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Abstract. The present paper is concerned with the development of an effective finite
element tool for the simulation of crack propagation in thin structures, induced by contact
or impact against sharp objects. In particular the purpose is the refinement and further
development of a recently proposed finite element approach for the simulation of the blade
cutting of thin membranes [1]. Standard cohesive interface elements are not suited for the
simulation of this type of cutting, dominated by the blade sharpness and by large failure
opening of the cohesive interface. The new concept of “directional” cohesive element, to
be placed at the interface between adjacent shell elements, where the cohesive forces can
have different directions on the two sides of the crack whenever the cohesive region is
crossed by the cutting blade, was introduced in [1] for elastic 4-node full-integration shell
elements with dissipation localized inside the interface elements, in the framework of an
explicit dynamics formulation. In the present paper the computational efficiency of the
proposed approach is investigated by considering applications to different test problems,
modifying the shell element kinematics. Some considerations about a reduced integration
solid-shell element are here reported; the interaction between this kind of element and
directional cohesive elements is under study.

1 INTRODUCTION

Thin structures are typically modeled using shell finite elements. Since many years,
most explicit commercial finite element codes (see e.g. Abaqus and LS-Dyna) offer the
possibility to simulate crack propagation in shells by eliminating from the model those
finite elements where developing damage has reached a critical threshold. While this
approach provides good results for the simulation of diffused damage due to explosions or
crashes against large obstacles, it is not convenient for the simulation of the propagation
of isolated cracks in large structures or of localized damages produced by sharp obstacles
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(see e.g. [2]). This type of problems appear to be better tackled by approaches based
on the use of cohesive fracture models, capable to transmit cohesive forces across either
an intra-element or inter-element displacement discontinuity [3],[4]. Among the different
types of crack propagation problems in thin structures, the mechanics of cutting a shell
with a sharp object or tool has attracted particular attention in view of its engineering
interest [5]. Standard cohesive interface elements are not suited for the simulation of this
type of cutting, dominated by the blade sharpness and by large failure opening of the
cohesive interface. The new concept of “directional” cohesive element, to be placed at
the interface between adjacent shell elements, where the cohesive forces can have different
directions on the two sides of the crack whenever the cohesive region is crossed by the
cutting blade, was introduced in [1] for elastic shells with dissipation localized inside the
interface elements, in the framework of an explicit dynamics formulation. In the present
paper the proposed approach is briefly summarized and used to simulate the cutting of a
thin rubber sheet, on the basis of the experimental test discussed in [6]. In [1] the interface
element was applied in conjunction with full integration 4-node shell elements (MITC4
elements [7]). For future application to elastoplastic laminated shells, the kinematics of
a computationally effective reduced integration solid shell element is discussed and its
possible use in the present explicit dynamics context is investigated.

2 COHESIVE ELEMENTS

2.1 Model description

In standard finite element approaches to fracture, based on the introduction of a co-
hesive interface between adjacent shell elements, due to the crack propagation opposite
cohesive forces develop across the displacement discontinuity. The direction of the oppo-
site forces depends only on the direction of the displacement jump and on the adopted
cohesive law. When the material is quasi-brittle and/or the impacting object is blunt,
there is no interference between the object and the cohesive region because the ultimate
cohesive opening displacement is much smaller than the typical size of the cutter. On the
contrary, when the material is very ductile or the cutting blade is sharp, it may well hap-
pen that the blade intersects the trajectory of the cohesive forces, giving rise to inaccurate
predictions of the crack propagation. For these reasons, a new concept of “directional”
cohesive interface element, where the cohesive forces acting on the crack opposite faces
have different directions when the process zone is crossed by the cutting blade, has been
proposed in [1] and is briefly recalled below.

The implementation of these “directional” cohesive elements follows the following steps.
When the selected fracture criterion is met at a given node, the node is duplicated and
it is assumed that cohesive forces F±

i are transmitted between the newly created pair
of nodes i± by a massless “cable”, i.e. a truss element ad hoc introduced in the model
in correspondence of each pair of separating nodes. In the current implementation, the
cohesive cables are attached to nodes lying in the middle surface of the shell. Contact of
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Figure 1: Cohesive forces between detaching elements.

