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Abstract. This contribution deals with a comparative investigation of two 3D mate-

rial models for concrete. The models under consideration are a modified version of the

Extended Leon model and the damage-plasticity model proposed by Grassl and Jirásek.

The results of extensive comparisons of the model response with test data motivated some

modifications of both concrete models, in particular, regarding the evolution of damage.

1 INTRODUCTION

Several 3D constitutive models for concrete were proposed in the last decade. E.g.,

Pivonka [2] developed a modified version of the Extended Leon model [1], which is formu-

lated within the framework of plasticity theory, and applied it to the numerical simulation

of pull-out tests of anchor bolts. Schütt [3] proposed a non-smooth multi-surface damage-

plasticity model and employed it for the analysis of composite structures. Huber [4]

compared a 3D multi-surface plasticity model for concrete with a 3D gradient enhanced

damage model. Recently, a 3D concrete model, based on a combination of plasticity

theory and damage theory, was proposed by Grassl and Jirásek [5].

This contribution focuses on a comparative investigation of the modified Extended

Leon model [2] and the damage-plasticity model [5]. To this end, the models are im-

plemented into the commercial FE-analysis program system ABAQUS [6] by means of a

return mapping algorithm, which is enhanced by substepping and error-control in order

to improve robustness and accuracy of the stress update.

The results of extensive validation of the model response by material tests motivated

some modifications of both concrete models, in particular, regarding the evolution of
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damage. Furthermore, the numerical simulation of a well-known 3D benchmark test

demonstrates the capabilities of an enhanced version of the damage-plasticity model for

the analysis of concrete structures.

2 3D CONSTITUTIVE MODELS FOR CONCRETE

2.1 Modified Extended Leon Model

The Extended Leon model is a single-surface plasticity model with nonlinear hardening

and softening. It was developed by Etse [1] and modified later by Pivonka [2]. The latter

version is described and employed in this paper.

The yield function of the Extended Leon (EL) model

fEL(σm, ρ, θ; αh, αs) =

[
1 − qh(αh)

f 2
cu

(
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h(αh) qs(αs) (1)

is formulated in terms of the hydrostatic stress σm, the deviatoric radius ρ, the Lode

angle θ, the strain-like internal hardening variable αh and the strain-like internal softening

variable αs; fcu denotes the uniaxial compressive strength of concrete and r(θ) a deviatoric

shape function, with the limiting cases of a triangular and circular yield function in the

deviatoric plane.

The plastic strain rate is described by a flow rule, which is associated in the deviatoric

plane and non-associated in the meridional plane.

Hardening behavior of the Extended Leon model is described by the normalized strength

parameter

qh(αh) =

{
qh0

+ (1 − qh0
)
√

αh (2 − αh) if αh < 1

1 if αh ≥ 1
, (2)

where qh0
= fcy/fcu denotes the initial value of qh, which represents the ratio of the elastic

limit stress under compressive loading, fcy, and the uniaxial compressive strength.

The evolution law of the strain-like internal hardening variable is given as

α̇h(σ
m, ρ, θ; αh, αs) =

‖ε̇p‖
xh(σm)

= γ̇ hh(σ
m, ρ, θ; αh, αs) (3)

with xh(σ
m) denoting the hardening ductility parameter, which increases with increasing

hydrostatic pressure. Hence, the rate of the internal hardening variable αh is decreasing

for increasing values of the confining pressure.
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Softening behaviour is controlled by the decohesion parameter

qs(αs) =

{
1 if αh < 1

e−(αs/αu) if αh ≥ 1
, (4)

which is driven by the strain-like internal softening variable αs; αu = GI
f/(lchar ftu) is

employed for regularizing the softening behavior with GI
f as the specific mode I fracture

energy of concrete, lchar as the characteristic length of the finite element and ftu as the

uniaxial tensile strength.

The evolution law of the strain-like internal softening variable αs is defined as

α̇s(σ
m, ρ, θ; αh, αs) =

‖〈ε̇p〉‖
xs(σm)

= γ̇hs(σ
m, ρ, θ; αh, αs) , (5)

with xs(σ
m) denoting the softening ductility parameter depending on the maximum value

of the mean stress.

