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Abstract. The paper proposes a non-linear model of the Biot continuum. The non-
lienarity is introduced in terms of the material coefficients which are expressed as linear
functions of the macroscopic response. These functions are obtained by the sensitivity
analysis of the homogenized coefficients computed for a given geometry of the porous
structure which transforms due to the local deformation. Linear kinematics is assumed,
however, the approach can be extended to large deforming porous materials.

1 INTRODUCTION

We adapt the classical Biot model of poroelastic media for situations when the de-
formation has a significant influence on the permeability tensor controlling the seepage
flow and on the other poroelastic coefficients. Under the small deformation assumption
and the first order gradient theory of the continuum, the constitutive laws are considered
usually in linearized forms involving material constants independent on the field variables,
like deformation, or stress. In this context our treatment of the material coefficients de-
pending on the stress and deformation state can be viewed as an extension of the first
order theory, whereby the linear strain kinematics still holds and the initial domain is
taken as the reference. The Biot model is derived using the homogenization of the fluid-
structure interaction problem for a periodic medium involving elastic skeleton with pore
fluid [6], whereby the Darcy flow law is obtained by homogenizing the Stokes flow [1]. In
this paper, to extend the theory to solution-dependent coefficients, the sensitivity anal-
ysis well known from the shape optimization is adopted [4], cf. [8]. The sensitivity is
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performed w.r.t. the microscopic field of displacements associated with the solid skeleton.
By virtue of the homogenization scheme, this field can be expressed as a linear function
of the macroscopic strain and pore pressure. As the result, the homogenized model of the
poroelastic medium is non-linear, since the effective coefficients are linear functions of the
macroscopic response. We present a linearization scheme consisting of the predictor and
corrector problems to be solved at each time level.

2 HOMOGENIZED POROELASTIC MEDIUM

First we introduce the decomposition of the porous material into the solid and fluid
parts. At this level, the two phases constituting the poroelastic medium are separated: the
solid part is labelled by the subscript m, while the fluid part is referred to by the subscript
c. Let Ω ⊂ R3 be an open bounded domain occupied by the poroelastic medium; we con-
sider decomposition Ω into the matrix and channel parts Ω = Ωε

m∪Ωε
c∪Γε , Ωε

m∩Ωε
c = ∅,

Γε = Ωε
m ∩ Ωε

c. As usually in the homogenization theory, see [3, 5], by ε we denote the
small parameter expressing the scale, i.e. the ratio between the micro- and the macroscopic
lengths; all variables dependent on the above decomposition are labelled by ε. Assuming
very slow flows only in the pores, we can treat the upscaling problem separately for the
solid and fluid parts. In order to ensure relevance of such a decoupled homogenization,
we are taking a specific type of the porous medium subject to slow deformation processes
possibly inducing moderate pressure gradients and flow rates characterized by negligible
inertia effects. As a consequence of relatively large permeability and low pressure gradi-
ents, slow flow rates and small viscosity have negligible influence on the fluid-structure
interaction. Therefore, we consider the following upscaling:

• Homogenization of the fluid-structure interaction problem while the locally constant
pore pressure at the level of the representative periodic cell is considered;

• Homogenization of the Stokes flow of a slightly viscous fluid in the pore geometry
defined by the undeformed configuration of reference periodic cell.

Then we can combine the homogenized models of the static poroelastic medium and
the Darcy flow to obtain an approximate macroscopic description of the fluid structure
interaction. In Section 4, this model will be modified to allow for nonlinear effects induced
by the deforming microscopic configuration.

2.1 Porous solid saturated by static fluid

In this section we consider the static (or a steady state) problem of deformed elastic
porous structure saturated by a fluid under a constant pressure. This last simplifying
assumption introduces no significant modelling error in the fluid-structure interaction as
far as the flow is slow.

