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Abstract. In the present contribution, the thermodynamical and variational consis-
tency of cohesive zone models is critically analyzed. Starting from cohesive zone models
suitable for fully reversible deformation, the restrictions imposed by the second law of
thermodynamics are investigated. It will be shown that a naive modeling approach leads
to a contradiction of the dissipation inequality, even if a purely elastic response is desired.
Based on such findings, a thermomechanically consistent model including dissipative ef-
fects is proposed. This model is finally recast into a variationally consistent form. Within
the resulting model, all state variables are naturally and jointly computed by minimizing
an incrementally defined potential. The predictive capabilities of this model are demon-
strated by means of selected examples.

1 INTRODUCTION

Cohesive interface models dating back to the pioneering works [1, 2, 3] represent one of
the most powerful and versatile tools available for the analysis of material failure. Within
such models, the stress vector acting at a crack, usually given in terms of the crack width,
resist the separation of the bulk material across the crack.

While the number of different cohesive interface models in the literature is tremendous
(for an overview, see [4, 5] and references cited therein), interface laws specifically designed
for material failure at finite strains are still relatively rare – particularly for anisotropic
solids. However, geometrically nonlinear effects and anisotropic mechanical responses do
play an important role in many applications, e.g., in delamination processes, cf. [6].

Clearly, considering a geometrically exact description, the constraints imposed by the
fundamental principles of constitutive modeling such as those related to the principle
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of objectivity are not automatically fulfilled and thus, they require special attention.
However and as shown in [7], such principles are often not carefully considered. More
precisely, except for the framework presented in [7], the existing cohesive zone models
described with respect to the current, i.e., deformed, configuration which account for an
anisotropic mechanical response, do not fulfill all of the aforementioned physical principles.
Particularly, the second law of thermodynamics is not fulfilled. In the present paper, a
physically sound framework complying with these fundamentals of physics is discussed.

2 KINEMATICS

In what follows, a body Ω is considered to be separated during deformation into the
two parts Ω− and Ω+ by means of a crack or a shear band denoted as ∂sΩ, i.e., Ω =
Ω− ∪ Ω+ ∪ ∂sΩ. The orientation of ∂sΩ with respect to the undeformed configuration is
locally defined by its normal vector N . In line with standard notation, the normal vectors
are postulated as N− = −N+ = N .

The motion of the sub-bodies Ω− and Ω+ is described by the deformation mapping ϕ

which can be written as ϕ = id + u with id being the identity mapping and u being the
displacement field. Denoting u± as the displacement field in Ω+ and Ω− and Hs as the
Heaviside function of ∂sΩ, a displacement field u characterizing a crack or a shear band
is discontinuous and thus, it is of the type

u = u− +Hs

(
u+ − u−

)
. (1)

With Eq. (1), the displacement discontinuity �u� at ∂sΩ can be defined as

�u� = u+ − u− ∀X ∈ ∂sΩ. (2)

Since the deformation in Ω− and that in Ω+ are in general uncoupled, the normal vectors
n− and n+ on both sides of a crack are usually not parallel. For this reason, a fictitious
intermediate configuration x̄ between x− and x+ is frequently introduced as

x̄ = (1− α) x− + α x+, α ∈ [0; 1]. (3)

In most cases, α is set to α = 1/2.

3 CONSTITUTIVE MODELING

3.1 Elastic interfaces

In the most general case, the mechanical response of an elastic interface can be defined
by means of a Helmholtz energy of the type

Ψ = Ψ(�u� ,a1, . . .an). (4)

Here, ai are structural vectors describing the material’s symmetry. By introducing the
surface deformation gradient associated with the fictitious intermediate configuration of
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a deformed crack as

F̄ = (1− α) F − + α F +, α ∈ [0; 1], (5)

Eq. (4) can be re-written as

Ψ = Ψ(�u� ,F−,F+,A1, . . .An), with Ȧi = 0. (6)

Here, Ai are the vectors obtained by applying a pull-back to the spatial vectors ai. With
Eq. (6), the rate of the Helmholtz energy is computed as

Ψ̇ =
∂Ψ

∂ �u�
· ˙�u� +

∂Ψ

∂F̄
:
[

(1− α) Ḟ
−
+ α Ḟ

+
]

. (7)

It bears emphasis that the deformation gradients F ± and the displacement discontinuity
�u� are only weakly coupled (F+ = F−+GRAD �u�)). Hence, the stress power consists of
three terms in general. By introducing two stress tensors P± of first Piola-Kirchhoff type
being conjugate to the deformation gradients F ±, the stress power can thus be written
as

o
w= T · ˙�u� + P− : Ḟ

−
+ P+ : Ḟ

+
. (8)

Consequently, by applying the standard Coleman & Noll procedure, cf. [8], the constitu-
tive equations

T =
∂Ψ

∂ �u�
, P− =

∂Ψ

∂F − = (1− α)
∂Ψ

∂F̄
, P+ =

∂Ψ

∂F + = α
∂Ψ

∂F̄
(9)

are derived. As a result, two boundary-like laws are also implicitly defined by the
Helmholtz energy (6) in addition to the classical constitutive model (9)1, see also [9].
These additional tensors are required for thermomechanical consistency. This can be seen
more explicitly by ignoring them. In this case, the dissipation reads

D = T · �u̇� − Ψ̇ = −
∂Ψ

∂F̄
:
[

(1− α) Ḟ
−
+ α Ḟ

+
]

�= 0. (10)

Consequently, the dissipation would be non-vanishing, even in case of a hyperelastic-type
model. It bears emphasis that these additional stress tensors have not been considered in
any of the existing cohesive zone models.

