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Abst rac t  

Overlapping quadratic optimal control of linear time- 
invariant continuous-time systems by using generalized 
selection of complementary matrices has been recently 
developed as a powerful and effective mean for decen- 
tralized control design of linear timeinvariant systems. 
In this paper, it is shown that similar generalizations 
exist for linear time-varying systems. The results pre- 
sented here concern implicit conditions for a general 
form of the transition matrices and explicit conditions 
for a commutative class of linear timevarying systems. 

1 Introduction 

In a large variety of physical, natural and man-made 
systems, subsystems share common parts. It is useful 
to recognize this reality, which is usually determined 
by either system structure or computational reasons, to 
propose decentralized control schemes by using overlap 
ping information sets. Decentralized control strategies 
offer satisfactory performance at minimum communi- 
cation cost. The designer of overlapping decentralized 
control expands first the system into a larger space 
where the subsystems are disjoint, then designs de- 
centralized controllers in the expanded space by using 
standard weak coupling disjoint control design met.hods 
and finally contracts the system and local control laws 
into the original space to implement such controllers. 

This paper addresses the problem of overlapping d e  
centralized control design via state linear quadratic 
optimal control (LQ) for a commutative class of 
continuous-time linear time-varying (LTV) systems. 

1.1 Relevant references 
The mathematical framework for expansion-contrac- 
tion relations and conditions became known as the in- 
clusion principle 181, [9], [lo], 1141. This principle de- 
fines a framework for two dynamic systems with differ- 

ent dimensions, in which solutions of the system with 
larger dimension include solutions of the system with 
smaller dimension. Also, there exist another concept 
of Inclusion Principle called extension [7]. The rela- 
tion between both systems is constructed usually on 
the base of appropriate linear transformations between 
the corresponding syttems in the original and expanded 
spaces, where a key role in the selection of appropri- 
ate structure of all matrices in the expanded space is 
played by the so called complementary matrices [SI, 
[14]. In Fact, only two particular forms, called aggrega- 
tions and restrictions, have been commonly adopted in 
the literature for numerical computations. A new char- 
acterization of the complementary matrices For lineai 
time-invariant (LTI) systems has been presented in [Z], 
[3], [4], [ 5 ] ,  [6], which gives a more explicit way for their 
selection and includes aggregations and restrictions as 
particular cases. It relies on a new constructive way of 
approaching the concept of canonical form within the 
inclusion principle previously proposed in [lo], [14]. 

One of the open research issues within the inclusion 
principle is the extension of the results available for 
LTI systems to LTV systems. To the authors knowl- 
edge, the only available results in this direction are in 
1111, where overlapping decentralized state LQ control 
of LTV systems is considered. However, these results 
are restricted to the use of aggregations and restric- 
tions. The present paper extends the results both in 
1111 as well as those onez in [Z], [3]. 

1.2 Outline of t h e  paper 
When abstracting the problem of quadratic optimal 
control, the influence of complementary matrices is an 
important issue. The strategy of selection of these ma- 
trices has been developed as an effective tool to find 
both structure and optimal values of free elements of 
complementary matrices for LTI systems. We devote 
the main part of this paper to an extension of this strat- 
egy for overlapping state LQ optimal control from LTI 
systems to a class of LTV systems with the commuta- 
tivity property, including the contractibility conditions. 
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2 Problem formulation 

2.1 Preliminaries 
Consider the optimal control problems 

min J ( x o , u )  = z T ( t f ) I I x ( t f ) t  
u( t )  

+ 6' [zT(t)Q*(t)x(t) + uT(t)R'(t)u(t)] d t ,  (1)  

s.t. S : i ( t )  = A(t)z(t)  + B(t)u( t ) ,  

min .J(z~,c) = P ( t f ) i i z ( t f ) t  
u(t) 