2
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2.1.1 Model at the microscopic scale

The deformation of the matrix is governed by the following problem for (uε, pε) such
that

∇ · (IDεe(uε)) = f ε , in Ωε
m ,

n [m] · IDεe(uε) = g ε , on ∂extΩ
ε
m ,

n [m] · IDεe(uε) = −pεn [m] , on Γε ,

(1)

and
∫

∂Ωε
c

uε · n [c] dSx + γpε|Ωε
c| = −Jε , (2)

where uε is the displacement vector of the matrix, pε is the fluid pressure, IDε is the
elasticity fourth-order tensor of the matrix and γ is the fluid compressibility. The applied
surface-force and volume-force fields are denoted respectively by g ε and f ε. The outer
unit normal vector of the boundary Ωε

m is denoted by n [m]. Condition (2) expresses the
change of the porosity (represented by volume |Ωε

c|), is compensated by fluid compression
and by the fluid out-flow Jε,α through external boundary ∂extΩ

ε
c = ∂Ωε

c∪∂Ω, i.e. outwards
to Ω. We assume that f ε and g ε are defined in such a way that the solvability conditions
associated with (1)-(2) are satisfied. The weak formulation of this boundary value problem
was given in [6].

2.1.2 Homogenization result

We assume that the domain Ω is obtained from a periodic microstructure generated
by a representative unit cell Y decomposed as follows

Y = Ym ∪ Yc ∪ ΓY , Yc = Y \ Ym , ΓY = Ym ∩ Yc . (3)

Without loss of generality we can define Y = (]0, 1[)3 to be the unit cube, so |Y | = 1.
The upscaling procedure of the heterogeneous continuum consists in the limit analysis
with respect to ε → 0. For this we use the periodic unfolding method, see [3, 1]. The
analogous notation is employed when upscaling from the mesoscopic-to-macroscopic scale.
By −

∫
D
= |Y |−1

∫
D
with D ⊂ Y we denote the local average, although |Y | = 1.

We assume weak convergence of the external forces; denoting by χε
m the characteristic

function of the matrix, χε
mf

ε converge towards (1−φ)f where f is a local averaged volume-
force acting on the matrix. The volume fraction of pores is defined by φ = |Yc|/|Y |.

When ε → 0, the strain is a two-scale function defined from its macroscopic part
e(u(x)) and its fluctuating part ey(u

1(x, y)), x ∈ Ω and y ∈ Y , where the fluctuations
are proportional to macroscopic strains. There are so called characteristic displacements
ωij(y) and ωP (y) such that u1(x, y) = ωij(y)∂jui(x) − ωP (y)p, where p is the constant

3
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fluid pressure in Ω. Functions ωij(y) and ωP (y) are obtained as solutions of the following
problems: find (ωij,ωP ) ∈ H1

#(Ym)×H1
#(Ym) satisfying

amY
(
ωij +Πij, v

)
= 0 , ∀v ∈ H1

#(Ym) ,

amY
(
ωP , v

)
=∼
∫

ΓY

v · n [m] dSy , ∀v ∈ H1
#(Ym) ,

(4)

where amY (w , v) = −
∫
Ym

(IDey(w)) : ey(v) and Πij = (Πij
k ), i, j, k = 1, 2, 3 with Πij

k =

yjδik. AboveH
1
#(Ym) is the Sobolev spaceW

1,2(Ym) of vector-valued Y-periodic functions
(the subscript #).

Using the characteristic responses (4) obtained at the microscopic scale the effective
properties of the deformable porous medium are given by

Aijkl = amY
(
ωij +Πij, ωkl +Πkl

)
, Cij = − ∼

∫

Ym

divyω
ij , N = amY

(
ωP , ωP

)
. (5)

Obviously, the tensors AA = (Aijkl) and C = (Cij) are symmetric; moreover AA is positive
definite and N > 0.

At this first-level of the homogenization process, we obtain a model of the poroelasticity
involving the skeleton displacements u ∈ H1(Ω)/RBM(Ω) and fluid pressure p ∈ R which
is constant due to our assumptions. These state variables verify the following equations:
∫

Ω

(AAe(u)− pB) : e(v) =

∫

Ω

(1− φ)f · v +

∫

∂Ω

(1− φ)g · v dSx , ∀ v ∈ H1(Ω) ,
∫

Ω

B : e(u) + pM |Ω| = −J, with B := C + φI , M = N + φγ ,

(6)

where J is the limit of the total flux Jε outwards Ω.

