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Abstract. The aim of this paper is to describe a method for identifying micro material
parameters using only macroscopic experimental data. The FE2 method is used to model
the behavior of the complex materials with heterogeneous micro-structure. The resulting
least squares problem, with the difference of the simulated and the measured macroscopic
data in the objective function, is minimized using gradient-based optimization algorithms
with respect to the microscopic material parameters. The gradient information is derived
analytically within the discretized scheme.

1 INTRODUCTION

Advanced materials are characterized by their heterogeneity and diverse functionality
at multiple scales. In order to use and employ these new materials and exploit their whole
potential a good understanding of the functioning and mechanism is necessary. Mechan-
ical modeling of heterogeneous materials is an essential part of this, but still presents
a challenge for computational mechanics. Computational homogenization is designed to
handle heterogeneity at different scales.

The concept of (computational) homogenization requires separated scales, that means
macro phenomena appear on a much larger length scale than the micro scale and its
phenomena. Thus the material behavior of each macroscopic point is determined by an
underlying microscopic domain. It is assumed that there exists a subdomain of finite vol-
ume on the micro scale, which is representative for the mechanical behavior of the entire
microscopic domain, thus often called representative volume element (RVE). In contrast
to the macro scale, the material behavior on the micro scale is determined directly by a
constitutive law and the micro material parameters. The mechanical equilibrium equa-
tions at macro and micro scale are further complemented by a scale linking condition,
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often called macro homogeneity condition. An appropriate choice of the boundary con-
dition on the microscopic scale leads to the formulation for the macroscopic stresses and
strains as the volumetric means (or more general, some adequate boundary integrals) of
their microscopic counterparts.

Since the micro material parameters are an important ingredient for this two-scale
simulation, knowledge of the parameters and its acquisition is quite an important topic.
Classical parameter identification and its macroscopic experiments are well established
and one might want to utilize this experience, when given the task to identify microscopic
material parameters. Ultimately, the task at hand is to identify microscopic material
parameters using only macroscopic experiments.

The identification of micro parameters in a two-scale homogenization problem is also
investigated in [1, 2, 3], using numerical sensitivities or gradient-free optimization tech-
niques together with miscellaneous homogenization techniques. This paper couples clas-
sical parameter identification [4] and computational homogenization, more precisely the
FE2 method [5]. Gradient-based optimization is used to solve the resulting two-scale
parameter identification problem.

In a previous work [6] a two-scale parameter identification using analytical gradient-
information was investigated for elasticity, which yields simplifications and less computa-
tional costs compared to the present extension to plasticity. The main focus of this work
is on the derivation of the gradient information in a two-scale FE scheme.

The paper is structured as follows: In section 2 a short overview of the direct problem,
the FE2 method and a fix of notation is given. In section 3 the two-scale parameter
identification problem is defined and the gradient information derived. An example in
section 4 illustrates the functionality of the method. The paper is concluded in the last
section with a discussion and an outlook on further investigation.

2 DIRECT PROBLEM

For the equilibrium at the macro domain Ω̄ we have a standard quasi-static problem (1)
with body forces b̄ and stresses σ̄ and adequate boundary conditions. Herein macroscopic
quantities are marked by an overbar. At the micro scale neglecting body forces leads to
the equilibrium equation (2) in the micro domain Ω(X̄) at the macroscopic point X̄. The
continuous formulation is complemented by the macro homogeneity condition (4). The
micro boundary condition on e.g. the displacements u (3) links the macro strain ε̄ to
the microscopic scale. The up-scaling of the micro stresses leads to the definition of the
macro stresses (5) as the boundary integral of the dyadic product of the reference point
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and the tractions t at the micro scale. In summary:

∇ · σ̄ = b̄ in Ω̄ with ū|∂Ω̄D
= ūp, (σ̄ · n̄)|∂Ω̄N

= t̄p (1)

∇ · σ = 0 in Ω(X̄) with appropriate b.c., e.g. (2)

u = X · ε̄ on ∂Ω(X̄) (down-scaling) (3)

(δε̄ : σ̄)(X̄) =

∫

Ω(X̄)

δε : σ dV (4)

σ̄(X̄) =

∫

∂Ω(X̄)

X⊗ t dA (up-scaling) (5)

The material behavior on the micro scale is modeled by the common von Mises plasticity
for small strains with linear isotropic hardening, whereas the material behavior on the
macro scale is solely determined by the micro scale and has no constitutive law of its
own. The micro material parameters are compression modulus K and shear modulus µ
for the elastic part and yield stress σY and hardening modulus h for the plastic part.
For the convenience in the subsequent analysis the parameters are summarized in vector
α = (K,µ, σY , h).