(a) (b)

Figure 2: Cutting of a rubber sheet: (a) test setup and (b) experimental results.

cable elements (which are geometric entities) against the cutting blade is checked. When
a point of a cable element is detected to be in contact with the blade, the cable element is
subdivided into two elements by introducing a joint in correspondence of the contact point
(see Fig. 1). The force transmitted by the cables depends on their length (rather than on
the distance between opposite crack nodes as in standard cohesive elements) according to
the adopted cohesive law. When the current total cable length exceeds the limit value,
the cable is removed and no forces are anymore transmitted between the opposite nodes.

2.2 Model validation

In order to validate this new approach, the force-controlled cutting of a pre-tensioned
rubber sheet is simulated. The test setup and the recorded [6] cutting force at unstable
propagation onset are shown in Fig. 2 for varying pre-tensioning and rubber sheet width.
The test geometry and mesh shown in Fig. 3a have been considered, with length L =
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(a) (b)

Figure 3: Cutting of a rubber sheet: (a) dimensions and mesh of the rubber sheet and
(b) cohesive law and blade shape.

40mm, width D = 32mm, thickness t = 0.1 mm, initial defect a = 5 mm, Young
modulus E = 1 MPa, Poisson ratio ν = 0.45 and the cohesive law shown in Fig. 3b.
Imposing a transverse tensile strain of 18%, a cutting force at unstable crack propagation
equal to about 150 N/m is expected to be obtained (see circled dot in Fig. 2b).

The numerical results of the explicit dynamics simulation are shown in Fig. 4. The
first plot shows the evolution of the vertical reaction force at the lateral clamps. The first
part of the plot concerns the initial pre-tensioning phase. The second part concerns the
cutting phase. The second plot shows the time evolution of the contact force at the blade
tip. As it can be observed, this oscillates about the experimentally measured value of
0.015 N, which confirms the good accuracy of the simulation.

3 SOLID-SHELL ELEMENTS

The MITC4 shell elements used in the previous example need four integration points
in the shell plane and at least two integration points along the thickness for a total of
eight integration points. The introduction of material non-linearities, requires a higher
number of Gauss points, leading to increasing computational costs.

Several types of 8-node solid-shell elements have been recently proposed in the liter-
ature. Among these, the SHB8PS element proposed by Abed-Meraim and Combescure
[9] has eight nodes, only one integration point in the plane and an arbitrary number of
integration points, with a minimum of two, distributed along the thickness direction and
it is based on the assumed strain stabilization proposed by Belytschko and Bindeman[8].
Combescure’s element is here reconsidered with some modifications aimed at improving its
computational effectiveness, especially in explicit dynamics analyses (see [9] for a detailed
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Figure 4: Cutting of a rubber sheet. Numerical results: vertical reaction force evolution
at lateral clamps (upper plot); evolution of contact force at cutter tip (lower plot).

SHB8PS element presentation).

3.1 SHB8PS element

SHB8PS is a hexahedral, 8-node, isoparametric element with three-linear interpolation.
It makes use of a set of nint integration points distributed along the ζ direction in the
local coordinate frame as shown in Fig. 5.

Figure 5: SHB8PS reference geometry, integration points location and nodal coordinates.

Indicating with di and xi the vectors of nodal displacements and coordinates for each
element, Belytschko and Bindeman have shown that the nodal displacements can be
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expressed as :

di = a01s+ a1ix1 + a2ix2 + a3ix3 + c1ih1 + c2ih2 + c3ih3 + c4ih4 (1)

where
sT = (1, 1, 1, 1, 1, 1, 1, 1)
hT
1 = (1, 1,−1,−1,−1,−1, 1, 1)

hT
2 = (1,−1,−1, 1,−1, 1, 1,−1)

hT
3 = (1,−1, 1,−1, 1,−1, 1,−1)

hT
4 = (−1, 1,−1, 1, 1,−1, 1,−1)

aji = bT
j · di, cαi = γT

α · di, i, j = 1 . . . 3

and γα and the mean form bi of Flanagan and Belytschko [10] are defined as (N being
the shape functions):