2.2 Homogenization of the Stokes problem

We consider the Stokes flow through the channel network constituting domain Ωε
c. For

a while, we disregard any deformation of the skeleton, so that the homogenization result
reported e.g. in [1] can simply be recorded. The steady flow problem is defined in terms
of the flow velocity w ε and pressure p which satisfy the following relations:

−ηε∇2w ε +∇pε = f ε , in Ωε
c ,

∇ ·w ε = 0 , in Ωε
c ,

w ε = 0; , on Γε ,

−pεnβ,ε + ηεn [c] · ∇w ε) = g ε , on ∂extΩ
ε
c ,

(7)

where g ε is given on the exterior boundary of the channels. By virtue of the small viscosity
ansatz, see [5, 1], we defined ηε = ε2η̄ which decreases with the scale. The homogenization

4

1439



E. Rohan, V. Lukeš and R. Cimrman

result give rise the Darcy law involving the permeability K = (Kij) which associates the
the macroscopic pressure gradient ∇xp

0 with the mean flow velocity w . Thus, we obtain

Kij =∼
∫

Yc

ψj
i =∼

∫

Yc

∇yψ
i : ∇yψ

i , and w = −K

η̄

(
∇xp

0 − f
)
, (8)

where the local microscopic response functionsψi are solutions of themicroscopic problem:
Find (ψi, πi) ∈ H1

#(Yc)× L2(Yc), i = 1, 2, 3 such that
∫

Yc

∇yψ
k : ∇yv −

∫

Yc

πk∇ · v =

∫

Yc

vk ∀v ∈ H1
#(Yc) ,

∫

Yc

q∇y ·ψk = 0 ∀q ∈ L2(Yc) .

(9)

2.3 Coupled flow deformation problem

Although the homogenized poroelasticity coefficients were obtained for the constant
pressure distribution, the result can be generalized to account for slow flows. Such a
treatment is coherent with the Biot model, in spite of the fact that the genuine fluid-
structure interaction which admits pressure gradients at the microscopic pore level leads
to additional new terms and homogenized coefficients.

The Biot model of poroelastic media for quasi-static problems is constituted by the
following equations involving the homogenized coefficients:

−∇ · σ = f s in Ω ,

B : e(u̇) +Mṗ = −∇ ·w in Ω ,

σ = AAe(u)−Bp) in Ω ,

w = −K

η̄

(
∇p− f f

)
in Ω .

(10)

These equations will be considered in Section 4 where a nonlinear problem is introduced.
For this, boundary conditions must be prescribed for the displacement and the pressure
fields.

u = 0 , on ∂uΩ , n · σ = g s , on ∂σΩ ,

p = p∂ , on ∂pΩ , n ·w = wn , on ∂wΩ ,
(11)

whereby the decomposition of ∂Ω into disjoint parts is considered

∂Ω = ∂σΩ ∪ ∂uΩ , ∂σΩ ∩ ∂uΩ = ∅ , ∂Ω = ∂wΩ ∪ ∂pΩ , ∂wΩ ∩ ∂pΩ = ∅ . (12)

In Section 4 we shall use the following spaces and admissibility sets:

U (Ω) = {u ∈ H1(Ω)| u = 0 on ∂uΩ} ,

P (Ω) = {p ∈ H1(Ω)| p = p∂ on ∂pΩ} ,
(13)

whereby the space P0(Ω) is defined according to (13)2 with p∂ ≡ 0. Formally we shall use
U 0(Ω) which is identified with U (Ω) due to (11).

5
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3 DEFORMATION SENSITIVITY OF THE HOMOGENIZED COEFFI-

CIENTS

We use the shape sensitivity technique and the material derivative approach (see a.g.
[4]) to obtain the sensitivity of homogenized coefficients involved in the Biot continuum
with respect to the configuration transformation corresponding to the microscopic defor-
mation.

