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Abstract. An Energy Frictional Dissipating Algorithm (EFDA) for time integration of
Coulomb frictional impact–contact problems is presented. Using the Penalty Method, and
in the context of a conserving framework, linear and angular momenta are conserved and
energy is consistently dissipated.

Published formulations were stable, forcing the energy dissipation to be monotonic in
order to prevent unstable energy growth. The shortcoming of many was that they were
not able to reproduce the real kinematics and dissipation of physical processes, provided
by analytical formulations and experiments. EFDA formulates a conserving framework
based on a physical energy dissipation estimator. This framework uses an enhanced
Penalty contact model based on a spring and a dashpot, enforcing physical frictional
energy dissipation, controlling gap vibrations and modifying the velocities and contact
forces during each time step. The result is that the dissipated energy, kinematics and
contact forces are consistent with the expected physical behavior.

1 INTRODUCTION

The numerically accurate analysis of frictional dynamic contact problems has been a
challenge for the last 30 years. Complex problems do not have analytical solution and due
to their high nonlinearity, non–smooth unilateral restriction and the presence friction, they
are hard to model. Therefore, numerical time–stepping schemes are developed to emulate
the conservative properties of the corresponding continuous problem.

Previous authors have addressed frictionless contact problems, for instance [7] focused
on iterative but no time–stepping formulations, [1] and [3] for implicit. These authors
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intended to create robust and stable algorithms for the enforcement of the contact con-
straints, while recent formulations have focused on frictional formulation and proposed
unconditionally positive energy dissipation. Ref. [3] developed a positive energy dissipat-
ing algorithm, stable for friction with the Penalty Method and showed an artificial energy
transfer between bodies–penalty springs in which the final energy was always lower than
the initial for Stick and Slip cases. Therefore the behavior of the simulation was not
consistent with the physical contact problem. Ref. [1] minimized that artificial energy
transfer between body and penalty spring. For the non–sliding situation the energy after
contact was equal to the initial and lower during contact while for the Slip case obtained a
rigorous positive energy dissipation. The dissipation in both references was not based on
a consistent conserving framework: the dissipation, although decreasing monotonically,
was not in accordance to that of the continuous problem. Ref. [5] developed a conser-
vative framework that enforced the impenetrability condition, eliminated the artificial
energy transfer between body–penalty spring and took into account the frictional dissipa-
tion through an energy estimator. This formulation used a contact velocity that modified
a predictor–corrector scheme, then the contact response agreed in velocities but not in
forces and positions, not being accurate for persistent contact.

This article presents an Energy Frictional Dissipating Algorithm (EFDA) based on the
frictionless algorithm of [2]. For Penalty contact problems, the new formulation conserves
momenta, simulates the kinematics, contact forces and dissipates energy consistently, ac-
cording to the physical problem in each time step. The algorithm key is a conservative
framework based on updating contact forces and momenta for every contact. The frame-
work takes into account dissipation by an energy estimator based on frictional Coulomb
law, and is able to enforce energy conservation for the Stick contact and the right dissi-
pation for the Slip contact.

2 DEFINITION OF THE PROBLEM AND GOVERNING EQUATIONS

2.1 Hamiltonian description of motion

The Hamiltonian Mechanics permit to obtain the equations of motion for multiple bod-
ies that interact by contact. This subsection briefly describes the Hamiltonian equations
for a continuous problem. Consider a manifold Q that describes the configuration of a
mechanical system whose phase space is P = T ⋆Q, the tangent space of Q. This space is
composed for each point of body i by positions Qi(x, y, t) and linear momenta P i(x, y, t)
as function of time t. The Hamiltonian function H

[
Qi(x, y, t), P i(x, y, t)

]
defines the

total energy of the system and is assumed to be separable in kinetic K(P i(x, y, t)) and
potential V (Qi(x, y, t)) energies, Eqs. 1.
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H
[
Qi(x, y, t), P i(x, y, t)

]
=

nbd∑

i=1

[
K

(
P i(x, y, t)

)
+ V

(
Qi(x, y, t)

)]

K
(
P i(x, y, t)

)
=

1

2

∫

Ωi

P i(x, y, t)2

ρ
dΩ

(1)

where nbd is the total number of bodies, Ωi the domain of body i and ρ the density. The
kinetic energy is a real function K : P → R and the potential V : Q → R is an arbitrary
function. The motion is governed by the Hamiltonian canonical equations, Eqs. 2.