The friction parameter ms in (1) is defined as

ms(αs) =

{
m0 if αh < 1 ,

mr − (mr − m0) qs(αs) if αh ≥ 1
, (6)

where m0 and mr are the initial and the residual friction parameter, respectively.

2.2 Damage-plasticity model by Grassl and Jirásek

The damage-plasticity model by Grassl and Jirásek [5] is a single-surface model with

nonlinear isotropic hardening, formulated within the framework of plasticity theory, and

nonlinear isotropic softening, described on the basis of damage theory. The yield function

of the damage-plasticity (DP) model is given in terms of the effective mean stress σ̄m,

the effective deviatoric radius ρ̄ and the effective Lode angle θ̄ and the strain-like internal

hardening variable αp:

fp,DP (σ̄m, ρ̄, θ̄; αp) =

[
1 − qh(αp)

f2
cu
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6

)2
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√
3

2

ρ̄
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]2

+

+
m0 q2

h(αp)

fcu

(
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ρ̄√
6
r(θ̄)

)
− q2

h(αp) . (7)

The shape of the yield function in the deviatoric plane is controlled by a deviatoric shape

function r(θ̄); m0 denotes a friction parameter. The plastic strain rate is described by a

flow rule, which is non-associated in both the deviatoric and the meridional plane.
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Figure 1: Yield surface of the damage-plasticity model by Grassl and Jirásek, plotted in the principal
stress space for five different states during hardening

Hardening is described by the normalized strength parameter

qh(αp) =

{
qh0

+ (1 − qh0
) αp

(
α2

p − 3αp + 3
)

if αp < 1

1 if αp ≥ 1
. (8)

The evolution of the strain-like internal hardening variable is given as

α̇p(σ̄
m, ρ̄, θ̄; αp) =

‖ε̇p‖
xh(σ̄m)

4 cos2(θ̄) = γ̇hp(σ̄
m, ρ̄, θ̄; αp) (9)

with the hardening ductility parameter xh(σ̄
m), defined in a different manner from the

Extended Leon model (cf. [5]). The yield surface (7) in the principal stress space is shown

for five different states during hardening in Fig. 1.

Softening material behavior of the damage-plasticity model is described by an isotropic

damage law. The damage loading function is formulated in the strain-space as

fd,DP (ε, εp; αd) = ε̃(ε, εp) − αd , (10)

where ε̃ represents the equivalent strain and αd the strain-like internal softening variable.

Since the original version of the evolution law of the damage variable produces sharp

bends of compressive stress-strain curves at the transition from hardening to softening, it

is replaced in the present work by

ω(σm
d ; αd) = 1 − X(σm

d )
1(

1 +
αd

εf,t

)2 − [1 − X(σm
d )] e−(αd/εf,c)

2

(11)
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with εf,t and εf,c controlling the slope of the softening curve and

X(σm
d ) =





0 if σm
d ≤ −fcu

3
3σm

d

fcu
+ 1 if − fcu

3
< σm

d < 0

1 if σm
d ≥ 0

(12)

determining the weight of the second and third term in (11) on the damage variable.

Since σm
d is equal to the effective mean stress at the onset of softening, X is a constant

parameter. For tensile loading with σm
d ≥ 0 the shape of the softening curve is controlled

only by the hyperbolic function which results in a steeper initial descent of the softening

envelope. In contrast, for compressive loading with σm
d ≤ −fcu

3
the shape of the softening

curve is controlled only by the quadratic exponential function. Thus, the sharp bend of

stress-strain curves at the transition from hardening to softening, produced by the original

damage law, is avoided. For −fcu

3
< σm

d < 0 multi-axial combined tension-compression

loading is controlled by a combination of both functions.

The rate of the strain-like internal softening variable is given as

α̇d =




0 if αp < 1

ε̇p,vol

xs(ε̇p,vol)
if αp ≥ 1

, (13)

where ε̇p,vol = ε̇p
ij δij denotes the volumetric plastic strain rate and the softening ductility

parameter xs(ε̇
p,vol) controls the evolution of the strain-like internal softening variable.