We consider a “flux” of material points which is given in terms of a vectorial (design

velocity) differentiable and Y-periodic field �V(y), y ∈ Y so that for y ∈ Γ it describes the

“flux” of points on the design boundary. Construction of �V : Y −→ R3 is based of the
microscopic displacement and deformation fields recovery related to the corrector result
of the homogenization. We shall discuss details below; for now let us consider the design
velocity field �V defined in Y , so that we can parametrize the “material point” position
in Y by zi(y, τ) = yi + τVi(y), y ∈ Y , i = 1, 2, where τ is the “time-like” variable.
Throughout the text below we shall use the notion of the following derivatives: δ(·) is the
total (material) derivative, δτ (·) is the partial (local) derivative w.r.t. τ . These derivatives
are computed as the directional derivatives in the direction of �V(y), y ∈ Y , see e.g. [9]
for details.

3.1 Shape sensitivity analysis of the permeability

We are interested in the influence of variation of the shape of the interface Γ on the
homogenized permeability defined in (8). Let us consider a general functional Φ(φ) =∫
Y
F (φ), where φ(y) corresponds to a microscopic corrector field, F is a sufficiently regular

operator. Using the chain rule differentiation,

δΦ(φ) = δφΦ(φ) ◦ δφ+ δτΦ(φ) = δφΦ(φ) ◦ δφ+

∫

Y

F (φ)divV +

∫

Y

δτF (φ) , (14)

where δτF (φ) is the shape derivative of F (φ) for a fixed argument φ. We shall see that
sensitivity δφ can be eliminated from the sensitivity formula.

We shall apply (14) to differentiate Kij in (8). Thus, we get

δKij =∼
∫

Yc

ψi
j∇ · V −Kij ∼

∫

Y

∇ · V+ ∼
∫

Yc

δψi
j . (15)

To eliminate the dependence on δψi
j in the last integral of the above expression, we

differentiate (9)1 which yields

∼
∫

Yc

∇yδψ
i : ∇yv− ∼

∫

Yc

δπi∇ · v + δτ

(
∼
∫

Yc

∇yψ
i : ∇yv− ∼

∫

Yc

πi∇ · v
)

= δτ ∼
∫

Yc

vi . (16)

Using the substitution v = ψj in (9)1 evaluated for k = i, due to the incompressibility
constraint (9)2 one obtains

∼
∫

Yc

δψj
i =∼

∫

Yc

∇yδψ
j : ∇yψ

i . (17)

6
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Now combining (15)-(17)

δKij = δτ

(
∼
∫

Yc

ψi
j+ ∼

∫

Yc

ψj
i+ ∼

∫

Yc

πi∇y ·ψj− ∼
∫

Yc

∇yψ
j : ∇yψ

i

)
. (18)

Finally we need the partial shape derivatives, as follows

δτKij = δτ ∼
∫

Yc

ψi
j =∼

∫

Yc

ψi
j∇ · V −Kij ∼

∫

Y

∇ · V ,

δτ ∼
∫

Yc

∇yψ
j : ∇yψ

i =∼
∫

Yc

(
∇yψ

j : ∇yψ
i∇ · V − ∂y

l Vr∂
y
rψ

i
k∂

y
l ψ

j
k − ∂y

l Vr∂
y
rψ

j
k∂

y
l ψ

i
k

)

− ∼
∫

Yc

∇yψ
j : ∇yψ

i ∼
∫

Y

∇y · V .

(19)

3.2 Deformation sensitivity analysis of the poroelasticity coefficients

In contrast with the sensitivity of the permeability coefficients which depend on the
shape of ∂Yc only, the poroelasticity may depend on the strain associated with �V(y),
y ∈ Ym.