Application of the standard FE2 method [5] results in the vectorial residuals R̄(ū(α),α)
and R(u(ε̄(α),α),α) on the macro and micro scale, respectively. The residuals vanish
in equilibrium (6), (7). The discrete down-scaling (8) is now defined at each boundary
node j of the RVE. The discrete macroscopic stresses can be computed as the sum over
the boundary nodes of the discrete quantities (9).

After application of the FE2 method, the following discrete equations for the direct
problem are important for the parameter identification:

R̄(ū(α),α) = 0 (6)

R(u(ε̄(α),α),α) = 0 (7)

uj = Xj · ε̄(α) (8)

σ̄ =
∑

j

Xj ⊗ fj (9)

A short remark on the microscopic boundary conditions: There are other appropriate
choices besides the ’linear displacement’ boundary condition given here. The ’periodic’
(periodic fluctuations and anti-periodic tractions) boundary condition is often chosen.
However, the resulting discretized problem can be transformed in such a way that the
structure is the same as for the system resulting from the ’linear displacement’ boundary
condition. After the transformation of the system to contain only the independent nodes
one has prescribed displacements uJ = XJ · ε̄ at the nodes J spanning the RVE, while
the forces on the remaining nodes vanish.
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3 INVERSE PROBLEM

3.1 Problem formulation

The objective function measures the difference between simulated and measured dis-
placements ū and forces f̄ of the macro scale. Both contributions have weighting factors,
wu and wf , to compensate for dimension differences.

f = wu

∑
i

‖ūi(α)− ūmeasured
i ‖2 + wf

∑
j

‖f̄j(α)− f̄measured
j ‖2 (10)

Displacements and forces can be measured at different points, which is indicated by the
different indices i and j. The goal is to identify the microscopic material parameters,
which minimize the difference for the given data. Then the task at hand can be described
as a minimization problem under certain constraints, namely that the material parameters
are feasible and the mechanical equilibria on micro and macro scale are satisfied.

min f(α) s.t. α is feasible and ū,u in equilibrium (11)

The model with the identified parameters can be validated if the objective function is suf-
ficiently small also for a separate data set of measured displacements and forces resulting
from a different experiment.

3.2 Gradient information

In order to employ gradient-based optimization techniques to minimize the objective
function, the gradient information is required. Due to better convergence behavior and
lower computational costs the analytical derivation is preferred over a numerical calcula-
tion, e.g. using finite differences. The necessary gradient information is calculated as a
total derivative of the objective function with respect to the parameter vector α, denoted
by d

dα
.

df

dα
= wu

∑
i

(ūi(α)− ūmeasured
i ) · dūi(α)

dα
+ wf

∑
j

(f̄j(α)− f̄measured
j ) · df̄j(α)

dα
(12)

A look at the macroscopic residual R̄(ū(α),α) = R̄int(ū(α),α)−R̄ext(α) = 0, consisting
of an internal part R̄int and an external part R̄ext, is necessary in order to determine
the derivatives of the simulated quantities. The force term fj in the objective function
incorporates the external forces contained in R̄ext in an way appropriate to the experiments
and available measurements. The degrees of freedom (DOFs) of the macroscopic residual
are partitioned into prescribed displacement DOFs (p) and remaining DOFs (r). Here the
remaining DOFs contain DOFs at internal nodes, where the body forces are prescribed
and DOFs at the boundary, where tractions are prescribed. The vectorial residual at
the macro scale is differentiated w.r.t. the material parameters, the partial derivatives
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are denoted as ∂
∂ū

and ∂
∂α

, respectively. The assumption, that the prescribed terms are

independent of the material parameters, i.e. dūp

dα
= 0, dR̄

ext
r

dα
= 0, finally leads to

0 =
∂R̄int

p

∂ūr

· dūr

dα
+

∂R̄int
p

∂α
−

dR̄ext
p

dα
(13)

