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Overlapping Resilient /1, Filtering for Uncertain Continuous-Time
Systems

Lubomir Bakule, José Rodellar and Josep M. Rossell

Abstract— The paper presents the expansion-contraction re-
lations within the Inclusion Principle for a class of continuous-
time uncertain systems when considering H filtering with
additive filter uncertainty. Norm bounded uncertainties are
considered. The main contribution is the derivation of con-
ditions under which a resilient filter designed in the expanded
space is contracted into the initial system preserving simultane-
ously optimized upper bound for the error variance. An LMI
procedure is supplied for resilient full order robust minimum
variance filter design. The results are specialized into the
overlapping decentralized filter setting. It enables to construct
robust resilient H» filters with block tridiagonal gain matrices.

I. INTRODUCTION

Real-world large scale complex systems collect usually
data from geographically distributed sensors. For instance,
the Kalman filtering approach in sensor networks, formation
flying spacecraft, or multirobot localization lead to a high
dimensional state vector. Central Kalman filtering requires
to communicate large amount of data for such systems.
With the rapid development in multiprocessor systems, an
increasing interest has focused on obtaining high processing
speed through parallelism in algorithms. It means that data
are obtained by different subsystems. All such decentral-
ized structures are based on local processing at the local
processors or nodes taking the advantage of survivability,
reduced computational complexity, scalability, and sharing
of the sensing load when comparing it with the centralized
fusion.

The Kalman filtering fails to provide a guaranteed perfor-
mance in the sense of uncertain systems. This fact motivates
an effort to design estimators guaranteeing upper bound
on the performance in the sense of the error variance for
any admissible uncertainty. These filters are referred as
robust filters. While robustness relates to uncertainties in the
plant, fragility relates to uncertainties or inaccuracies in the
implementation of a designed filter.
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Standard assumption on designed controllers and filters is
that they can be implemented exactly into real world systems.
In practice, filters designed using theoretical methods and
simulations are implemented imprecisely because of various
reasons such as finite word length in any digital system,
imprecision in analog—digital conversions, finite resolution
instrumentation or the need for additional tuning of pa-
rameters in the final filter implementation. The controller
designed for uncertain plants may be sufficiently robust
against system parameters, but the controller parameters
itself may be sensitive to relatively small perturbations and
could even destabilize a closed-loop system. The importance
of fragility, i.e. high sensitivity of filter parameters on its
very small changes, is underlined when considering large-
scale complex systems filtering using low cost local filters.
While robustness relates to uncertainties in the plant, fragility
relates to uncertainties or inaccuracies in the implementation
of a designed filter. This situation naturally motivates the
development of new effective filter design methods taking
into account particular features of these systems including
implementation aspects.

A. Prior Work

The decentralized structures for the Kalman filtering have
been studied in [1], [2], [3]. The distributed Kalman filtering
has been applied to sensor networks in [4], by Olfati-Saber in
[5], the navigation problems [6], the multirobot localization
[7], or the sensor fault detection [8]. All these filtering
structures correspond with the BD form or the BBD form
of sparse matrices used in large scale systems with non-
overlapping subsystem patterns [9]. Overlapping subsystems
approach by [10] leads to the filter design with block tridi-
agonal gain matrices (BTD). Overlapping decompositions
have been systematically worked out within the concept of
the Inclusion Principle [10]. The Inclusion Principle has
been applied to different classes of systems and problems
as illustrated for instance in [8], [11], [12].

Robustness against model parameter uncertainty has been
intensively studied for many years. Various approaches to
robust filtering problem have been developed [13], [14], [15],
[16], [17].

To cope with fragility of observers, several types of
observer uncertainties may be considered. H» resilient filter
design within a multiplicative uncertainties considers [18].
H, nonfragile filter design for both additive and multiplica-
tive filter uncertainties presents [19] for continuous time-
time uncertain systems using the LMIs. Digital controller
implementation and fragility issues studies [20].
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The present paper extends the results in [19] to the
overlapping Hs resilient robust filter design for a class of
uncertain systems with norm bounded uncertainties. The
significance of this problem lies in scalability of the filter
structure, its better performance and reliability of filters
against local filter failures when comparing them with the
BD structures and keeping simultaneously high processing
speed.