3 STRESS UPDATE ALGORITHM

For both concrete models the implicit backward Euler method is employed for inte-

grating the constitutive rate equations. The resulting nonlinear system of equations is

solved at each integration point for the stresses, the internal variables and the consistency

parameters by means of Newton’s method. The consistent (damage-)elasto-plastic tan-

gent moduli are employed for achieving a quadratic rate of asymptotic convergence at the

structural level.

In order to increase the robustness of the stress update for larger strain increments

the return mapping algorithm is enhanced by a substepping method proposed by Pérez-

Foguet et al. [7]. It is characterized by subdividing the total strain increment of the

time step under consideration into m subincrements and performing the return mapping

algorithm consecutively for all subincrements of the total strain increment by analogy

to the well known single step method. Fig. 2 shows a comparison of the robustness of

the single-step return mapping algorithm with the subincremented version of the return

mapping algorithm for a set of trial stresses consisting of a grid of 51× 51 equally spaced

points. The grid is defined by σtrial
m = [−80, 20] N/mm2, ρtrial = [0, 40] N/mm2 and
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Figure 2: Iso-error maps for the stress update by the single-step Newton method (left) and the Newton
method with subincrementation (right); white dots indicate points with failure of convergence

θtrial = π/3. For all stress points of this grid the initial values of the stresses, internal

variables and damage variables are chosen as zero.

Fig. 2 clearly shows that in contrast to the single-step stress update, the stress up-

date with subincrementation converges for all investigated trial stresses. In the hardening

region the relative errors of the stresses are increasing with increasing distance from the

boundary of the elastic domain, indicated in Fig. 2 by the black curve. In the softening do-

main the relative errors are larger than in the hardening domain because the nonlinearity

of the underlying problem in tension is more pronounced than in compression.

In order to avoid larger integration errors as shown in Figure 2 (right), the size of

the initial subincrement is determined according to a user-defined error threshold value

for the stresses. To this end, for the time step under consideration two solutions for the

stresses are computed based on different subincrement sizes. If the relative error of the

stresses is smaller than the user-defined threshold value, then the solution is accepted,

otherwise the number of subincrements is increased.

The single step integration and the subincrement integration mainly differ by the com-

putation of the consistent tangent moduli, since the latter method requires additional

terms resulting from the variation of the stresses and internal variables of the previous

subincrement [7, 8] and, in addition, the consistent tangent moduli for the actual subin-

crement depend on those of the previous subincrement. Hence, computing the consistent

elasto-plastic tangent moduli for the substepping method is more expensive than com-

puting those for the single-step method.
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4 VALIDATION AND APPLICATION

The modified Extended Leon model by Pivonka and the damage-plasticity model by

Grassl and Jirásek were validated by experimental data of several test series on con-

crete specimens subjected to different stress paths, which are available in the literature.

The investigation is documented in [8]. This validation confirmed the superiority of the

damage-plasticity model. In the following, exemplarily, only a comparison of the results

of triaxial compression tests with different levels of confinement, described in [9], with the

respective model response is presented.

In a further validation step the modified damage-plasticity concrete model is applied

to the numerical simulation of well-known 3D benchmark tests, including cylindrical con-

crete specimens subjected to torsional loading, cyclic loading tests of RC squat bridge

columns and tests on beam-shaped concrete specimens, subjected to combined bending

and torsional loading. In the following, only the latter benchmark test is addressed briefly.

The analysis of all benchmark tests is documented in [8].

4.1 Validation by material tests

The material parameters of the concrete specimens, tested by Imran and Pantazopoulou

[9], are given in Table 1. In this table GI
f is estimated according to [10] from the maximum

aggregate size of dmax = 10 mm.

Table 1: Material parameters for the triaxial compression tests according to [9]

parameter (mean) value

Ec 30000.00 N/mm2

νc 0.15

fcu 47.40 N/mm2

ftu 4.74 N/mm2

GI
f 0.0780 Nmm/mm2

Fig. 3 shows a comparison of experimental data and the computed response for triaxial

compression tests with different levels of confinement. The peak stresses at different levels

of confinement are predicted well by both models. However, the modified Extended Leon

model (ELM) underestimates both, the axial and lateral strain, in particular, for higher

levels of confinement.

