xxx) = �u�u�u1 (xxx) + H (xxx)�u�u�u2 (xxx) (3)

where �u�u�ui (xxx) (i = 1, 2) are continuous fields.

2.2 Governing equations

The strong form of the equilibrium equation and boundary conditions for the body Ω̄
without body forces is given by

∇ · σσσ = 000 in Ω (4a)

σσσ · nnn = t̄tt on Γt (4b)

σσσ ·mmm = t̄ttd on Γd (4c)

uuu = uuu∗ on Γu (4d)

where σσσ is the Cauchy stress tensor, uuu∗ is a prescribed displacement, t̄tt is the load on the
boundary and t̄ttd is the load on the discontinuity surface. Note that nnn is the outward unit
normal to the body and mmm is the inward unit normal to Ω+ on Γd, see Figure 2.

For convenience, and to complete the strong form of the mechanical problem, only an
isotropic damage model

σσσ (xxx) = [1 − D (xxx)]CCC : εεε (xxx) (5)

is considered, where εεε (xxx) = ∇suuu (xxx) is the small strain tensor, CCC is the fourth-order
tensor of elastic moduli and D is the isotropic damage parameter (0 ≤ D ≤ 1 and
Ḋ ≥ 0). Nevertheless, the gradient formulation based on smoothed displacements may
be extended to other models such as plasticity [16].

In order to regularise the problem, the second-order diffusion partial differential equa-
tion

�u�u�u − �2∇2�u�u�u (xxx) = uuu (xxx) in Ω \ Γd (6)

is coupled with the mechanical equations. Both for the standard and the enhanced dis-
placement fields, combined boundary conditions

�u�u�ui · nnn = uuui · nnn
∇ (�u�u�ui · ttt) · nnn = ∇ (uuui · ttt) · nnn

}
on Γ

�u�u�ui ·mmm = uuui ·mmm
∇ (�u�u�ui · ttt) ·mmm = ∇ (uuui · ttt) ·mmm

}
on Γd (7)

where i = 1, 2, are proposed: Dirichlet boundary conditions are prescribed for the nor-
mal component of the displacement field whereas non-homogeneous Neumann boundary
conditions are imposed for the tangential one. These combined conditions satisfy the nec-
essary properties for regularisation: (a) reproducibility of order 1 (uuu = �u�u�u if uuu is a linear
field), (b) displacement smoothing along the boundary and (c) volume preservation [17].
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2.3 Variational formulation

The space of trial standard displacements is characterised by the function defined in
Eq. (1), where

uuu1,uuu2 ∈ Uuuu =
{
uuu | uuu ∈ H1(Ω) and uuu |Γu = uuu∗} (8)

with H1(Ω) a Sobolev space. Analogously, the space of admissible displacement variations
is defined by the weight function ωωω (xxx) = ωωω1 (xxx) + H(xxx)ωωω2 (xxx) with

ωωω1,ωωω2 ∈ Wuuu,0 =
{
ωωω | ωωω ∈ H1(Ω) and ωωω|Γu = 000

}
(9)

Following standard procedures, the equilibrium equation (4a) can be cast in a varia-
tional form, thus leading to

∫
Ω
∇sωωω1 : σσσ dΩ =

∫
Γt

ωωω1 · t̄tt dΓ ∀ωωω1 ∈ H1(Ω) (10a)

∫
Ω
H∇sωωω2 : σσσ dΩ + 2

∫
Γd

ωωω2 · t̄ttd dΓ =
∫

Γt
Hωωω2 · t̄tt dΓ ∀ωωω2 ∈ H1(Ω) (10b)

where at the discontinuity Γd,

˙̄tttd = f (�u̇uu�) (11)

with f relating traction rate ˙̄tttd and displacement jump rate �u̇uu�.
Similarly to the equilibrium equation, the regularisation PDE (6) is also cast in a weak

form. Characterising the space of trial smoothed displacements �u�u�u by the function defined
in Eq. (3), with uuu1,uuu2 ∈ Uuuu, one obtains
∫