To the authors knowledge, the expansion-contraction rela-
tions have not been extended up to now on the design of Ho
resilient filters for the considered class of uncertain systems.

B. Outline of the paper

The paper presents the design of overlapping Ho resilient
filter using the LMIs for a class of uncertain systems with
norm bounded uncertainties. The expansion-contractions re-
lations are derived for uncertain systems as well as the
contractibility conditions for filters with uncertain gain ma-
trix. Norm bounded filter uncertainties are considered. A
constructive LMI-based algorithm is supplied. It is shown
that to satisfy a freedom in the design of overlapping filter
parameters, the input filter matrix must be given a priori in
the original space and expanded for the LMI design.

II. PROBLEM FORMULATION
A. Uncertain Systems and Robust Filters

Consider a class of uncertain systems described by:

S: i(t) = [A+ AA(t)] z(t) + Bw(t), z(0) = zo,
y(t) = [C+ AC[H)] x(t) + Duw(t), (D)
z(t) = La(t),

where z(t)€R™ is the state, y(¢)€R™ the measurement
output, z(t)€RP is the vector of state to be estimated,
w(t)ER" is a zero-mean white noise input with unity power
spectrum density matrix. The initial condition x(0) is a zero-
mean random variable uncorrelated with the input noise w(t).
The matrices A, B, C, D, L are known real constants of
appropriate dimensions. Suppose that m=r. The notation for
the dimensions m and r follows from the different usage of
the corresponding vector components used later. AA(t) and
AC(t) are real time-varying matrix functions of appropri-
ate dimensions. Norm-bounded parameter uncertainties are
supposed in the form

AA() = MyAy(H)Ha,  AC(H) = NoAo(Ha,  (2)

where M, eR"** N,eR™** H,cR’*" are known
real constant matrices of appropriate dimensions and
Ay (t)ER**F is an unknown arbitrarily time-varying
matrix with Lebesgue measurable elements satisfying
AT ()AL (t) < I for all t.

The problem of robust linear filtering is to design an
estimation of z(t) given by z;(t)=F-y(t), where F is a
linear operator such that as t—oo it minimizes an upper
bound o(F) of the estimation error variance for all ad-
missible parameter uncertainty. Define the estimation error
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e(t)=z(t) — z4(t), then the problem of interest becomes

sup Efe"(t)e(t)] <o(F), ()
lAll,<I

Jnin o(F),

where the feasible set C; represents the set of all linear
operators with minimum state-space realization of the form:

if(t) = Apzp(t) + Bry(t), x5(0) =0,
zf(t) = Lyxy (1),

where the matrices AyeR" %"/, ByeR"*™ L ;cRP*"f
and the scalar n ;>0 are the design parameters.

“4)

B. Resilient Filters

Now, consider the feasible set C; represents the set of all
linear operators with minimum state-space realization of the
form:

St @p(t) = [Ay + AA;(O)] 2 (t) + Bry(t), 27(0) =0,
zp(t) = [Ly + ALp ()] 24 (1), -
where the additive gain perturbations are represented by

AAf(t) = MpAp(t)Hy,  ALg(t) = NyAg(t)Hy  (6)

such that A?(t)Af(t) < I for all ¢.
Consider the case of full-order filtering n=n ;. Connecting
the filter (5) to the system (1) leads to the relations
S: @(t) = Ai(t) + Buw(t),