3.2 Dissipative effects

In this section, the hyperelastic model described before is combined with damage me-
chanics. For that purpose, a Helmholtz energy of the type

Ψ =

n∑

i=1

n∏

j=1

(1− d
(j)
i ) Ψi(�u� ,F +,F−) (11)
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is adopted. Here, d
(j)
i ∈ [0; 1] are damage variables. The underlying idea corresponding to

Eq. (11) is that the energy is decomposed into that related to the different relevant failure
modes. One typical example is given by the decomposition of the energy into mode-I and
mode-II/III failure energies. Application of the Coleman & Noll procedure to Eq. (11)
yields the stress response

T =
n

∑

i=1

n
∏

j=1

(1− d
(j)
i )

∂Ψi

∂ �u�

P−=(1− α)

n
∑

i=1

n
∏

j=1

(1− d
(j)
i )

∂Ψi

∂F̄

P+= α
n

∑

i=1

n
∏

j=1

(1− d
(j)
i )

∂Ψi

∂F̄
,

(12)

together with the reduced dissipation inequality

D =
◦
w −Ψ̇ =

n
∑

i=1

n
∑

j=1

n
∏

k=1,k �=j

(1− d
(k)
i ) Ψi(�u� ,F+,F−) ḋ

(j)
i ≥ 0. (13)

Since the elastic energies Ψi are assumed to be non-negative and d
(j)
i ∈ [0; 1], the second

law of thermodynamics is automatically fulfilled, if d
(j)
i is monotonically increasing, i.e.,

ḋ
(j)
i ≥ 0. (14)

For fulfilling Ineq. (14) and also for accounting for cross-softening, the damage evolution
is defined as

d
(j)
i = d

(j)
i (κj). (15)

with
κi(tn+1) = max{κi(tn); Ψi(tn+1)}, κi(t = 0) = κi(0). (16)

Accordingly, κi is the history of the maximum stored elastic energy related to failure
mode i and thus, it is monotonically increasing. Hence, if d

(j)
i (κj) is also chosen as a

monotonically increasing function, the second law of thermodynamics is automatically
fulfilled. The term cross-softening results from Eq. (15) and means that mode-I crack
opening leads to a reduction in the shear stiffness as well.

4 VARIATIONAL CONSTITUTIVE UPDATES

Following [7], the variational principle

inf I∂sΩinc , I∂sΩinc :=

tn+1
∫

tn

E dt = Ψ(tn+1)−Ψ(tn) +

tn+1
∫

tn

D dt. (17)
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is equivalent to the proposed constitutive modeling framework. Thus, all state variables
follow naturally from energy minimization. More explicitly,

(κ1(tn+1), . . . , κn(tn+1)) = arg inf I∂sΩinc (�u�n+1 , F̄ n+1, κ1(tn+1), . . . , κn(tn+1))
∣

∣

u=const
.
(18)

Finally, the reduced potential as implicitly introduced by Eq. (18) defines the stress re-
sponse in the hyperelastic-like manner

T =
∂Ĩ∂sΩinc

∂ �u�
, P± =

∂Ĩ∂sΩinc

∂F ± , with Ĩ∂sΩinc = inf
{κi}

I∂sΩinc . (19)

With these notations, the total energy (work) of the considered structure is given by

Itotal = Itotal(ϕ) =

∫

Ω

ĨΩinc dV − Iext +

∫

∂sΩ

Ĩ∂sΩinc dA (20)

where the potential Iext is associated with external forces, while the potential ĨΩinc is the
bulk’s counterpart of the interface-related potential Ĩ∂sΩinc . As straightforward compu-
tations shows that a minimization of potential (20) results in the classical equilibrium
conditions in weak form, i.e.,

δItotal = 0 =

∫

Ω

P : δF dV −
∂Iext
∂ϕ

· δu+

∫

∂sΩ

[

T · δ �u� + P± : δF±
]

dA, ∀δu (21)

Here, Eqs. (12), together with P := ∂F Ĩ
Ω
inc, has been inserted. The term ∂Iext/∂ϕ is a

generalized force. Eq. (21) can be conveniently discretrized by finite elements. Further
details are omitted here. They can be found in [7] and will be discussed in the respective
presentation.
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