Ω

ωωω1 · (�u�u�u1 + H�u�u�u2) dΩ + �2
∫

Ω

∇ωωω1 :
(
∇�u�u�u1 + H∇�u�u�u2

)
dΩ + 2�2

∫

Γd

ω1
t

(
∇

(
uuu2 · ttt

)
·mmm

)
dΓ =

=

∫

Ω

ωωω1 · (uuu1 + Huuu2) dΩ + �2
∫

Γ\Γd

ω1
t

(
∇

(
uuu1 · ttt

)
·nnn + H∇

(
uuu2 · ttt

)
·nnn

)
dΓ (12a)

∫

Ω

ωωω2 · (H�u�u�u1 + �u�u�u2) dΩ + �2
∫

Ω

∇ωωω2 :
(
H∇�u�u�u1 + ∇�u�u�u2

)
dΩ + 2�2

∫

Γd

ω2
t

(
∇

(
uuu1 · ttt

)
·mmm

)
dΓ =

=

∫

Ω

ωωω2 · (Huuu1 + uuu2) dΩ + �2
∫

Γ\Γd

ω2
t

(
H∇

(
uuu1 · ttt

)
·nnn + ∇

(
uuu2 · ttt

)
·nnn

)
dΓ (12b)

∀ωωω1,ωωω2 ∈ Wuuu,000, where ttt is the unit tangent to the boundary.

2.4 Finite element discretisation

In combined strategies, the transition between the continuous and the discontinuous
approach takes place when a critical situation is achieved. In a damaging continuum
approach, for example, this critical situation occurs when the damage parameter at one
integration point exceeds a critical damage value set a priori. Employing an extended
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finite element strategy to prevent remeshing and other kinds of techniques, Eq. (1) and
(3) read, in the domain of an element with enhanced nodes,

u(xxx) = N(xxx)u1 + H(xxx)N(xxx)u2 (13a)

�u(xxx) = N(xxx)�u1 + H(xxx)N(xxx)�u2 (13b)

where N is the matrix of standard finite element shape functions, u1, �u1 are the basic
nodal degrees of freedom and u2, �u2 are the enhanced ones. The discrete format of the
problem fields leads to the four discrete weak governing equations

∫

Ω

BTσσσ dΩ =

∫

Γt

NT t̄tt dΓ (14a)

∫

Ω

HBTσσσ dΩ + 2

∫

Γd

NT t̄ttd dΓ =

∫

Γt

HNT t̄tt dΓ (14b)

(M + �2D)�u1 + (MH + �2DH)�u2 = (M + �2CCCΓ\Γd,nnn)u1 + (MH + �2(CCC
Γ\Γd,nnn
H − 2CCCΓd,mmm))u2 (14c)

(MH + �2DH)�u1 + (M + �2D)�u2 = (MH + �2(CCC
Γ\Γd,nnn
H − 2CCCΓd,mmm))u1 + (M + �2CCCΓ\Γd,nnn)u2 (14d)

where B is the matrix of shape function derivatives and

M =

∫

Ω
NTNdΩ D =

∫

Ω
∇NT∇NdΩ (15a)

MH =

∫

Ω
HNTNdΩ DH =

∫

Ω
H∇NT∇N dΩ (15b)

CCCΓ,nnn =

∫

Γ
NT ttttttT

[
∂N
∂x

nx +
∂N
∂y

ny

]
dΓ CCCΓ,nnn

H =

∫

Γ
HNT ttttttT

[
∂N
∂x

nx +
∂N
∂y

ny

]
dΓ (15c)

Some remarks about the discretisation:

- Eq. (14a) is the standard non-linear system of equilibrium equations, while Eq.
(14b) deals with the contribution of the crack, which is multiplied by a factor of two
due to the chosen definition of the Heaviside function, see Eq. (2).

- Matrices M and D are the constant mass and diffusivity matrices already obtained
in [13]. The enriched matrices MH and DH are also constant, once the finite element
is cracked.

- Matrices CCCΓ\Γd,nnn, CCC
Γ\Γd,nnn
H and CCCΓd,mmm contain contributions from the combined bound-

ary conditions (7). Since Dirichlet boundary conditions are prescribed for the nor-
mal component of the displacement field on Γ, the normal component of the weight
function ωωω vanishes on the boundary thus leading to∫

Γ

ωωω∇�u�u�u · nnn dΓ =

∫

Γ

ωt∇ (�u�u�u · ttt) · nnn dΓ =

∫

Γ

ωt∇ (uuu · ttt) · nnn dΓ (16a)

Again, CCCΓd,mmm is multiplied by a factor of two because of the Heaviside function.