- 7)
e(t) = La(t), (

where
o ) ~ | B
= _iff(t)} P {BfD} ’
L=[L —[Ly+AL;t)]]=[L —Ly—NyAs(t)Hy],
A—_ A+ AA(t) 0 4 o0
B _Bf [C—‘rAC(t)] Af—‘rAAf(t) B ch Af
[ M, 0] [A.t) 0O H, 0
+ _BfNa Mf 0 Af(t) 0 Hf ’
(3
The estimation error variance as t—oc satisfies
E [ (t)e(t)] = Tr [ﬁPﬁT} )

for all admissible uncertainties satisfying (2). 0<P=PT
denotes the solution of the Lyapunov equation

PAT + AP+ BBT = 0. (10)

C. LMI design

Denote the partition of the matrix P in (9) as follows

P:[Px U} p—1|:y Rc]

11
Ul Py R Qy (b

where P, Py, )V, Q¢ € R " are all symmetric positive
definite matrices. Then U, and R, are nonsingular matrices
[14]. The following theorem is used for the filter design [19].

Theorem 1: Consider a system S given by (1) subject to
uncertainties (2) with nonfragile linear filter S¢ given in (5)
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and additive gain perturbations (6). Then, the gain matrices
of the minimum error variance filter 7 € C; defined by

Ly =2lUSX]7Y, Ap = RI'T[UZ X7, By = RJ'G,
12)
where 0<W=WwT, 0<X=XT=P;1, 0<y=yT,
I'=R.A;UYX, G=R.By, R=H;U.X, Z=L;U'X, e,
are the optimal feasible solution of the following convex
programming problem over LMIs:

min Tr [V]
x x -—-z+L7T RT
xT y LT 0
—2T4+L L W—eN¢NYT 0 >0
L RT o 0 —el
rxA+ATx T, XB XM, 0
xT T YB+GD 0 YM,+GN,
BTxT BTYyT4+DTgT I 0 0 <0
MIx™ 0 0 —I 0
L 0 MIYT+NTg 0 0 -1
(13)

where
T, =XA+ATY +CTGT + 1T + (XM, MLY
+XM,NIGT) + uHI H,,
T, =YA+A"Y+G6C+ ¢t +uHl H,.
Remark 1: Notice only that the selection U, = X~ —

Y1 leads to the case when L = Ly which essentially
simplifies the solution [15], [19].

(14)

D. Inclusion Principle

Consider now a new bigger system in the form

S: i) = [A + AA(t)] #(t) + Bu(t),
i(t) = [é + AC’(t)] #(t) + Duw(t),
2(t) = Li(t),

15)

where Z(t)€ER™ is the state, §(t)€ER™ the measurement
output, and Z(t)€R?. Suppose n < 72, m < 1, and p < p.
Norm bounded uncertainties AA(¢t), AC(t) satisfy

AA(t) = M A, (t)H,, AC(t) = N,Au(t)H, (16)

with M,eR™ ¢ N, eR™ & H_ cRP*" known real constant
matrices of appropriate dimensions and where A, (t) R
is an unknown matrix with Lebesgue measurable elements
satisfying AT (£)A,(t) < I for all t. Associated to the system
S given in (15) we have the following filter

St @4(t) = |Ap + AAL(D)] (t) + By (1), 57(0) = 0,
5(t) = [Ly + ALy (8)] (1)
~ ~ ~ a7
such that Ay ER™*1 By cRXM LfGRﬁXﬁ. The additive
gain perturbations are represented by
AAf(t) = MyAy()Hy,  ALy(t) = NyAf(t)Hy (18)

of appropriate dimensions satisfying the standard assumption
AT (H)Af(t) <T for all .

Consider the standard relations between the states and
outputs within the Inclusion Principle. It means that the
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systems S, S and Sg¢, Sy are related by the following linear
transformations

#(t) = Va(t), a(t) = Ui(t),

y(t) = Ty(t), y(t) = Sy(t),

A(t) = Fa(t), 2(t) = GZ(t), (19)
Tp(t) =Vas(t),  2s(t) =Uzs(2),

for all ¢, where V, T, G and their pseudoinverse ma-
trices U=(VIV)=VT S=(TTT)"TT, G=(FTF)~1FT,
respectively, are constant full rank matrices of appropri-
ate dimensions [10]. Suppose given a set of matrices
(U,V,S,T,G,F). Then, the matrices A, AA(t), B, C,
Aé(t), D, L, Ar, AAg(2), Bf, Ly, and ALy (t) can be
described in the following form