Q̇
i
(x, y, t) =

∂H(x, y, t)

∂P i =

∫

Ωi

P i(x, y, t)

ρ
dΩ

Ṗ
i
(x, y, t) = −

∂H(x, y, t)

∂Qi = −∇V
(
Qi(x, y, t)

)

(2)

The continuum variables from Eqs. 2 may be discretized, giving Eqs. 3.

Qi(x, y, t) =

nnod∑

A=1

NA(x, y) qA(t) ; P i(x, y, t) =

nnod∑

A=1

NA(x, y) pA(t) (3)

For the rigid bodies used in the current paper, this discretization is based on first order
shape functions NA(x, y); for the elastic case they may be extended to higher order. For
these first order functions, the discretization is based on only one node, nnod = 1, usually
defined at the center of gravity xi, yi of each particle. The nodal displacements and linear
momenta of all bodies i to k are grouped in the vectors q(t), p(t). For each body i, the
discretization Eqs. 3 applied to Eqs. 2 produce the system of equations:

q̇i = M−1
i pi ; ṗi = f i

c + f i
ext (4)

where M i is a diagonal mass matrix, with entries: M i =
∫

Ωi ρ [NA(x, y)]tNA(x, y) dΩ.

Although contact forces f i
c are applied in the contact points, the discretization considers

an equivalent force applied to the nodes. The same thing can be said for the external
forces f i

ext.

3 NEW ALGORITHM FORMULATION AND ENERGY–MOMENTUM

CONSERVATION

The aim of this section is the discretization in time of Eqs. 4. The new equations will
enforce the impenetrability condition and discretely inherit the conservation properties

3
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through the conserving framework of section 4. The main three characteristic of this
algorithm are: i) energy conservation for normal contact, ii) consistent dissipation for
tangential Slip and iii) conservation for tangential Stick.

3.1 Time–discrete formulation

The frictional development of EFDA is based on the Simo–Tarnow’s algorithm from
[6], an energy–momentum conserving time integration scheme. This scheme is a discrete
approximation of a Hamiltonian system (Eqs. 5) in time configuration n+1/2. Considering
the interval [tn, tn+1], the first set of equations of this algorithm relates displacements qi

n,
qi

n+1 and linear momenta pi
n, pi

n+1; the second, is the discrete approximation of second
Newton’s law at n + 1/2:

q̇i = M−1
i pi

→
qi

n+1 − qi
n

∆t
= M−1

i pi
n+ 1

2

ṗi = f i
cN + f i

cT →
pi

n+1 − pi
n

∆t
= f i

cN n+ 1

2

+ f i
cT n+ 1

2

(5)

where ∆t = tn+1 − tn, qi
n ≈ qi(tn), pi

n ≈ pi(tn), qi
n+1 ≈ qi(tn+1), pi

n+1 ≈ pi(tn+1) and
pi

n+1/2 = (pi
n+1+pi

n)/2. The terms f i
cN n+1/2 and f i

cT n+1/2 are the discrete approximations
of the resulting normal and tangential contact force vectors.

In order to obtain a conserving and a right kinematic response for contact between two
bodies i, k, in EFDA additional linear momenta pik

cN n+1/2, pik
cT n+1/2 and contact forces

f ′ik
cN n+1/2, f ′ik

cT n+1/2 (updating variables) are added to Eqs. 5, giving Eqs. 6. For these
four variables, in the following the subscript n + 1/2 will be omitted for simplicity. The
role of these new variables is to enforce bodies’ energy conservation for normal contact
and conservation–consistent dissipation for tangential, respectively:

qi
n+1 − qi

n

∆t
= M−1

i

[

pi
n+ 1

2

+

nbd∑

k=1
k �=i

(
pik

cN + pik
cT

) ]