0 =
∂R̄int

r

∂ūr

· dūr

dα
+

∂R̄int
r

∂α
(14)

With the assumption that K̄rr := ∂R̄int
r

∂ūr
, a part of the stiffness matrix of the direct

problem, is regular, we can calculate the derivative of the displacements w.r.t. the material
parameters:

dūp

dα
= 0,

dūr

dα
= −K̄−1

rr · ∂R̄
int
r

∂α
(15)

Furthermore, one can calculate the total derivative of the macroscopic external forces

from (13) using K̄pr :=
∂R̄int

p

∂ūr
and equation (15) as

dR̄ext
r

dα
= 0,

dR̄ext
p

dα
=

∂R̄int
p

∂α
− K̄pr · K̄−1

rr · ∂R̄
int
r

∂α
(16)

Now it can be seen, that the determination of the derivatives is similar to solving the
linearized direct problem with an artificial load ∂R̄int

∂α
. In order to construct this arti-

ficial load vector, the partial derivative of the macroscopic stresses w.r.t. microscopic
parameters will be determined in the following. The element-wise contributions to the
internal residual consist of the derivatives of the macro shape functions, summarized in
the B-matrix B̄T

e (independent of material parameters) and the macro stresses σ̄(ε̄,α)|e

∂R̄int(ū,α)|e
∂α

=

∫

Ω̄e

B̄T
e · ∂σ̄(ε̄,α)|e

∂α
dV (17)

In the classical one scale parameter identification the derivative of the stresses can be
obtained by differentiating the constitutive law. However, the use of a two-scale modeling
scheme in the present work necessitates further calculations at this point. By definition
(9) we calculate the macro stresses as the sum of dyadic products of the reference position
and the reaction forces at boundary nodes and thus its derivative can be expressed as

∂σ̄(ε̄,α)

∂α
=

∑

j

Xj ⊗
∂fj(ε̄,α)

∂α
(18)

Clearly, it is necessary to calculate the derivatives at the micro scale. Starting once again
with the vectorial residual, but now for the microscopic problem, and its total derivative
w.r.t. the material parameters, we use the partitioning into prescribed displacement DOFs
and prescribed force DOFs. An illustration is given in figure 1.
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nodes with prescribed displacement

remaining nodes with prescribed forces

dependent node with prescribed disp.

dependent node with prescribed force

Figure 1: Schematic distribution of prescribed displacements/forces for ’linear displacement’ (left) and
’periodic’ (right) boundary conditions in 2D

On the micro scale the prescribed forces do not depend on the material parameters,
but the prescribed displacements do. The prescribed displacements on the micro scale
depend on the macro strain and therefore on the material parameters. Their derivative
follows from equation (8) as

dup

dα
= Xp ·

dε̄

dα
. (19)

Therefore, the total derivative of the micro residual can be expressed as

0 =
dR

dα
=

∂Rint

∂u
· du
dα

+
∂Rint

∂α
− dRext

dα
(20)

=

(
Kpp Kpr

Krp Krr

)
·
(
Xp · dε̄

dα
dur

dα

)
+

(
∂
∂α

Rint
p

∂
∂α

Rint
r

)
−

(
d
dα

Rext
p

0

)
. (21)

The derivative of the internal residual w.r.t. the displacement ∂Rint

∂u
is the stiffness matrix

K of the direct micro problem, containing the submatrices Kpp,Kpr,Krp,Krr related
to prescribed or remaining nodes, respectively. One can reformulate the second line
associated with the prescribed force DOFs in (21) by using the assumption that Krr is
regular and arrive at an expression for the total derivative of the displacements.