By virtue of the shape sensitivity based on the domain parametrization [4], the following
formulae hold,

δτa
m
Y (u , v) =∼

∫

Ym

Dirks (δrjδsl∇y · V − δjr∂
y
sVl − δls∂

y
rVj) e

y
kl(u)e

y
ij(v)

− amY (u , v) ∼
∫

Y

∇y · V ,

(20)

δτ ∼
∫

Ym

∇y · v =∼
∫

Ym

(∇y · V∇y · v − ∂y
i Vk∂

y
kv i)− ∼

∫

Ym

∇y · v ∼
∫

Y

∇y · V , (21)

and δτΠ
ij
k = Vjδik. We shall need the sensitivity identity obtained by differentiation in

(4)2 which yields

amY
(
δωP , v

)
= δτ

(
∼
∫

Ym

∇y · v − amY
(
ωP , v

))
. (22)

We can now differentiate the expressions for the homogenized coefficients given in (5).
First we obtain the sensitivity of Aijkl, whereby (4)1 is employed:

δAijkl = δτa
m
Y

(
ωij +Πij, ωkl +Πkl

)
+ amY

(
δτΠ

ij, ωkl +Πkl
)
+ amY

(
ωij +Πij, δτΠ

kl
)
.

(23)

The sensitivity of Cij is obtained, as follows:

δCij = amY
(
δωP , Πij

)
+ δτa

m
Y

(
ωP , Πij

)
+ amY

(
ωP , δτΠ

ij
)

= δτa
m
Y

(
ωP , ωij

)
− δτ ∼

∫

Ym

∇y · ωij + δτa
m
Y

(
ωP , Πij

)
+ amY

(
ωP , δτΠ

ij
)
,

(24)

7
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where we used (22) with v substituted by ωij and the first r.h.s. integral in (24)1 was
rewritten using (4)1.

The sensitivity of N is derived using (22) with v substituted by ωP ; thus, we obtain

δN = amY
(
δωP , ωP

)
+ δτ ∼

∫

Ym

∇y · ωP = 2δτ ∼
∫

Ym

∇y · ωP − δτa
m
Y

(
ωP , ωP

)
. (25)

Finally, the sensitivity of the volume fraction is

δφ =∼
∫

Yc

∇y · V − φ ∼
∫

Y

∇y · V . (26)

To summarize, the sensitivity formulae (23)-(25) can be evaluated using expressions
(20) and (21). Using (24), (25) and (26) we obtain the sensitivities of B and M , i.e.

δB = δC + δφI , δM = δN + γδφ . (27)

4 NONLINEAR MODEL

We establish a nonlinear model based on the Biot-type continuum for which the consti-
tutive laws are derived using homogenization of the fluid-structure interaction problem,
as reported above. Still we assume a range of small deformations and linear kinematics,
so that the linear Cauchy strain is the deformation measure with all its consequences.

4.1 Model with solution-dependent effective material coefficients

The nonlinear model is introduced by the following steps:

1. By M(Y ) we denote a reference microscopic configuration featured by the domain
decomposition (3) and by the elasticity ID(y) distributed in Ym. We assume that
the fluid properties are independent of the microscopic configuration geometry.
For M(Y ) the homogenized coefficients (AA0,B0,M0,K 0) and their sensitivities
δ(AA0,B0,M0,K 0) are computed, as explained in sections 3.1 and 3.2.

2. We employ the corrected microscopic response which can be introduced using the
scale decoupling ansatz and the corrector basis functions. By ū and ũ we denote
the affine and fluctuating parts of the microscopic displacement fields relevant to
the level of Y , respectively. They are introduced, as follows

ū(x, y) = Πij(y)eyij(u(x)) ,

u1(x, y) = ωij(y)eyij(u(x))− ωP (y)p(x) ,
(28)

where x ∈ Ω and y ∈ Ym. Note that the affine part ū is generated by the (locally)
homogeneous strain field which is observed at the macroscopic level. Based on (28),
the convective displacement ũ is established and can be associated with the “design
velocity” field employed in the sensitivity formulae:

ũ(x, y) = ū(x, y) + u1(x, y) = τ̃ �V(x, y) . (29)