+It' [ZT(t)Q*(t)Z(t)  + C T ( t ) R . ( t ) C ( t ) ]  dt, (2) 
to 

s.t. s : Z( t )  = A(t)*(t) + B ( t ) C ( t ) ,  

wherex(t) E R", u(t)  E Wm are the state and input of S 
at timet fort E [ to , t f ] ;  to and t f  are the initial and the 
terminal time, respectively; Z ( t )  E R' and C ( t )  E_R* 
are those ones of S .  The matrices A ( t ) ,  B ( t )  and A(t) ,  
B ( t )  are continuous in t of dimensiofs n x n ,  n x m  and 
R x 6, 6 x fi, respectively. Q*(t),  Q'( t )  are symmet- 
ric, nonnegative definite matrices, continuous in t ,  of 
dimensions n x n ,  6 x 5 ,  respectively, R ' ( t ) ,  R'(t)  are 
symmetric, positive definite matrices, continuous in t ,  
of dimensions m x m, A x A, respectively. II, II are 
constant, symmetric, nonnegative definite matrices of 
dimensions nxn, RxA, respectively. In problems (1) and 
(2) the final time t f  is k e d  and ~ ( t f )  is free. The mini- 
mization of J(x0 ,  U )  searches for a control u(t)  without 
an excessive effort able to maintain the state vector x ( t )  
close to the zero required state a t  any time t E [ to, t f ] ,  
with particular emphasis at the terminal time t f  as 
weighted by matrix II. It is well known that the solu- 
tion of the problem (1)  exists, is unique and given in the 
form u(t) = -K(t)r( t )  = -(R')-'(t)BT(t)P(t)z(t), 
where P ( t )  is the nonnegative definite symmetric s e  
lution of the corresponding Riccati equation [l]. If t f  
is finite, this control law ensures a bounded state and 
the stability issues are absent. I t  t f  is infinite (with 
II = 0), the question of stability becomes important. 
There are results ensuring that this control guarantees 
that the closed-loop system is exponentially stable un- 
der certain conditions related to controllability and o b  
servability [ll]. We assume that the system S satisfies 
such conditions. Similar comments hold for problem 
(2). Suppose that the dimensions of the state and in- 
put vectors x ( t ) ,  u ( t )  of S are smaller than (or at most 
equal to) those of i ( t ) ,  C ( t )  of s. Denote z( t ;so,u)  
the solution of S for a fixed input u(t)  and an initial 
state x ( 0 )  ZO. Analogously, Z(t;3F0,C) is used for 
the system S. In order to simplify the notation de- 
note z(t;zo,u) = z( t )  and Z( t ;Zo ,C)  = Z ( t ) .  It is well 

known that 
t 

~ ( t )  = @(t ,  t o )  xo + @ ( t ,  r)B(r)u(r) d r ,  

5( t )  = 6(t, t o ) &  + / &(t ,  T ) B ( T ) C ( T ) d T  

are the unique, continuously-differentiable solutions of 
the systems in (1) and (Z), respectively. The transition 
matnces @ ( t , t o ) ,  6(t, to) are given by the Pean+Baker 
series [13]. 

The systems S and s are related by the following trans- 
formations Z ( t )  = Vz(t), z(t)  = U?(t),  C ( t )  = Ru(t), 
u ( t )  = Q G ( t ) ,  where V ,  U ,  R and Q are constant ma- 
trices of appropriate dimensions and full ranks. 

Definition 1 Consider S and s giv_en in ( 1 )  and (2), 
respectively. We-say that a system S includes the sys- 
tem S, that is S 3 S ,  i f  there ezist a quadmplet of 
constant matrices (U,V,Q,R) such that UV = I,: 
QR = I,,, and for any initial state xo and any k e d  
input u(t)  of S ,  x(t;xo,u) = U Z ( t ;  V z 0 , R u )  for all 

d t (3) 

t o  

t E [to, t f l .  

pefinition 2 A pair (s,J) includes a pair ( S , ? )  i f  
S 3 S and J ( X O , U )  = j(Vx0,Ru).  In this case, ( S : j )  
is said to be an eqansion of ( S ,  J )  and ( S ,  J )  is called 
a contraction of ( S > j ) .  