- The symmetry of the resulting discretisation is due to the property HH = +1,
which is derived from Eq. (2).

6
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3 ENERGETICALLY EQUIVALENT CRACKS

In the proposed strategy, the transition between the continuous and the combined
approach takes place when a critical situation is achieved, whose definition depends on
the underlying continuous model. If a damage model is considered, the transition takes
place when the damage value exceeds a critical threshold Dcrit. Once this critical value
is reached, a crack described by a cohesive law is initiated, damage value is fixed to Dcrit

and the bulk material unloads.
We propose to characterise the evolving crack by the regularised bulk. On the one hand,

the direction of propagation must be determined. Although in a regularised continuous
model, the crack growth cannot be analytically derived, the background can be used to
deduce it. Here, the discontinuity is extended according to the steepest descent direction
of the damage profile, thus avoiding the use of special tracking techniques. On the other
hand, the cohesive law must be defined. The strategy here used is based on the idea that
the energy which would be dissipated by a continuum approach is conserved if a combined
strategy is used, see [8, 9].

Consider first the continuous approach and a damaged band λD. Then, in this zone of
the structure, the dissipated energy can be expressed as

ΨC =

∫

λD

ψC dΩ =

∫

λD

∫ tf

0

σσσC · ε̇εεC dt dΩ (17)

where the subscript C stands for Continuous strategy and ε̇εεC is the tensor of the strain
rate.

Consider now the combined approach. In λD, the dissipated energy can be decomposed
into two contributions

ΨCD = Ψbulk
CD + Ψcrack

CD =

∫

λD

∫ tf

0

σσσCD · ε̇εεCD dt dΩ + Ψcrack
CD (18)

where the subscript CD stands for Continuous-Discontinuous strategy, Ψbulk
CD is the dissi-

pated energy of the bulk and Ψcrack
CD is the fracture energy.

Hence, imposing energy balance

ΨC = ΨCD (19)

see Figure 3, the fracture energy

Ψcrack
CD = ΨC − Ψbulk

CD (20)

is computed and can be transferred to the crack at the moment of the transition.
In order to estimate the fracture energy, different techniques can be employed. In [9], an

analytical estimation of Ψcrack
CD , and thus, of the crack stiffness, is computed. Nevertheless,

with this procedure, the fracture energy is overestimated. Indeed, by means of these

7
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Figure 3: Energy balance.

(a) (b)

Figure 4: Energy not yet dissipated in the damage band which is transmitted to the cohesive crack and
is dissipated by the continuous-discontinuous model, considering that by the continuous strategy, (a) all
the points of λD download following the softening branch and (b) points of λD download following both
softening and elastic branches.

assumptions, in all points across the damage band λD, the energy ΨC −Ψbulk
CD depicted in

Figure 4(a) is transferred to the crack. However, in some of these points, the continuous
strategy would dissipate less energy, see Figure 4(b).

As suggested by this discussion, we propose to employ a new methodology which takes
into account, for each point across the damage band λD, the unloading behaviour (both
softening and secant) of the continuous bulk. Since the continuous unloading branch is
only known up to the activation of the continuous-discontinuous strategy, we propose
to approximate it by the tangent to the transition point. By means of this strategy,
the dissipated energy Ψcrack

CD is more accurately estimated, although it cannot be exactly
computed. Again, as in [9], the accuracy of this strategy increases considerably if the
crack is activated at a later stage of the failure process.