= M−1
i

(

pi
n+ 1

2

+ pi
cN + pi

cT

)

pi
n+1 − pi

n

∆t
=

nbd∑

k=1
k �=i

(
f ik

cN + f ′ik
cN + f ik

cT + f ′ik
cT

)
= f i

cN + f ′i
cN + f i

cT + f ′i
cT

(6)

The expressions for the updating variables are now formulated in local contact coor-
dinates and transformed to global by the unit normal and tangential vectors N ik

n+1/2,

T ik
n+1/2, both at the contact point. To obtain from Eqs. 6 a conservative solution for

Stick and dissipative for Slip, the updating variables must fulfill the discrete conserving
equations defined in section 4. These variables are defined for both contact directions as:

4
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NORMAL

pik
cN =

ψik
2N

2
N ik

n+ 1

2

N ik
n+ 1

2

t
(pi

n+1 − pi
n); f ′ik

cN =
ψik

1N

2
N ik

n+ 1

2

KN (gik
Nn+1 − gik

Nn)

TANG. STICK

pik
cT =

ψik
2T

2
T ik

n+ 1

2

T ik
n+ 1

2

t
(pi

n+1 − pi
n); f ′ik

cT =
ψik

1T

2
T ik

n+ 1

2

KT (gik
Tn+1 − gik

Tn)

TANG. SLIP

pik
cT = 0 ; f ′ik

cT = 0; f ik
cT = −µ Ψ

∣
∣f ik

cN + f ′ik
cN

∣
∣ T ik

n+ 1

2

(7)

where KN , KT are user–defined penalties for normal and tangential contact, gik
Nn+1, gik

Nn,
gik

Tn+1, gik
Tn normal and tangential gaps at n and n + 1, Ψ = ±1 the Slip direction, µ the

friction coefficient and ψik
1N , ψik

1T , ψik
2N and ψik

2T proportionality parameters of the updating
variables. Notice that pik

cN , f ′ik
cN , pik

cT , f ′ik
cT (at n + 1/2) enforce the conservative response

for normal and tangential Stick contacts. On the other hand, for Slip pik
cT = f ′ik

cT = 0 since
no tangential penalty spring is present; the new Coulomb friction force f ik

cT is computed
with the absolute value of the total (contact plus updating) normal contact forces. The
normal and tangential–Stick contact forces f ik

cN , f ik
cT are defined in Eqs. 8 using the [4]

derivative, providing a discrete expression that conserves the artificial penalty energy.

f i
cN =

nbd∑

k=1
k �=i

f ik
cN =

nbd∑

k=1
k �=i

V (gik
Nn+1) − V (gik

Nn)

gik
Nn+1 − gik

Nn

N ik
n+ 1

2

=

nbd∑

k=1
k �=i

KN N ik
n+ 1

2

(gik
Nn+1 + gik

Nn)

f i
cT =

nbd∑

k=1
k �=i

f ik
cT =

nbd∑

k=1
k �=i

V (gik
Tn+1) − V (gik

Tn)

gik
Tn+1 − gik

Tn

T ik
n+ 1

2

=

nbd∑

k=1
k �=i

KT T ik
n+ 1

2

(gik
Tn+1 + gik

Tn)

where V (gik
Nn+1) = KN(gik

Nn+1)
2/2, V (gik

Nn) = KN(gik
Nn)2/2 are the normal and V (gik

Tn+1) =
KT (gik

Tn+1)
2/2, V (gik

Tn) = KT (gik
Tn)2/2, the tangential penalty potential contact energies.

4 DISCRETE LINEAR, ANGULAR MOMENTUM CONSERVATION AND

CONSISTENT BODY ENERGY DISSIPATION

This section develops the discrete conserving framework of EFDA to obtain the body
energy conservation for normal contact and conservation–dissipation for tangential.