8

1443



E. Rohan, V. Lukeš and R. Cimrman

3. Using ũ(x, y) the initial microscopic configuration can be transformed to a spa-
tial deformed one denoted by M̃(ũ(x, ·), Y ) and associated with domain Ỹ (x) =
Y +{ũ(x, ·)}y∈Y for x ∈ Ω. Since Ỹ (x) depends on the macroscopic coordinate, the
microstructure is perturbed from its periodic structure, however, the homogeniza-
tion procedure can still be applied and the homogenized coefficients H(M̃(ũ , Y ))
can be computed directly for the new geometry. These coefficients describe linear
constitutive laws relevant to the actual deformed configuration. Due to the sen-
sitivity analysis explained above, the perturbed coefficients H(M̃(ũ , Y )) can be
approximated using the first order expansion formulae which have the generic form

H(M̃(ũ(x, ·), Y )) ≈ H̃(M(Y ), ũ) = H0(M(Y )) + δH0(M(Y )) ◦ τ̃ �V(x, ·) . (30)

As the main advantage of using this approximation, (30) allows to avoid direct com-
putations of H(M̃(ũ(x, ·), Y )) for all perturbed configurations. Instead, the sensi-
tivities δH0(M(Y )) are computed only once along with H0(M(Y )) for the reference
periodic cell Y . Moreover, by virtue of (28) and (29) we obtain the generic formula
for homogenized coefficients depending on the macroscopic response (e(u), p), thus

H̃(e(u), p) = H0 + δeH
0 : e(u) + δpH

0p ,

(δeH
0)ij := (∂eδH

0 ◦ ũ)ij = δH0 ◦ ωij ,

δpH
0 := ∂pδH

0 ◦ ũ = δH0 ◦ (−ωP ) .

(31)

4. Using the generic form approximation (31) of the perturbed homogenized coefficients
we define the nonlinear model by replacing constants (AA0,B0,M0,K 0) employed
in (6) and (8) by linear extensions depending on the macroscopic response. Thus
we get the following system to be satisfied by the couple (u , p) ∈ U (Ω)× P (Ω)

∫

Ω

(
ÃAe(u)− pB̃

)
: e(v) =

∫

Ω

f̃ s · v +

∫

∂Ω

g̃ s · v dSx , ∀ v ∈ U (Ω) ,

∫

Ω

q
(
B̃ : e(u̇) + ṗM̃

)
+

∫

Ω

K̃

η̄
(∇xp− f ) · ∇xq = 0 ∀q ∈ P0(Ω) ,

(32)

where f̃ s and g̃ s attain the form (31) due to their dependence on the volume fraction
φ.

Nonlinear problem (32) can be discretized in time with a given time step ∆t. In the next
section we explain a simplified linearized model, to obtain a solution at each time level
by a non-iterative computation.

4.2 Linearization scheme

We propose a linearization scheme for (32) presented in the form of a two-step predictor–
corrector solver. The unknown fields (u , p) associated with the actual time level t =

9
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t0 +∆t, where t0 is the previous time level, can be decomposed, as follows

u = ū + δu , p = p̄+ δp , (33)

where (ū , p̄) is the response of the linear model, whereas (δu , δp) is the correction. The
linearization scheme is based on the first order expansion of all the integrals involved in
(32), using (31) and (33).

Notation employed in the linearization scheme. In what follows we shall need
some further notation: let W = ∂e(X : ē) ◦ 〈 〉e , then W δe = ∂e(X : ē) ◦ δe ; in
analogy, let Z = ∂p(Xē)◦〈 〉p, then Zδp = ∂p(Xē)◦ δp. Also the following abbreviations
will be used:

∂AA0 = ∂eAA
0 ◦ e(ū) + ∂pAA

0 ◦ p̄ , ∂B0 = ∂eB
0 ◦ e(ū) + ∂pB

0 ◦ p̄ ,

∂M0 = ∂eM
0 ◦ e(ū) + ∂pM

0 ◦ p̄ , ∂K 0 = ∂eK
0 ◦ e(ū) + ∂pK

0 ◦ p̄ ,
(34)