A=VAU + M;, AA(t)=VAAW)U,
B=VB+ M,, C =TCU + Ms,
AC(t~) = TAC(t)U, D= TD + M, 0)
L =FLU + M; Ap =UA;V,
AAp(t) = U AA(t)V, By = VB;S,
Ly =GL;V, ALy (t) = GAL;(t)V,

where My, My, Mg, M4 and M5 are so called complemen-
tary matrices. Usually, the transformations (U, V, S, T, G, F)
are selected a priori to define structural relations between the
systems S, S and S¢, Sf. Given these transformations, the
choice of the complementary matrices offers the degrees of
freedom to obtain different expanded spaces with desirable
properties [11], [21].

Definition 1: A system S includes a system S, de-
noted as SDS, if there exists a set of constant matrices
(U,V,S,T,G,F) such that UV=I,, ST=I,,, GF=I, and
for any initial condition x(0) and any disturbance w(t)
of S the relations =z (¢;2(0),w(t))=UZ (t; Vx(0), w(t)),
ylx(¢)]=Sy[Z(t)] and z[z(t)]=GZz[Z(t)] hold for all ¢.

Definition 2: A filter Sg¢ for the system S is con-
tractible to the filter S¢ of S if SOS by Definition 1 and
zy(t;y(t)=UZ;(t;5(t)) and 2yl s (t)]=GZs[Z(t)] hold for
all ¢.

Denote S the corresponding filter for the system S which
has an analogous meaning as the filter S for the initial system
S given in (5). .

Definition 3: A pair S=(S¢,S) includes the pair
g=(Sf, S), denoted as SOS, if St is contractible to Sg.

It is well known that the unique solution of the systems (1)
and (15) are given by the following equations, respectively:

x (t; w0, w(t)) =<I>A(t,0):v(0)+/0 ®4(t, 5)Buw(s) ds,

Z (t; Vg, w(t)) = &)Z(t, 0)Vz(0) + /0 ij(t, s)Buw(s)ds,

_ 2D
where A(t)=A+AA(t), A(t)=A+AA(t), and where ® 5, ® ;
are their corresponding transition matrices. Similarly, the
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solutions for the filters S¢ and Sg are given by
t
o1 (69(0) = [ O, (6985 u(s) ds
t
5 (30) = [ 85, (6B

with Af (t)=Af +AAf (t) R

(22)
(s)ds

Zf (t)=As+AA(t), respectively.
E. The Problem

Given a class of continuous-time uncertain systems S
defined by (1). Consider an expanded system S represented
by (15). Suppose that SOS holds by Definition 1. Then, the
specific goals are as follows

e Derive conditions under which (Sg,S)>(S¢, S).

e Specialize the global system results into overlapping
decentralized filter design setting.

e Derive all the above results in terms of complementary
matrices. Use the LMI approach to compute the required
resilient filter gain matrices.

ITI. SOLUTION
A. Expansion-Contraction Relations
Theorem 2: Consider the pairs S=(S¢,S) and S=(S¢, S).
Then, SOS if and only if the following conditions

a) U®;(t,0)V =D 4(¢,0),

b) U®;(t,s)B=®4(t s)B,

c) SC):(t,00V =C(t)P4(t,0),

d) SC(t)d;(t,s)B = C(t)®4(t,5)B,

e) SD=D, (23)
f) GL®;(t,0)V = L& 4(t,0),

g) Gé@j(t, S)B = LD 4(t,s)B,

h) U@Zf(t, S)VZ‘I‘A‘f(t,S),

Z) GLf t)(sz (t, S)VBf = Lf(t)‘l) (t S)Bf

are satisfied for all ¢ and s, where C/(t)=C+AC(t).
Proof. By Definition 1, impose x(¢)=UZ(t) for all ¢. Sub-
stitute (21) into this relation and compare both sides. We
obtain the equalities a) and b) given in (23). Condition
ylx(t)]=Sy[z(t)] is equivalent to relations c), d) and e).
Finally, the condition z[x(t)]=GZ[Z(¢)] corresponds to the
conditions f) and g) given in (23). By Definition 2, corre-
sponding to the contractibility of the filter, z ;(¢)=UZ(¢) is
equivalent to &) and zs[x;(t)|=GZ;[Z;(t)] is equivalent to
the condition i) in (23). O