4.1 Discrete linear momentum balance

The discrete variation of the linear momentum of EFDA is defined through the second
of Eqs. 6, the discrete counterpart of second Newton’s law. Therefore, for body i the
resultant of the normal contact forces f i

cN , f ′i
cN plus the tangential f i

cT , f ′i
cT is equal to the

discrete linear momentum balance between n and n+1. Also, the total linear momentum

5
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balance (Eq. 8) is the summation over that of each body and equals the resultant of the
contact forces on nbd.

ptot
n+1 − ptot

n

∆t
=

nbd∑

i=1

(

f i
cN + f ′i

cN + f i
cT + f ′i

cT

)

=

nbd∑

i=1

nbd∑

k=1
k �=i

(

f ik
cN + f ′ik

cN + f ik
cT + f ′ik

cT

)

(8)

Given two bodies i, k in contact, due to the AR principle: f ik
cN = −f ki

cN , f ′ik
cN = −f ′ki

cN ,
f ik

cT = −f ki
cT , f ′ik

cT = −f ′ki
cT for Stick and f ik

cT = −f ki
cT , f ′ik

cT = f ′ki
cT = 0 for Slip. Then, the

right term of Eq. 8 is zero in all situations and ptot
n+1 = ptot

n .

4.2 Discrete angular momentum balance

We again redefine the variables qi
n+1, qi

n as the positions of the contact point. From
the second of Eqs. 6 and multiplying by the cross product ×(qi

n+1 − qi
n), the discrete

angular momentum balance for a body i is:

pi
n+1 − pi

n

∆t
× (qi

n+1 − qi
n) =

J i
n+1 − J i

n

∆t
=

nbd∑

k=1
k �=i

(

f ik
cN + f ′ik

cN + f ik
cT + f ′ik

cT

)

× (qi
n+1 − qi

n) (9)

Invoking the AR principle and expressing the position’s increments as function of the
normal gap (qi

n+1 − qi
n) − (qk

n+1 − qk
n) = gik

Nn+1/2 (N ki)t, the total angular momentum
balance for nbd is:

J tot
n+1 − J tot

n

∆t
=

nbd∑

i=1

nbd∑

k=i+1

(

f ik
cN + f ′ik

cN + f ik
cT + f ′ik

cT

)

× gik
Nn+ 1

2

(N ki)t
(10)

Since vectors f ik
cN + f ′ik

cN , and the normal gap are collinear, their cross product is zero.
The product between f ik

cT + f ′ik
cT and this gap is also zero since the tangential contact

forces depend on the tangential gap: after some algebra we arrive to the triple product
(T ik

n+1/2)
t T ik

n+1/2 × gik
Nn+1/2(N

ki)t that is zero since the first vector is orthogonal to the
cross product.

4.3 Discrete total bodies’ energy balance

This equation is obtained by premultiplying both Eqs. 6 by (pi
n+1−pi

n)t and −(qi
n+1−

qi
n)t respectively, then added for all contacting bodies nbd. After some algebra:

6
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∆Ekin =

nbd∑

i=1

(pi
n+1 − pi

n)t M−1
i pi

n+ 1

2
︸ ︷︷ ︸

∆Ei
kin

= −

nbd∑

i=1

nbd∑

k=1
k �=i

[

− (qi
n+1 − qi

n)t f ik
cT

︸ ︷︷ ︸

∆Efik

cT

]

+

nbd∑

i=1

nbd∑

k=1
k �=i

[

(qi
n+1 − qi

n)t f ik
cN

︸ ︷︷ ︸

∆Efik

cN

− (pi
n+1 − pi

n)t M−1
i pik

cN
︸ ︷︷ ︸

∆Epik

cN

(ψik
2N )

− (pi
n+1 − pi

n)t M−1
i pik

cT
︸ ︷︷ ︸

∆Epik

cT

(ψik
2T )

− (qi
n+1 − qi

n)t f ′ik
cN

︸ ︷︷ ︸

∆Ef ′ik

cN

(ψik
1N )

− (qi
n+1 − qi

n)t f ′ik
cT

︸ ︷︷ ︸

∆Ef ′ik

cT

(ψik
1T )

]