With this notation in hand we can introduce coefficients depending on the “predictor
solution”, (ū , p̄), and on the response (u0, p0) at the previous time step t0, which obeys
the same decomposition (33),

AA(ū , p̄) = AA0 + ∂AA0 + ∂e(AA
0e(ū)) ◦ 〈 〉e − ∂e(B

0p̄) ◦ 〈 〉e
B(ū , p̄) = B0 + ∂B0 + ∂p(B

0p̄) ◦ 〈 〉p − ∂p(AA
0e(ū)) ◦ 〈 〉p

D(ū , p̄,u0, p0) = B0 + ∂B0 + ∂eB
0 : (e(ū)− e(u0)) ◦ 〈 〉e + ∂eM

0(p̄− p0) ◦ 〈 〉e
M(ū , p̄,u0, p0) = M0 + ∂M0 + ∂p(M

0p̄) ◦ 〈 〉p + ∂pB
0 : (e(ū)− e(u0)) ◦ 〈 〉p ,

K (ū , p̄) = K 0 + ∂K 0 ,

G = ∂eK
0(∇p̄− f ) ◦ 〈 〉e ,

Q = ∂pK
0(∇p̄− f )) ◦ 〈 〉p ,

(35)

F (ū , p̄) = ∂K 0(f −∇p̄) , f s(ū , p̄) = ∂ef
s ◦ e(ū) + ∂pf

s ◦ p̄ ,

S(ū , p̄) = ∂M0(p̄− p0) + ∂B0 : (e(ū)− e(u0)) , g s(ū , p̄) = ∂eg
s ◦ e(ū) + ∂pg

s ◦ p̄ ,

R(ū , p̄) = ∂AA0e(ū)− ∂B0p̄ .

(36)

Using the first-order approximations in (32), the following linearized scheme can be
introduced to compute a solution (u , p) decomposed in the predictor–corrector parts ac-
cording to (33). For a given previous time level response (u0, p0) and given external loads
at the actual time level, we proceed, as follows.
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1. Compute (ū , p̄) ∈ U (Ω)× P (Ω) by solving the linear problem obtained using (32)
where all coefficients are constant being replaced by (AA0,B0,M0,K 0),

∫

Ω

(
AA0e(ū)−B0p̄

)
: e(v) =

∫

Ω

f s · v +

∫

∂Ω

g s · v dSx ,

∫

Ω

q
(
B0 : (e(ū)− e(u0)) +M0(p̄− p0)

)
+∆t

∫

Ω

K 0

η̄
(∇p̄− f ) · ∇q = 0 ,

(37)

for all (v , q) ∈ U 0(Ω)× P0(Ω).

2. Compute corrections (δu , δp) ∈ U 0(Ω)× P0(Ω) by solving

∫

Ω

(
AAe(δu)− δpB

)
: e(v) =

∫

Ω

(
f s · v −R : e(v)

)
+

∫

∂Ω

g s · v ,
∫

Ω

q
(
D : e(δu) +Mδp

)

+∆t

∫

Ω

∇q ·
(
K∇δp+G : e(δu) +Qδp

)
= ∆t

∫

Ω

(
∇q · F − qS

)
,

(38)

for all (v , q) ∈ U 0(Ω)× P0(Ω).

5 CONCLUSIONS

The proposed macroscopic model of the fluid-saturated porous medium (37) and (38),
is weakly nonlinear, cf. [2]; it allows to respect how the material parameters at the
microscopic scale depend on the strain and pressure, although, for periodic structures
the microproblems are solved just once together with computing the sensitivity of the
homogenized coefficients. The same strategy can be pursued to develop a two-scale model
of poroelastic media undergoing large deformation, cf. [7]. As an advantage, quite similar
considerations lead to an efficient procedures of calculating homogenized coefficients for
locally periodic functionally graded porous media. The model is implemented in our
in-house code SfePy, see http://sfepy.org.
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International Conference on Vibration Problems, ICOVP 2011, Springer Proceedings
in Physics, (2011)139 321-327.

12

1447