0 = Krp ·Xp ·
dε̄

dα
+Krr ·

dur

dα
+

∂Rint
r

∂α
(22)

⇒ dur

dα
= −K−1

rr ·
(
Krp ·Xp ·

dε̄

dα
+

∂Rint
r

∂α

)
(23)

Inserting this in the first line of (21) and reordering of the terms leads to

dRext
p

dα
= Kpp ·Xp ·

dε̄

dα
−Kpr ·K−1

rr ·
(
Krp ·Xp ·

dε̄

dα
+

∂Rint
r

∂α

)
+

∂Rint
p

∂α
(24)

=
(
Kpp −Kpr ·K−1

rr ·Krp

)
·Xp ·

dε̄

dα
−Kpr ·K−1

rr · ∂R
int
r

∂α
+

∂Rint
p

∂α
(25)

When we express
dRext

p

dα
by means of partial derivatives

dRext
p

dα
=

∂Rext
p

∂ε̄
· dε̄
dα

+
∂Rext

p

∂α
(26)
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we can identify by comparison of coefficients the following terms

∂Rext
p

∂ε̄
=

(
Kpp −Kpr ·K−1

rr ·Krp

)
·Xp (27)

∂Rext
p

∂α
=

∂Rint
p

∂α
−Kpr ·K−1

rr · ∂R
int
r

∂α
. (28)

The sum to calculate the macro stress is constructed over the boundary nodes, where

displacements are prescribed, i.e.
∂fj
∂α

=
(

∂Rext
p

∂α

)
j
. Therefore we only need (28) to con-

struct the partial derivative of the macro stresses. It remains to calculate the partial
derivative of the internal residual w.r.t. the material parameters. For this the internal
variables like plastic strain, back stress and hardening evolution are summarized in the
vector β. The inelastic material model is dealt with by using a recursive strategy to dif-
ferentiate w.r.t. the material parameters, described in detail in [4]. The key point of this
strategy is to view the stress and internal variables β as dependent on the current and
last load steps as well as the material parameters, i.e. σk = σk(εk, εk−1,βk,βk−1, α), and
βk = βk(εk, εk−1,βk−1, α), and differentiate accordingly. The partial derivatives needed
for parameter identification consider all dependencies but the strain of the current step,

i.e. ∂σk(εk,α)
∂α

and ∂βk(εk,α)
∂α

. The total derivatives from the last step are a vital ingredient
for this calculation and are constructed at the beginning of the current step using the
results from the last step. The total derivative of the microscopic displacements w.r.t.
the material parameters (23) can be constructed by means of the partial derivatives

∂ur(ε̄(α),α)

∂α
= −K−1

rr · ∂R
int
r

∂α
,

∂ur(ε̄(α),α)

∂ε̄
= −K−1

rr ·Krp ·Xp (29)

as dur

dα
= ∂ur

∂ε̄
· dε̄
dα

+ ∂ur

∂ε
, once dε̄

dα
is known. Thus, we have a classical parameter identi-

fication step in the integration points. The special dependency of the prescribed micro
displacements on the material parameters resulting from the two-scale homogenization
scheme influences only the global microscopic equations (23) and (25).

3.3 Algorithm

The iteration procedure to calculate micro material parameter derivatives of displace-
ments and forces at macroscopic scale and its steps are illustrated by the following scheme.

INIT (k = 0): Initialize the derivatives of the macro displacements dū0

dα
= 0. Fur-

thermore, initialize the derivatives of the micro displacements ∂u0

∂α
= 0, ∂u0

∂ε̄0
= 0, and of

the micro internal variables ∂β0

∂α
= 0, ∂β0

∂ε0
= 0 on all micro domains.

ITERATION

I) set k → k + 1, known: dūk−1

dα
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II) after macro equilibrium calculations, on each macro element for each integration
point:

A) construct dε̄k−1

dα
from dūk−1

dα

B) invoke subproblem on micro scale for each integration point

i) known: dε̄k−1

dα
, ∂u

k−1

∂α
, ∂u

k−1

∂ε̄k−1 ,
∂βk−1

∂α
, ∂β

k−1

∂εk−1

ii) construct duk−1

dα
= ∂uk−1

∂ε̄k−1 · dε̄k−1

dα
+ ∂uk−1

∂α

iii) after micro equilibrium calculations, on each micro element for each inte-
gration point:

a) construct dεk−1

dα
from duk−1

dα

b) construct dβk−1

dα
= ∂βk−1

∂εk−1 · dεk−1

dα
+ ∂βk−1

∂α

c) calculate ∂σk

∂α
, ∂β

k

∂εk
, ∂β

k

∂α
and save ∂βk

∂εk
, ∂β

k

∂α
for next step

d) calculate ∂Rint,k|e
∂α

iv) assemble global artificial load vector ∂Rint,k

∂α

v) determine ∂uk

∂α
, ∂u

k

∂ε̄k
(29), ∂fk

∂α
(28) and save ∂uk

∂α
, ∂u

k

∂ε̄k
for next step

vi) calculate ∂σ̄k

∂α
(18) from ∂fk

∂α
and give it back to macro scale

C) use ∂σ̄k

∂α
to calculate ∂R̄int,k|e

∂α
(17)

III) assemble global artificial load vector ∂R̄int,k

∂α

IV) solve for dūk

dα
(15), df̄k

dα
(16) and go to step I).

4 NUMERICAL EXAMPLE

In a first investigation on the functionality of the proposed multi-scale method for
parameter identification, reidentification for numerical examples is considered. Therefore
the numerical simulations are carried out for given material parameters on the micro
scale. Then the optimization algorithm is employed to solve the problem for several
starting points.

The example setting is illustrated in figure 2. The geometry at the macroscopic scale
is a punched disk, which is elongated in five steps to a total of 1.5 % elongation. The hole
has a radius of 1 mm and is centered at the quadratic disk with base length 4 mm and
thickness 1 mm. The microscopic domain consists of a cube with an ellipsoidal void. The
ellipsoid with radii a = 4.8, b = 3.2, c = 4.0 is placed at the center of a cube with base
length 10. ’Linear displacement’ boundary conditions were employed.

We assume a microscopic material law of von Mises plasticity with linear isotropic
hardening. For the reference solution the material parameters at the micro scale are
given as K = 73.53, µ = 28.20, σY = 0.30, h = 15.00 in GPa. The displacements at the
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Ω̄

X̄ Ω(X̄)

Figure 2: Example setting

front and back as well as the resultant force on top and bottom of the macro disk are the
entries in the objective function. The optimization algorithm lsqnonlin from MATLAB’s
Optimization Toolbox is used to minimize the optimization problem. Four starting points
are presented: 1 (80.47, 31.63, 0.27, 16.86), 2 (84.23, 34.07, 0.28, 18.50), 3 (69.26, 33.93,
0.23, 17.85), 4 (88.90, 30.61, 0.25, 15.94).

0 5 10 15 20
10−12

10−7

10−2

opt. iteration number

‖∇
f
(x
)‖

in
f

0 5 10 15 20

10−5

100

opt. iteration number

m
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.
re
l.
er
ro
r 1

2
3
4

Figure 3: Optimization characteristics

Results for each stating point are shown in figure 3. The plot on the left depicts
the infinity norm of the gradient of the objective function against the iterations of the
optimization. The decrease indicates the convergence to a stationary point. The plot
on the right depicts the maximal relative error of the identified material parameters with
respect to the reference parameters, also against the iterations of the optimization. In both
plots the y-axes use a logarithmic scale. As can be seen, the optimization convergences
and the identified micro parameters indeed coincide with the reference parameters.

5 CONCLUSIONS

In this paper the coupling of classical parameter identification and the FE2-method
is described. The gradient information of the objective function is derived leading from
macroscopic derivatives down to microscopic derivatives. A calculation scheme covering
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the main steps within the recursive approach at the two scales is shown. The example
illustrates that the correct material parameters of the micro scale, both elastic and plastic
ones, can be identified using only the macroscopic data. The optimization converges
successfully in a small to moderate number of steps. Thus we conclude that the two-scale
parameter identification can be solved using the proposed scheme.

However, more research into the stability and robustness of the method is required.
The method relies on observable nonlinear effects at the macro scale. If the plastic effects
on the micro structure appear only very locally confined, the effects on the macro scale
may become negligible small and therefore pose only insufficient data.

Furthermore, for improving the computational costs we will investigate the effects of
separate identification of elastic and plastic materials as well as the effects of the coupling
of 2-D macro to 3-D micro simulations.
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