(11)

where ∆Ei
kin = Ei

n+1 − Ei
n is the kinetic body energy balance between n and n + 1

when bodies are rigid and external forces are not applied. Then, ∆Efik

cN

, ∆Efik

cT

are the

contact forces energy balance and ∆Epik

cN

(ψik
2N ), ∆Epik

cT

(ψik
2T ), ∆Ef ′ik

cN

(ψik
1N ), ∆Ef ′ik

cT

(ψik
1T ),

all functions of the proportionality parameters, are the updating variables energy balance.
This equation is the conserving framework that relates the total bodies’ energy balance

with that of the updating variables. The role of energy conservation for normal contact is
included in the terms ∆Efik

cN

, ∆Ef ′ik

cN

(ψik
1N ), ∆Epik

cN

(ψik
2N ), while dissipation–conservation

for Slip and Stick is included in the terms ∆Efik

cT

, ∆Ef ′ik

cT

(ψik
1T ), ∆Epik

cT

(ψik
2T ). Therefore,

the energy loss is always consistent since the dissipation is included in the energy balance.
Notice that ∆Ekin is the total energy for all bodies. Since the energy related to normal

contact is conserved, ψik
1N , ψik

2N may be positive or negative, and ∆Epik

cN

, ∆Ef ′ik

cN

add or

subtract energy. The same can be said for ψik
1T , ψik

2T for the Stick and Slip cases:
STICK: the energy is conserved since the contact force does not create–dissipate

tangential work. This condition is enforced by zeroing the right part of Eq. 11:

0 =

nbd∑

i=1

nbd∑

k=1
k �=i

[

∆Efik

cT

+ ∆Efik

cN

+ ∆Epik

cN

+ ∆Epik

cT

+ ∆Ef ′ik

cN

+ ∆Ef ′ik

cT

]

(12)

This equation provides infinite relationships that satisfy the total bodies’ energy con-
servation for ψik

1N , ψik
2N , ψik

1T , ψik
2T . Using the AR principle and the reciprocities ψik

1N = ψki
1N ,

ψik
2N = ψki

2N , ψik
1T = ψki

1T and ψik
2T = ψki

2T , Eq. 12 may be decoupled for the normal (Eq. 13)
and tangential (Eq. 14) contacts between bodies i, k as:

(pi
n+1 − pi

n)t M−1
i pik

cN
︸ ︷︷ ︸

∆Epik

cN

(ψik
2N )

+ (pk
n+1 − pk

n)t M−1
k pki

cN
︸ ︷︷ ︸

∆Epki

cN

(ψik
2N )

+
[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)t
]

f ik
cN

︸ ︷︷ ︸

∆Efik

cN

+
[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)t
]

f ′ik
cN

︸ ︷︷ ︸

∆Ef ′ik

cN

(ψik
1N )

= 0
(13)

7
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(pi
n+1 − pi

n)t M−1
i pik

cT
︸ ︷︷ ︸

∆Epik

cT

(ψik
2T )

+ (pk
n+1 − pk

n)t M−1
k pki

cT
︸ ︷︷ ︸

∆Epki

cT

(ψik
2T )

+
[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)t
]

f ik
cT

︸ ︷︷ ︸

∆Efik

cT

+
[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)
t
]

f ′ik
cT

︸ ︷︷ ︸

∆Ef ′ik

cT

(ψik
1T )

= 0
(14)

Both imply that the energy transferred to the normal and tangential penalty springs is
recovered by the updating variables. The energies ∆Epik

cN

, ∆Epik

cT

enforce the total bodies’
energy conservation, while ∆Ef ′ik

cN

, ∆Ef ′ik

cT

adjust the contact forces to the conservative
solution.

SLIP: from physical considerations, the total energy dissipated by friction must be
equal to the increment of total energy, En+1 − En = −

∑nbd

i=1

∑nbd

k=1
k �=i

∆Efik

cT

. This equal-

ity is enforced by EFDA zeroing the last summation of Eq. 11. Also, ∆Epik

cT

(ψik
2T ) =

∆Ef ′ik

cT

(ψik
1T ) = 0 and ψik

1T = ψik
2T = 0 since there is no penalty spring in the tangential di-

rection, see the Slip condition in Eq. 7. Therefore, the equation that provides the infinite
(therefore undetermined) relations between ψik

1N , ψik
2N is:

nbd∑

i=1

nbd∑

k=1
k �=i

[

(pi
n+1 − pi

n)t M−1
i pik

cN
︸ ︷︷ ︸

∆Epik

cN

(ψik
2N)