Remark 2: To obtain the general solution of a time-
varying system is very difficult. Because of this, an attempt
has been made to approximate the solutions using transition
matrices. However, even to compute such approximation via
Peano-Baker series can be a complicated task excluding
trivial cases [12], [22]. For this reason, next theorem, which
is equivalent to Theorem 2, allows to obtain expanded
systems only in terms of complementary matrices without
any knowledge of the transition matrices.
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Theorem 3: Consider the pairs §=(§f, S) and S=(S¢, S).
Then, SOS if and only if the following conditions

a) UMV =0, b) UM "M, =0,
¢) SMsM{~'V =0, d) SMsM{ 'M;=0, o4)
e) SMy=0, f) GMsMi~'v =o,

g9) GMsMi='M, =0
hold for all i=1,2,...,n ~
Proof. Consider the transition matrix ® ; of the expanded
system S as a function of two variables defined by the Peano-
Baker series

t - t - o -
B (t,5) =T+ 'A(Jl)dal—k/ A(al)/ ' A(0,) do, do,

t _ oy
Jr/ A(o,) A (o, / A (05)dosdoydo, +
° ° (25)
Similar expression can be written by the transition matrix
P i, for the filter S . From Theorem 2 and by using relations
(20) the conditions a)—g) given in (23) are equivalent to
the conditions a)-g) given in (24), respectively. Moreover,
conditions /) and i) in (23) are automatically satisfied in
terms of complementary matrices. O
Although we have got necessary and sufficient conditions
so that SOS, the requirements (24) are very difficult to verify
due to the power of M, and the matrix products that appear.
For this reason, we will work only with sufficient conditions
which are given in the next proposition.

Proposition 1: Consider the pairs §=(Sf,§) and
S=(S¢, S). Then, SO if SM,;=0 and

CL) ]\41‘/:07
b) UM, =0,

M, =0, MV =0,
UM, =0, SM;=0,

MsV =0, or
GMs = 0.
(26)
Proof. The proof is a direct consequence of Theorem 3.
O
The condition S M4=0 and the particular case b) in Propo-

sition (1) under which the inclusion SOS is used in the
following text.

Now, suppose that a resilient filter S¢ is designed for the
expanded system S using the LMIs by Theorem 1. It means
that there is computed also the matrix . Notice that the
filter design is performed with a W as a design parameter.
Then, it is necessary to prove under which conditions the
equality between upper bounds of minimized estimation error
variance holds. Consider these bounds as follows

o(F) = min Tr[LPL"],
P>0
5 sz 27)
&(F) = min Tr[LPLT].
P>0

This condition presents the following theorem.

Theorem 4: Consider the pairs S=(S¢, S) and S=(S¢, S).
Suppose that F=G=I. Assume that UM;=0, UM5=0,
SM3=0, SM4=0 and GM5=0 hold. Suppose that the ma-
trix P given in (11) satisfies P,=V P, VT, U=VU VT,
f’f:VPfVT, where P>0 is the corresponding solution of
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the Lyapunov equation given in (10) for § Then, §DS and
Tr [LPLT)=Tr [LPLT). )

Proof. Consider the systems S and S. By comparing the
matrices LPLT given by (11) with the matrices LPLT it is

easy to prove that the condition Tr[LPL] Tr[LPLT] hold if
F=G=I is satisfied together with the relations P,=V P, VT,
U=VU VT ,Pf VPVT. O

Remark 3: The expansion of the vector z is generally
possible within the presented expansion-contraction rela-
tions. This expansion is inhibiting when evaluating the upper
bounds of the estimated error variance between the original
and expanded systems. The comparison by Theorem 4 is
possible only when no expansion of z is done. However,
such restriction does not at all influence on the quality of
the proposed estimation information.