Definition 3 Consider S an_d s given an ( 1 )  and 
(2), respectiuely, such that S 3- S.  Then a con- 
trol law G ( t )  = - k ( t ) S ( t )  for S is contractible to 
the control law u(t) = - K ( t ) s ( t )  for S i f  the choice 
? o =  VXO and C ( t )  = Ru(t) implies K(t)z( t ;so,u)  = 
Q K ( t ) Z ( t : V r o , R u )  for all t E [tc,,tf], for any initial 
state xo and any f ized input u ( t )  of S .  

In order to obtain conditions for expansions and con- 
tractions between the problems (1) and (2) and con- 
ditions for contractibility of control laws, the following 
matrix relations are introduced: 

A ( t )  = V A ( t ) U  + M(t), B(t )  = VB(t)Q + N ( t ) ,  
li = UTnU + Mn, Q*(t) = UTQ*(t )U + MQ.(t)> 

k ( t ) = @ R * ( t ) Q + N R . ( t ) ,  C( t )  = R K ( t ) U + F ( t ) ,  

where M ( t ) ,  N ( t ) ,  Mn,  hf~.(t), NR.(t) and F ( t )  are 
called complementary matrices. 

Usually, the transformations (U, V) and (Q, R)  are se- 
lected a priori t,o define structural relations between the 
state and control variables in both systems S and S .  
Given these transformations, the choice of the comple- 
mentary matrices gives degrees of freedom to complete 
the definition of the expansion-contraction framework 
involving problems ( S ;  J )  and (s, j )  to meet some de- 
sign requirements. 
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3 Main  results 

3.1 General LTV systems 
For (s, j) to he an expansion of (S, J )  and to ensure 
contractibility we must impose some conditions on the 
complementary matrices. This is provided hy the fol- 
lowing theorems. 

Theofem 1 Consider the problems given in  ( 1 )  and 
(2). ( S ,  J )  3 ( S ,  J )  Zf and only i f  

U&(t,to)V = @ ( t : t o ) ,  U & ( t 3 r ) N ( r ) R  = 0,  

VTMnV = 0,  VTMQ-(t)V = 0, (4) 
R T N p ( t ) R  = 0 

for all t t [ to ,  t f ]  and all 7 E [ to ,  t] 

Theofem 2 Consider the problem given in  ( I )  and 
(2). ( S ,  J )  3 ( S ,  J )  if VThfnV = 0, VTM,-(t)V = 
0,  RTNQ.(t)R = 0 and either 

a )  M( t )V  = 0, N ( t ) R  = 0 or 
b )  Uhi'(1) = 0, U N ( t ) R  = 0 ( 5 )  

for all t E [ t o , t f ]  

The conditions a) and b)_are two independent sets of 
sufficient conditions for (S, j) to be an expansion of 
(S: J ) .  

Theorem 3 Consider S and s given in (1) and (Z), 
respectively, such_ that S 3 S. A control law G ( t )  = 
-i?(t)i!(t) for S is contractible to the control law 
u ( t )  = - K ( t ) z ( t )  for S if  and only if 

Q F ( t )  p ( 1 ,  to)Vzo + /'&(t, r)B(r)C(r) d r  = 0 
t" 1 

for all t E [to:tJ] 

Theorem 4 Consider S and s given in (1) and (2), 
respectively, such_ that S 3 S. A control law C ( t )  = 
-IC(t)i!(t)  for S 'is contractible t o  the control law 
u ( t )  = -K(t)z( t )  for S i f  either 

a) AI(t)V = 0,  N ( t ) R  = 0,  QF(t)V = 0,  or 
b)  U M ( t )  = 0,  U N ( t ) R  = 0,  QF(1) = 0 

(6) 
for all t t [to,tJ].  

The transition matrix 6(t, t o )  appears in the conditions 
given by Theorems 1 and 3. Since it depends on the 
system matrix A(t ) ,  6(t, to) implicitly depends on the 
complementary matrix M(t ) .  On the other hand, it is 
very difficult, if not impossible, to obtain expressions 
for the transition matrices except for some particular 
classes of systems. Therefore, we focus our attention 
on a timevarying systems characterized by possessing 
the commutativity property. 