+ (qi
n+1 − qi

n)t f ik
cN

︸ ︷︷ ︸

∆Efik

cN

+ (qi
n+1 − qi

n)t f ′ik
cN

︸ ︷︷ ︸

∆Ef ′ik
cN

(ψik
1N )

]

= 0 (15)

that represents a normal contact energy balance for all bodies. As in the previous case,
this balance is enforced for every contact; using again AR, reciprocities ψik

1N = ψki
1N ,

ψik
2N = ψki

2N and decoupling Eq. 15 for every contact, one arrives to relationships between
ψik

1N , ψik
2N :

(pi
n+1 − pi

n)t M−1
i pik

cN
︸ ︷︷ ︸

∆Epik

cN

(ψik
2N )

+ (pk
n+1 − pk

n)t M−1
k pki

cN
︸ ︷︷ ︸

∆Epki

cN

(ψik
2N )

+

[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)t
]

f ik
cN

︸ ︷︷ ︸

∆Efik

cN

+
[
(qi

n+1 − qi
n)t

− (qk
n+1 − qk

n)t
]

f ′ik
cN

︸ ︷︷ ︸

∆Ef ′ik
cN

(ψik
1N )

= 0
(16)

The condition at the beginning of the SLIP item and the last equation, enforce both
the energy conservation of the normal contact and the dissipation for tangential contact.

5 DYNAMIC CONTACT, ENHANCED PENALTY METHOD

For every contact, Eqs. 13, 14, 16 provide a non–unique relation between ψik
1N , ψik

2N

and ψik
1T , ψik

2T respectively that automaticaly conserve or dissipate consistently the total

8



143

R. Bravo and J.L. Pérez–Aparicio

energy for the tangential Stick and Slip cases. Using modal analysis decomposition, [2],
it is possible to obtain the second order dynamic equation associated with the descriptive
algorithm of Eqs. 6, defining an enhanced penalty contact model. The model described by
Eqs. 17 consists of a spring and dashpot that control the gap and the penetration velocity,
respectively.

0 = q̈Nn+1/2 +

2ξNωN
︷ ︸︸ ︷

ω2
N ∆t

ψ1N + ψ2N

2
q̇Nn+1/2 + ω2

N qNn+1/2

0 = q̈Tn+1/2
︸ ︷︷ ︸

Inertia

+

2ξT ωT
︷ ︸︸ ︷

ω2
T ∆t

ψ1T + ψ2T

2
q̇Tn+1/2

︸ ︷︷ ︸

Dashpot

+ ω2
T qTn+1/2

︸ ︷︷ ︸

Spring

(17)

The variables qNn+1/2, qTn+1/2 represent the particle motion in normal and tangential
direction. The dashpots are controlled by the user–defined parameters ξN , ξT , a penaliza-
tion for penetration velocities that approximately enforce the consistency Kuhn–Tucker
condition. Eqs. 17 provide the relations that can be easily generalized for any contact
between rigid bodies i, k:

ψik
1N + ψik

2N =
4ξN

Ωik
N

; ψik
1T + ψik

2T =
4ξT

Ωik
T

(18)

where Ωik
N = ωik

N ∆t, Ωik
T = ωik

T ∆t, ωik
N =

√

KN/m, ωik
T =

√

KT /m, and m is the largest
of the two contacting masses. The combination of Eqs. 13, 14, 16 with Eq. 18 provide the
unique explicit expressions for ψik

1N , ψik
2N and ψik

1T , ψik
2T . The insertion of these expressions

in Eqs. 6 enforces a conservative response for Stick and consistent dissipative for Slip.

6 NUMERICAL SIMULATIONS

6.1 Elliptical particle Carom problem

In this subsection, the trajectory of the successive impacts of a rigid ellipse inside a
one–meter square is simulated. The ellipse, of axes 15/6 cm is initially positioned at
(0.45, 0.1) m, inclination α = 50◦ as seen in Fig. 1 top, and it is subjected to initial
velocity Vx = 1, Vy = −0.4 m/s in direction θ = −22◦, without spin. The friction angle is
φ = 15◦ and the rest of the numerical parameters are the same as those in the previous
simulation. To visualize the rotation of the ellipse, the orientation is defined by the largest
semiaxis.