Remark 4: The minimum asymptotic error variance sat-
isfies the relation o(F) + e=min Tr [W], where ¢ > 0 is
arbitrarily small number. The parameter ¢ represents the
precision defined by the designer to compute the optimal
numerical solution using the LMI problem by Theorem 1 so
that € can be considered arbitrarily small [14].

B. Overlapping Filters

Information structure constraints placed on the filter gain
matrices includes several practically important structures
corresponding with the forms of matrices used in the sparse
matrices theory. Particularly, a block diagonal form (BD)
serves for the decentralized filter design. Standard LMI-
based computations perform such filter design directly. On
the other hand, overlapping decompositions corresponding
with a block tridiagonal form of gain matrices (BTD) ne-
cessitate to pass through the expansion-contraction process
provided that the original system has no direct input into the
overlapped parts [9].

A classical way of reasoning considers two overlapping
subsystems with the structure of matrices A, AA(t), C,
AC(t), and B, D respectively, in the form

I |
* * | % * | *
—————= | ———
S e I (T R 1
* | * * ,
! I

where A;;, AA;;(t) and Cy;, AC;;(t) are n; xn; and m; xn;
dimensional matrices for ¢=1,2,3, respectively. B;; and
D;; for i=1,2,3 as well as j=1,2 are n;xr; and m;xr;
dimensional matrices, respectively. The dimensions of the
components of the vector z” (t)=[x{ (t),23 (t),23 ()] are
ni, neg, ng, respectively, and satisfy nj;+no+ng=n. The
partition of w” (t)=[w{ (t),w] (t)] has two components of
dimensions 71, 7 such that ri+re=r.

The matrix L has a generic decomposition structure given
by the transposition of the second matrix in (28). The dimen-
sions of the components of the vector 27 (t)=[2] (t), 23 (¢)]
are p1, p2 and satisfy p1+po=p.

A standard particular selection of the matrices V and T
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has the form

In, 0 0 Im, 0 0
0 In, 0 0 Imy, O
— n2 — m2
V=10 o0 |> =10 1. o (29)
0 0 Ing 0 0 Iy

The matrices U and S are pseudoinverses of V' and T by
Definition 1. The transformations (29) lead in a simple nat-
ural way to an expanded system where the state vector xo(t)
appears repeated in 27 (¢)=[2T (t), 27 (¢), 21 (¢), 27 (¢)] [10].
The matrix A is expanded accordingly using the matrices
V,U, M provided the matrix M satisfies the condition of
the case b) in Proposition (1). The same way of reasoning
holds for the measurement output vector y2(¢). The matrix C
is expanded in a completely analogous way as the matrix A.
Moreover, notice that the equality F'=G=I holds. Suppose
the form of the matrix B resulting from a generic form
of the matrix B has two diagonal blocks of dimensions
(n1 4+ n2)xr1, (ng 4+ ng)xre as indicated below

1
Bll | 0

I
I I

Bii 10 B21 1+ B2
| ——— ~ |

B=|Ba | B |, B=|-—————- (30)

——— | |

0 I Bs2 Ba1 1 Bao
I |
|

0 I Bgjo

L | .

First, the original system is expanded. Then the filter
design is performed in the expanded space. It is well known
that the design of overlapping controllers/filters depends on
the structure of matrices B. Type I corresponds with all
nonzero element of all input matrices in (28), while Type
II corresponds with all elements (%)21=0 and (*)22=0. The
LMI filter design for Type I can be performed directly on the
original system. Type II requires the LMI filter design in the
expanded space because the direct design usually leads to
infeasibility [9]. Suppose the structure of the matrices D, D
is fully analogous to the matrices B, B in (30).