4 APPLICATION TO A THREE-POINT BENDING TEST

The new methodology is illustrated on a three-point bending test. In order to cause lo-
calisation, a weakened region is considered, see Figure 5. The test is carried out according
to a simplified Mazars criterion and the trilinear softening law

D =




0 if 0 ≤ Y ≤ Y0
Yf

Yf−Y0

(
1 − Y0

Y

)
if Y0 ≤ Y ≤ Yf

1 if Yf ≤ Y

(21)
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Based on this damage evolution, the linear traction-separation law

t̄ttd =

{
t̄n
t̄s

}
= T

{
�uuu�n

�uuu�s

}
+

{
tcrit
0

}
=

(
Tn 0
0 0

){
�uuu�n

�uuu�s

}
+

{
tcrit
0

}
(22)

is prescribed, where imposing Ψcrack
CD =

∫ ∞
0

tn d�uuu�n, Tn = −1
2

t2
crit

Ψcrack

CD
.

Figure 5: Three-point bending test: problem statement.

The geometric and material parameters for this test are summarised in Table 1.

Table 1: Three-point bending test: geometric and material parameters.

Meaning Symbol Value

Length of the specimen L 3 mm
Width of the specimen h 1 mm

Young’s modulus E 30 000 MPa
Idem of weaker part EW 27 000 MPa
Damage threshold Y0 10−4

Final strain Yf 1.25 × 10−2

Poisson’s coefficient ν 0.0
Critical damage Dcrit 0.995

4.1 Local bulk

First, and in order to focus on the proposed energy balance, a local continuum damage
model is considered. The force-displacement curves and the damage profiles with the
deformed meshes are shown in Figure 6. For comparison purposes, three kinds of results
are shown. On the one hand, the continuous (C) results are plotted. On the other hand,
two different continuous-discontinuous (CD) results are shown: the ones obtained with
(a) the analytical estimation of the dissipated energy and (b) the proposed methodology,
which does not overestimate the fracture energy. As seen, it increases the accuracy when
estimating Ψcrack

CD .
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model is considered. The force-displacement curves and the damage profiles with the
deformed meshes are shown in Figure 6. For comparison purposes, three kinds of results
are shown. On the one hand, the continuous (C) results are plotted. On the other hand,
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(a) (b)

(c) (d)

Figure 6: Three-point bending test with a local damage bulk: (a) force-displacement curves; final dam-
age profiles with deformed meshes (×50) obtained with (b) the C strategy, (c) the CD strategy which
overestimates the fracture energy and (d) the CD strategy based on the new proposed methodology.

4.2 Non-local bulk

As a second test, the same benchmark example is carried out with a non-local damage
bulk. Results are shown in Figure 7. Again, three kinds of results are shown. As seen,
the proposed methodology allows to estimate properly Ψcrack

CD making the continuous and
the continuous-discontinuous strategies energetically equivalent.

5 CONCLUSIONS

A new strategy to simulate an entire failure process is proposed: a gradient-enriched
formulation based on smoothed displacements is enhanced with a discontinuous interpo-
lation of the problem fields in order to describe its final stages, where macroscopic cracks
can arise.
The main features of this new combined strategy are summarised here:

• The gradient-enhanced approach with smoothed displacements is able to obtain
physically realistic results. Combined boundary conditions must be imposed on the
boundary to solve the regularisation PDE.

• At the end of each time step, the strategy checks if the critical situation is achieved.
If the transition criterion is satisfied, a discrete crack whose properties depend on
the underlying continuous, is introduced.

– This evolving crack propagates across the bulk according to the direction de-
termined by the already damage profile.

10
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(a) (b)

(c) (d)

Figure 7: Three-point bending test with a non-local damage bulk: (a) force-displacement curves; final
damage profiles with deformed meshes (×50) obtained with (b) the C strategy, (c) the CD strategy which
overestimates the fracture energy and (d) the CD strategy based on the new proposed methodology.

– The cohesive law is defined through an energy balance: the energy remaining to
be dissipated by the continuum approach is transmitted to the cohesive zone.

• Once the crack is introduced, both standard displacements uuu and gradient-enhanced
displacement field ũ̃ũu may admit discontinuities.
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(a) (b)

(c) (d)

Figure 7: Three-point bending test with a non-local damage bulk: (a) force-displacement curves; final
damage profiles with deformed meshes (×50) obtained with (b) the C strategy, (c) the CD strategy which
overestimates the fracture energy and (d) the CD strategy based on the new proposed methodology.
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[1] M. Jirásek. Mathematical analysis of strain localization. Revue Européenne de Génie
Civil, 11(7-8):977–991, 2007.
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