In contrast to the modified Extended Leon model, the damage-plasticity model (DPM)

by Grassl and Jirásek yields good agreement of measured and predicted axial and lateral

strains for different levels of confinement. A further slight improvement is achieved by

the enhanced softening law (11), as the artificial sharp bends are eliminated (DPM-enh.).
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Figure 3: Experimental and numerical results of triaxial compression tests according to [9]

4.2 Benchmark test: the PCT-3D test

In the PCT-3D tests, conducted at the University of Innsbruck, prismatic concrete

specimens with dimensions of 180 × 180 × 600 mm were subjected to combined bending

and torsional loading. The test layout is described in detail in [11]. Fig. 4 shows the

FE-mesh of the concrete specimen, the support rollers and the load application roller.

The concrete specimen and the steel components are discretized by altogether 69372 3D

isoparametric 20-node elements with reduced numerical integration.

A notch of isosceles triangular shape of 60 mm length in both vertical and horizontal

direction with a notch width of 5 mm was provided at midspan of the specimen at the

tensile faces for triggering crack initiation. At an offset of 30 mm from the front face

of the specimen a concentrated vertical load was applied to the load application roller,

which resulted in combined bending and torsional loading. In the numerical simulation

after application of the dead load the concentrated load is applied by prescribing a vertical

displacement at a single node of the load application roller.

The material parameters are summarized in Table 2. The uniaxial tensile strength and

the specific mode I fracture energy of concrete are estimated according to [10].

The scatter of the experimental results regarding the load-crack mouth opening curve

and the respective mean value as well as the numerical results for the PCT-3D test are
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Figure 4: Finite element mesh of the PCT-3D test

Table 2: Material parameters for the numerical simulation of the PCT-3D test

concrete steel

param. mean value stand. dev. param. mean value

ρc 2449 kg/m3 ρs 7850 kg/m3

Ec 37292 N/mm2 ± 2055 Es 210000 N/mm2

νc 0.19 ± 0.014 νs 0.30

fcu 40.1 N/mm2 ± 0.83

shown in Fig. 5. In the numerical simulation the onset of cracking is predicted at the center

of the base of the triangular notch. With increasing vertical displacement of the point

of load application, the crack starts propagating along the base of the triangular notch

and subsequently along the top face towards the rear face. At peak load the predicted

crack extends from the notch to the rear side of the specimen. In contrast to the front

face, at the top face the crack propagates in one row of elements (see Fig. 6). However,

in the experiments a slightly curved crack was observed at the top face. Hence, the

present model shows some mesh induced bias as a consequence of the employed smeared

crack approach. Nevertheless, the overall structural behavior is predicted very well by the

present model.

5 CONCLUSIONS

The comparison of the response of two constitutive models for concrete, consisting of a

modified version of the Extended Leon model by Pivonka and the damage-plasticity model

by Grassl and Jirásek, conducted for several sets of experimental material data, clearly

revealed the superiority of the damage-plasticity model. Both models were implemented
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Figure 5: Measured and computed load-crack mouth opening displacement curves for the PCT-3D test

Figure 6: Predicted crack pattern at failure of the PCT-3D test (SDV 9 ≡ ω, deformations 50-fold
magnified)
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into the commercial finite element program ABAQUS, employing the return mapping

algorithm, enhanced by substepping and error control, for the stress update. Several

benchmark tests conducted on concrete specimens with loadings producing pronounced

3D stress states were analyzed to thoroughly check both the model response and the

robustness of the stress update algorithm. The benchmark tests confirmed the capabilities

of the enhanced version of the damage-plasticity model for solving large-scale problems in

Civil Engineering. An example for the latter is the numerical simulation of an ultimate

load test on a 3D model of a concrete arch dam on a scale of 1:200. It allowed a comparison

of the predicted response with test data. The finite element mesh, shown in Fig. 7,

comprises both the arch dam and the adjacent rock foundation. It consists of about

267 000 3D linear finite elements with altogether 914 000 degrees of freedom. The test

setup, the numerical model and the comparison of the predicted response with the test

data are described in detail in [8].

Figure 7: Finite element mesh of the arch dam model
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