The expanded filter gain matrices Ay, AAf(t) and Ly,
ALj(t) have a block diagonal form with two subblocks of
dimensions (n; + ng)x(n1 + na), (n2 +ng)x(n2 +ng) and
p1X(ny1 + ng), pax(n2 + ng), respectively.

Apr Agpia 00
Agoy Apan 0 0
0 0
0 0

*’Zlf: if:[ifll i/fw 0 0

Af33 Az 0 0 Loz Lyoa

Agaz Agaa
(€2D)]

Consider C 't AC ¢ (1), D ¢ also as block diagonal matrices
of appropriate dimensions.

Moreover, the design of overlapping dynamic controllers
or filters includes the expansion—contraction relations be-
tween their dynamic parts. There appears a known prob-
lem. The dynamic controller or filter parameters cannot be
arbitrarily selected for the expanded system. There is a
crucial structural constraints on the input gain matrices. The
constraints has the form By=VUB;T'S when considering
the filter input matrix contracted by the formula By=UB;T
[23]. It is evident that to satisfy such constraints is very
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difficult. The way to overcome this problem leads to a
modified design. A priori given matrix By is consequently
expand according to the formula B =V BfS as it is still
included in (20). This is an important step. It enables to
use the standard LMIs resilient robust filter design procedure
by Theorem 1 but with the restriction that By is not a free
parameter, but a given parameter. All other design parameters
remain free within the LMI resilient filter design. It concerns
the remaining gain matrices A ¢ and L ¢- Computations can
be simply repeated with a new By if the current selection
of By does not keep the design requirements. Therefore,
consider simply a given matrix By and its expansion B’f in
the block diagonal the form

B 0 0 0

Bfin O 0 -
Bf _ 0 Bjax 0 Bf _ 0 Bjaz 0 0
0 0 Brss ) 0 Bf22 0
f 0 0 0 Byss
(32)
The contracted gain matrices Ay and Ly have the form
Afll _z‘ifu 0
Afp = | 054521 0.5(Asa2+As33) 054534 |
0 Afas Afaa (33)
L, — z/fll I:/f12 ~0 ]
f 0 Lyfaz Lyjas

To simplify, summarize the resilient robust filter design for
the Type 1. )

Proposition 2: Consider the pairs S=(S¢,S) and
S=(S¢, S). Suppose that B has a fixed structure given by
(32) and that all other filter gain matrices and blocks of
P in the expanded space are BD matrices. Suppose that
F=G=I, UM1=O, UM2=0, SM3=0, SM4=O and GM5=O
hold. Consider the matrix P given in the original space
by (11) satisfying P,=VP, VT, U=VU.VT, P=VP;VT,
where P>0 is the corresponding solution of the Lyapunov
equation given in (10) for S. Then, the contracted filter has

a BTD structure of designed gain matrices satisfying SoS
and o(F)=6(F).

Proof. Tt is straightforward because this proposition is a
particular case of Theorem 4 L.

IV. CONCLUSION

The paper presents the solution of the overlapping Hy
resilient robust filter design for a class of continuous-
time uncertain systems. Conditions preserving the systems
expansion-contraction relations for augmented systems and
guaranteeing the quadratic cost bounds have been proved.
They are derived in terms of conditions on complementary
matrices. An LMI resilient filter design procedure has been
supplied. The filter is designed in the expanded space and
then it is contracted into the original system. The results
have been specialized into overlapping decentralized filter
setting. It has been shown a priori selection of input filter
matrix is necessary to keep the freedom in designing the
dynamic part of an overlapping filter. Moreover, to keep the
equality on upper bounds of the estimation error variance
between both augmented systems, no expansion of the state
vector to be estimated is allowed. The method contributes to

WeA10.3

scalable multiple filter schemes by parallel redundancy in the
increasing reliability against sensor failures, the reduction of
computational complexity, and sharing the sensing load. The
resulting filter has a block tridiagonal form.
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