3.2 Commutative systems 
Let us start the presentation for this class of systems. 

Definition 4 A linear time-varying system S as ( I )  
is a commutative system i f  and only i f  A( t )  satisfies 
A(t)  [Ji" A ( ~ ) d r )  = [Jio A(T)  d r )  A(t)  for all .t E 

\ -  \ -  

[to, t f] .  In  such a case, the mat% @(t,  to )  is given by  

@(t,  to)  = e *O 

,* * ( ? ) d i  

k=V 

In particular, this is the case for any A( t )  given hy 

A ( t )  = f i ( t ) A i ,  where f i ( t )  are arbitrary real-valued 

functions of t and Ai are arbitrary constant n x n 
matrices which satisfy the commutativity conditions 
AjAj  = AjAi ,  for all integers 1 5 i, j 5 r. A linear 
system is called ezponential when its statetransition 
matrix can be written in the matrix exponential form 
@ ( & t o )  = er(t,*o), where r(t , to) is an n x n matrix 
function o f t  and to. Any commutative system is ex- 
ponential. In such a case, r(t,to) = J,,A(r)dr. If 
A ( t )  is a triangular matrix, then the solution can be 
reduced to solving readily a set of scalar differential 
equations. When A( t )  is a diagonal or a const,ant ma- 
trix, then it meets the commutative property and the 
results are well known. Summarizing, the class of sys- 
tems for which A ( t )  commutes with its integral is ac- 
tually fairly large [12], 1131, 1151. We need to know the 
conditions ensuring the commutativity property of an 
expanded system S when assuming the commutativ- 
ity of the initial system S. This result is given by the 
following proposition. 

7 

i=l 

t 

Proposit ion 1 Consider S- and 5 given in (1) and 
(Z) ,  respectively, such th_at S 3 S. Suppose S a com- 
mutative system. Then S is a commutative system Zf 
and only i f  

Theorems 2 and 4 do not require to know the transition 
matrices. However, the selections of h I ( t ) ,  N ( t ) ,  F ( t )  
are constrained only to restrictions and aggregations. 
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for all t E [to,  t f ] ,  

The remaining of this subsection specifies Theorems 1 
and 3 for the class of commutative systems. 

Theorem 5 Consider that S and s given an [l)_and 
(Z), respectively, are commutative systems. (S, J )  3 
(S, J )  iJ and only aJ 

i-1 

U ( 1 :  M ( r ) d r ) ; V  = 0, U ( 1  M(j3) do) N(r)R = 0: 

VThfEV = 0, VTMQ.(t)V = 0, 

RTNR. ( t )R = 0 

fori = 1, ..., fi, all t E [to, t f ]  and all r E [ to ,  t] .  

Theorem 6 Consider that S and s given in  (1) and 
[Z), respectively, are commutative systems s y h  that 
s 3 s. A control law a(t) = - R ( t ) ~ ( t )  f o r s  is con- 
tmctzble to the contrnl law u( t )  = -K( t )o( t )  for S iJ 
and only if 

for  i = 1, ..., fi, all t E [ to ,  t r ]  and all T E [ t o ,  t] 

3.3 Expansion-contraction process 
Change of basis: The expansion-contraction 

process between systems S and S can be illustrated 
in the form 

s 4 s  - 5  + s  - s  
R" 5 R" A T-' R" T4+ Re cJ+ R' 

Rm 5 RI e+ %+ R I  4 Etm, 

(10) 
where S denotes the expanded system with the new ba- 
sis. The idea of using changes of basis in the expansion- 
contraction process was already introduced by Ikeda et 
al. [IO] to represent S in a canonical form. Given V and 
R we define their pseudoinverses as U = (VTV) - 'VT  
and Q = (RTR)-'RT, respectively. Let us consider 
the changes of basis TA = (V W A ) ,  T, = (R W B ) ,  
where W,, W,  are chosen such that ImW,=KerU, 
ImIl/,=KerQ. Using these transformations it is easy 
to verify the conditions UV = I,, 00 = (2 :) and 

= I,, RQ = ( I ;  :), where V = TLIV  = ( '7, 0 ) -  
U = UT, = ('"U) and E = T;'R = ( ' T ) ,  Q = 
QT, = ( I . , .  U) .  In fact, obtaining these conditions is 
the motivating factor to define TA and T,. 