Figs. 1 depict the evolution of trajectory (top), linear velocities (left), rotational ve-
locity and energy (right) from EFDA and from the analytical solution reproduced in the

9



144

R. Bravo and J.L. Pérez–Aparicio
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Figure 1: Carom problem with an elliptical particle: trajectory (top), linear velocities (bottom left),
rotational velocity and total energy (bottom right). In the three, analytical (symbols) and numerical
(lines) distributions coincide.

Appendix. First, the ellipse impacts against the bottom side of the box and consequently
rotates since the line of action of the resultant contact force does not intersect the center
of gravity, Figs. 1 top and bottom right. The initial Vx is larger than Vy, therefore, the
contact point Slips along the horizontal side dissipating energy. Successive impacts de-
crease the tangential (with respect to any side) velocity, Fig. 1 bottom left. It is important
to note that impacts may be conservative for one contact and dissipative for others: the
velocity relation changes in every impact. This can be appreciated in Fig. 1 bottom right,
where for impacts at t ≈ 1.8, t ≈ 3.2 s the energy is conserved, and at others dissipated,
such as those before t ≈ 0.4 and at t ≈ 3.5, t ≈ 3.7 s. Numerical and analytical results
coincide perfectly since both EFDA and the analytical formulation are developed enforc-
ing the energy conservation for normal contact and conservation–consistent dissipation
for tangential.

6.2 The concave pendulum problem

The motion decay of two symmetrical positioned rigid disks resting on a semicircular
rough surface under the action of gravity is analyzed, Fig. 2. In this problem, there are
two sources of energy dissipation: friction between disk and surface, and frictional impact
between disks. After every impact both disks periodically return to a lower height, until
the motion stops. The disk and surface radii are 0.1, 0.5 m respectively, the friction angle
is φ = 15◦, the initial position is defined by the angle γt0 = 45◦ and the initial velocity is
zero.

In Figs. 3 left and right, results at the center of gravity are shown for only one of the
disks, since the problem is symmetric. The left graphic depicts the polar position γ and
velocity γ̇, while the right one, the total energy E and the rotational velocity ω.

With the prescribed initial conditions, both disks slide from the beginning (dissipating
energy) and eventually impact right at the bottom at t ≈ 0.3 s. Before this first impact,
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Figure 3: Pendulum problem. Evolution of center of gravity position γ, velocity γ̇, rotational velocity ω

and energy E with time t.

ω and γ̇ increase (in modulus), while E decreases. At the moment of the first impact, γ̇
and ω suddenly increase and reverse their values (abrupt change in the distributions) and
the total energy E decreases also suddenly. As expected, the angular velocity ω reaches a
maximum when the velocity of the contact point is zero VC = 0 at troll ≈ 0.44 s, then the
disks start rolling and stop dissipating energy by friction. During rolling ω, γ̇ decrease to
zero at t ≈ 0.54 s the disks achieves its maximum height for the oscillation and therefore
γ is maximum. Immediately, the disks continue rolling although downwards, increasing
γ̇ and ω until t ≈ 0.82 s, when a new impact occurs. This sequence repeats continuously
with a motion decay after every impact; the simulation stops when the energy loss is
smaller than a fixed tolerance.
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7 CONCLUSIONS

- The development of an energy frictional dissipating algorithm for contact problems
(EFDA), that conserves momenta and dissipates energy according to the frictional
Coulomb law, is presented. The key of EFDA is that conservation–dissipation is
consistently enforced in a conserving framework through the modification of the
contact kinematics with an additional linear momentum and a contact force.

- The energy of the normal contact is also conserved, therefore EFDA accurately
obtains the real normal contact force and therefore, the real tangential contact force
for the Slip case. This consistent energy conservation–dissipation ensure stability of
the algorithm.

- For the more complex situation of the pendulum problem (two disks on a curved
rough surface), EFDA also shows good stability simulating the impacts, transitions
from sliding to rolling and motion decay until rest.
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