γα =
1

8

[

hα −
3

∑

j=1

(hT
α · xj)bj

]

, α = 1, . . . , 4

bi =
1
Ωe

∫

Ωe
N,i(ξ, η, ζ)dΩ, i = 1, 2, 3

(2)

Defining the four functions

h1 = ηζ, h2 = ζξ, h3 = ξη, h4 = ξηζ (3)

this allows to express the discrete gradient operator relating the strain field to the nodal
displacements as

∇(u) = B · d with

B =


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(4)

For a set of nint integration points (I = 1, . . . , nint), with coordinates ξI = ηI = 0, ζ �= 0,
the derivatives hα,i (α = 3, 4; i = 1, 2, 3) vanish, so that (4) reduces to a matrix B12 where
the sum on the repeated index α only goes from 1 to 2, leading to six hourglass modes in
the element stiffness matrix Ke:

Ke =

∫

Ωe

BT ·C ·BdΩ =

nint
∑

I=1

ω(ζI)J(ζI)B
T (ζI) ·C ·B(ζI) (5)

where ω(ζI) are Gauss’ weights, J(ζI) is the geometry Jacobian, and C the matrix of
elastic moduli.
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The stabilization of the hourglass modes is obtained assuming a modified compatibility
operator B̄:

B̄ = B12 +B34 (6)

whereB34 is a stabilization term, computed in a co-rotational system, having the following
expression [9]:

B34 =


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(7)

The elastic stiffness matrix is then given by the sum of the following contributions:

K12 =

∫

Ωe

BT
12 ·C ·B12dΩ =

nint
∑

I=1

ω(ζI)J(ζI)B
T
12(ζI) ·C ·B12(ζI) (8)

KSTAB =

∫

Ωe

BT
12 ·C ·B34dΩ +

∫

Ωe

BT
34 ·C ·B12dΩ +

∫

Ωe

BT
34 ·C ·B34dΩ (9)

The stabilization terms are evaluated in a co-rotational system allowing to compute the
integrals analytically, in this way improving accuracy and saving computing time.

3.2 Enhanced Assumed Strain EAS

Solid-shell elements are well known to be affected by volumetric locking and by the so-
called Poisson thickness locking. Volumetric locking occurs when the material approaches
incompressibility. Poisson thickness locking reveals itself in out-of-plane bending, e.g.
about the η-axis (see Fig. 6). The analytical solution of the problem leads to a transverse
normal strain εζζ , which is constant within the shell plane but linear in the thickness
direction ζ, while the assumed displacement model leads to εζζ constant through the
thickness. To avoid Poisson thickness locking and volumetric locking, the strain terms
εξξ, εηη and εζζ must be modeled through the thickness by polynomials of the same order.
This can be achieved by enhancing the strain component εζζ in ζ direction by use of the
EAS concept, as proposed e.g. in [11] and [12]. The covariant strain enhancement is
expressed as

εenh = BenhWenh (10)

where
Benh = [0, 0, ζ, 0, 0, 0]T (11)
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and Wenh is the enhancement degree-of-freedom of the considered element, which enriches
εζζ linearly in ζ. The computationally inexpensive EAS approach avoids to make use of
the modified plane-stress elastic tensor, used to this purpose in [9], which requires the
definition of an additional material co-rotational reference frame.

Figure 6: Bending about η-axis.

Application of the enhanced SHB8PS element to the cantilever plate strip under a tip
load proposed in [13] (see Fig. 7) produces the results shown in Fig. 8.

(a) (b)

Figure 7: Cantilever plate strip: (a) geometry and load; (b) mesh.