Expansion-contraction in the new basis: 
For simplicity, we will consider the syst.em S having 
the following structure: 

where Aii(t) ,  B;;(t), i = 1,2,3,  are nixnil  nixmi matri- 
ces, respectively. This system is composed of two s u h  
systems with one overlapped part, but it is well known 
that it can be easily generalized for any number of in- 
terconnected overlapped subsystems. This structure 
has been extensively adopted as a prototype structure 
in the literature 191, [ll],  [14]. 

Consider (9: I) defined by the problem 

Fin S(io,k(t))  = Z T ( t f ) f i Z ( t , ) +  
E(*) 

+ 1;,=, z r ( t ) p ( t ) z ( t )  = . + - t lT( t )R'( t ) f i ( t )]  I - d t :  (12) 

s.t. 6 : i ( t )  = A(t )?( t )  + B(t)G(t). 

where A(t),  B(t), fi, $ ( t )  and f?*(t) denot,e the ma- 
trices in the system s of appropriate dimensions. The 
vectors 5(t)  and E ( t )  are defined as Z ( t )  = T;'Vz(t)  = 
Pz(t), E ( t )  = T;'Ru(t) = &(t). Now, analogously to 

5, denote the relations for the system 6 as 

- 

A(t )  = I/A(t)U + A;J(t), i ( t )  = VB( t )Q  + N ( t ) ,  
fI = UT€Iu+A?n,  G*( t )  = U T Q ' ( t ) U + A ? ~ . ( t ) ,  

K.(t): Q T R ' ( t ) Q  t NR.(t), 

where the new complementary matrices are u(t) = 
T;'A4(t)TA, N ( t )  = T;!N(t)T,, &Jn = T'hfnTA, 
AfQ*(t)  = 2'?Af~-(t)T,, NR.(~) = TTNR*(~)T~.  

Note. Since changes of basis do not affect the commu- 
tativity property, the system S is commutative ifs is 
commutative. 

Consider in 3, M ( t )  = ( A f ; j ( t ) ) ,  N ( t )  = (N; j ( t ) ) ,  
h'n = (&I,,), A4Q*(t) = (AfQ;J(t)), N R . ( ~ )  = 
( N R : , ( ~ ) )  for i , j  = 1 ,.._, 4, with h'n<, = A{:,,, 
h.fQ;,(t) = A4:. ( t ) ,  N R : , ( t )  = N$(t), where each 
matrix has appropriate dimensions corresponding to 
initial structure given in (11). Suppose the matri- 
ces ~ ( t )  = ( A?, i ( t )  ~ 

I .  I .  

A i , , ( * )  
Mzi(t) A b ( t )  
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Nq, ( t )  Nniz ( t )  
f i ~ . ( t )  = ( n;:2(t) N R ; , ( t )  , where each submatrix has 

appropriate dimension. We need to know the form 
of the submatrices &(t ) ,  f l ; j ( t ) ,  &'~: , ( t )  and 
f i ~ ?  (1) for i , j  = 1,2. This is given in the following 
propositions. 

Proposition 2 Consider that S and 5 given in (1 )  
and (12), respectively, are commutative systems such 
that S 3 S. Then A?(t) = ( Aiz:(t) ~ ~ $ ~ ) ,  where (0) 
denotes a matriz of order n and the other blocks satisfy 

~ ~ & ' l ~ ( r ) d ~ ( ~ ~ ~ z z ( ~ ) d T )  J ~ n f i - 2 ~ ( r ) d T = 0 f o T  
i = 2, ..., A and all t E [ to , t f ] .  