Table 1: Plate strip parameters

L B T E
10 mm 1 mm 0.1 mm 107 N/mm2

The plate strip is characterized by the geometric and material parameters reported in
Table 1. The small-displacements out-of-plane bending behavior in the near incompress-
ible limit is studied. The mesh consists of 16 regular elements while a total tip force of
40 N is applied in 10 time steps. Poisson’s ratio is varied between ν = 0 and ν = 0.499,
and load vs. displacement diagrams are shown in Figs. 8. It can be noted that while
the SHB8PS element without any correction of the behavior in the thickness direction is

8
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Figure 8: Cantilever plate strip under tip load: (a) SHB8PS element without EAS en-
hancement; (b) with EAS enhancement.

sensitive to Poisson’s ratio variations (Fig. 8a), complete insensitivity of the response is
shown by its enhanced version (Fig. 8b). A similar insensitivity is also obtained using the
modified plane-stress elastic tensor as proposed in [9], though at the cost of computing a
new co-rotational frame at each increment.

3.3 Element modification for explicit dynamics

For application to problems of the type considered in section 2, with contact and crack
propagation, explicit dynamics approaches are usually preferred. However, the incorpo-
ration of solid-shell elements into an explicit code leads to very small time increments
due to the element small thickness compared to the in-plane dimensions. Time-step sizes
of the same order of magnitude of those required by normal shell elements, such as the
MITC4 used in section 2, can be obtained by means of a variable transformation, where
new translational and rotational degrees of freedom in the element middle plane are in-
troduced according to the following definition:

ui =
ua + ub

2
i = 1, . . . , 4 a = 1, 2, 3, 4 b = 5, 6, 7, 8 (12)

φi =
ub − ua

2
i = 1, . . . , 4 a = 1, 2, 3, 4 b = 5, 6, 7, 8 (13)

(14)

where a = 1, 2, 3, 4 and b = 5, 6, 7, 8 indicate nodes belonging to the lower and upper
element faces, respectively, as depicted in Fig. 5. In this way it is possible to introduce
a selective scaling of masses corresponding to the φi degrees of freedom, as is usually
done in shell elements [14]. The effectiveness of this provision is studied by simulating
the cantilever beam described in Fig. 9, impulsively loaded by a uniformly distributed
transverse load. The beam has length L = 10 mm, a rectangular cross section of width
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(a) (b)

Figure 9: Impulsively loaded cantilever beam: (a) Finite element undeformed/deformed
mesh and (b) applied load.

B = 2.5 mm and thickness T = 0.0074 mm, Young modulus E = 1768 MPa, Poisson
ratio ν = 0.3, density ρ = 3 · 10−9 T/mm3. The problem has been analyzed using three
different types of elements: MITC4, SHB8PS and improved SHB8PS. The stable time
increments obtained in the three cases according to Gerschgorin’s theorem are reported
in Table 2. It can be seen that the SHB8PS with transformed degrees of freedom leads to
a stable time step of the same order of the MITC4, two orders of magnitude smaller than
the standard SHB8PS. The displacement evolution of the beam tip, obtained by MITC4
and improved SHB8PS elements, is shown in Fig. 10. An almost complete agreement
between the two analyses can be observed.

Table 2: Stable time increments

Element type Time increment
MITC4 5.17 · 10−7 s
SHB8PS 7.26 · 10−9 s

Improved SHB8PS 5.95 · 10−7 s

4 CONCLUSIONS

The development of an effective numerical tool for the simulation of the cutting process
of thin membranes has been discussed. It has been shown how the cutting of a rubber pre-
tensioned membrane can be accurately simulated by using “directional” cohesive elements
in conjunction with standard shell elements. In a more general case, inelastic dissipation
due to plasticity and delamination takes place in the cutting region of thin laminates. The
description of these nonlinear phenomena is more conveniently achieved by using solid-
shell elements. Reference has been made to the SHB8PS element [9], recently proposed
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Figure 10: Impulsively loaded cantilever beam: tip displacements evolution obtained by
MITC4 and SHB8PS elements.

in the literature. Two modifications of the element have been proposed to improve its
performance: the adoption of an enhanced strain approach in the thickness direction, to
avoid volume locking and Poisson’s thickness locking, and a linear variable transformation,
to allow for mass scaling and consequent increase of the time-step size in explicit dynamics.
The application of this modified solid-shell element to cutting problems is currently in
progress.
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