;--2 

- 
Proposit ion 3 Consider that S and S given in (1) 
and (1 Z), respectively, are commutat.iue systems such 
that S 3 S. Then n(t) = (,&) :::::;), where 
(0)  is an n x m matriz and the other blocks satisfy 

J ~ o : , ~ f 1 2 ( ~ ) d ~  ( J 4 ~ @ 2 z ( p ) d p ) ~ - ~  fi21(T) = 0 f o r i  = 

2, ...,A, all t E [ to , t f ]  and all 7 E [to,t]. 

for all t E [to,  t f ]  

Contractibility: Suppose the complementary 
matrix F ( t )  = (F; j ( t ) ) ,  i , j  = 1 ,..., 4, where Fl l ( t ) ,  
Fzz(t) ,  F33(t) and F44(t) are m.1~121, mzxnz, ~ Z X V  

and rn3 x 723 matrices, respectively. Define F ( t )  = 

( F d t )  F 2 . W )  where pll(t) and p22(t) are rn x R 

and mz x n,z matrices, respectively. Similarly, denote 
K ( t )  = (K;j( t ) ) ,  i : j  = 1 ,..., 3, where K l l ( t ) ,  Kzz(t), 
K33(t) are mi x n ;  matrices, i = 1, ..., 3, respectively. 
The gain matrix k(t) for the system has the form 
k(t) = R K ( t ) U + F ( t ) ,  where k(t) = T;'I?(t)TA - and 
E ( t )  = T;'F(t)T,. By Definition 3, E ( t )  = -i?(t)e(t) 
of 3 is contractible to the control law u(t)  = -K( t )x ( t )  
of S whenever K ( t ) x ( t ; s o , u )  = Q B ( t ) Z ( t ; V x n , R u )  
for all t E [ to , t f ] .  

- 
- 

Theorem 8 Consider that S and given in (1) and 
(JZ) ,  respectively, are cornmutative systems such that 
S 3 S. A - contml law&(t) = -x(t)E(t) in the ezpanded 
system s is contractible to the control law u ( t )  = 

-K( t ) z ( t )  of S if and only if fF = (&,) 2::;;) and 
satisfies 

- 

for i  = 1 ,_.., r i  - 1, j = 1, _..,A, all t t [ to , t f ]  and all 
T E [tO,t]. 

3.4 Selection of complementary matrices 
Up to now, the above results do not depend on the se- 
lection of the matrices V and R, so that they can he 
applied for any expansion-contraction process. To use 
these results in a practical scheme, we start by defin- 
ing specific transformations V and R to expand a given 
oroblem (1). Here we consider the followine exoansion 

\ ,  

transformation matrices V = ( I :  $ r [ a ) :  R = 

( I !  ::: i ) . The changes of basis to define the 
0 I,, - 

system 3 for the above transformations are given by 

TA = ( :': $) and the corresponding in- 
I", 0 0 

The matriz N ( t )  has the same structure a.s M ( t )  
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Theorem 10 Consider that S and s given in ( 1 )  and 
[Z), respectively, are commutative syeems such that 
S 3 S. A cont_rol law a(t) = -K(t)?(t) in the 
ezpanded system S is contractible to the contml law 
u(t)  = - K ( t ) z ( t )  of the system S i f  and only if 

, 1-1 

rt  

\ o  Fa2 

Note. It is important to recognize that it is not neces- 
sary t o  know the transition matrices explicitly in order 
to select the complementary matrices satisfying the re- 
quired conditions. 

4 Conclusion 

The inclusion principle has been specialized for a 
quadratic optimal control design for both general and 
commutative continuous-time linear time-varying sys- 
tems. The strategy of generalized selection of com- 
plementary matrices has been developed for commu- 
tative continuous-time linear time-varying systems. It 
includes the presentation of a general structure of com- 
plementary matrices. This structure offers flexibility in 
selection of complementary matrices resulting in more 
appropriate costs when designing quadratic optimal 
control via overlapping decompositions for this class 
of systems. 
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