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I . INTRODUCTION 

The disjoint decomposition of the global system is 
not reasonable if the resulting subsystems are strongly 
connected. This is particularly true if the subsys­
tems share some common parts. The overlapping sub­
systems may be in fact weakly connected although 
disjoint subsystems are not. A systematic way of 
overlapping decompositions starts with the expansion 
of the original system. To cany out the expansion­
contraction process correctly, certain conditions must 
be satisfied to ensure that solutions of the original sys­
tem are included in solutions of the expanded system. 
A general mathematical framework for this process 
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has been called the Inclusion Principle (Ikeda and 
Siljak 1980), (lkeda et al. 1981), (Ikeda et af. 1984), 
(Siljak 1991). The Inclusion Principle has been ap­
plied to different classes of systems and problems 
as illustrated for instance in (Bakule et af. 2000a), 
(Bakule et af. 2000b), (Bakule et al. 2002b), (Siljak 
and Stipanovic 2000). 

The paper deals with the expansion-contraction rela­
tions for a class of uncertain state-delayed discrete­
time systems with quadratic performance index . The 
concept of quadratic guaranteed cost controller is in­
troduced for instance in (Yu 1997), (Xie and Soh 
1993), (Guan et al. 1999), (Jiang et af. 2000). The de­
lay independent control design procedure is included. 
It is based on the LMI approach by (Yu et af. 2000) 
and it is used as a control design tool. The main results 
concern the conditions on the expansion-contraction 
relations between closed-loop systems including the 
requirement on the equality of bounds on costs. The 



results are given in the foml of conditions on the 
complementary matrices. The specialization of these 
results on the decentralized overlapping control design 
is given including an illustrative example. 

To the authors knowledge, the Inclusion Principle has 
not been extended up to now using the concept of 
guaranteed cost control for the considered class of 
uncertain state-delayed problems. 

2. PROBLEM FORMULATION 

2.1 The Inclusion Principle 

Consider an uncertain discrete-time system with state 
delay, denoted by S, and described by the state equa­
tion: 

x(k+ I) = (A +dA)X(k) + (Ad+dAJx(k-d) 
+ (B+dB)II(k), 

x(k) = q,(k) , -d ~ k ~ 0, (I) 
where d is a positive integer denoting the time delay 
and q,(k) is an initial value at k. The cost function 
associated with this system has the form 

~ 

J(X,II) = LxT(k)Q*x(k) +t/(k)R*u(k) . (2) 
A= O 

Similarly, consider a system S in the form 

.i(k+ I) = (A +dA).t(k) + (Ad + d,j)i(k-d) 
+ (H+dB)U(k) , 

.i(k) = ~(k), -d ~ k ~ O. (3) 
The cost function associated with this system is 

~ 

i(.t,ii) = LiT(k)Q*i(k) +1/(k)R*u(k) . (4) 
A=O 

The vectors x(k)Ellt , u(k)ElRm , and .i(k)ElR~ are the 
states and the inputs of Sand S at the time instant k, 
respectively. Suppose n~li . The matrices A, B, Ad, Q*, 
R* and A, H, Ad, Cr, R* are constant with appropriate 
dimensions. dA, dB , dAd' d,j, dB and dAd are real­
valued matrices of uncertain parameters. Uncertainties 
are assumed to be norm-bounded uncertainties as fol­
lows: 

(dA dB dAd) = Dd(EI E2 Ed), 
(dA dB d,.j) = b~(EI E2 Ed) . 

(5) 

D, El, E2 , Ed, D, El, E2, Ed are known constant 
matrices and d, ~ are unknown arbitrarily time­
varying matrices satisfying d T d ~ I, ~T ~ ~ l. De­
note x(k)=x (k; q,(k) ,1I(k)) and .i(k)=i (k; ~(k), lI(k)) 
the formal solutions of (I) and (3) for given inputs 
lI(k) (Bakule et al. 2002a). 

Suppose the standard relations between the states 
given within the Inclusion Principle. It means the sys­
tems Sand S given in (I) and (3) are related by the 
following linear transformations 

i(k) = Vx(k), x(k) = Ui(k), (6) 
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where V and U are constant full-rank matrices of 
appropriate dimensions. 

Definitio1l I. A system S includes the system S, 
denoted by S:JS, if there exists a pair of con­
stant matrices (U, V) such that UV=I" and for any 
initial state q,(k) and any fixed input u(k) of S, 
x(k; q,(k) , lI(k))=U.i(k; Vq,(k),lI(k)) for all k. 

Moreover, impose an additional assumption requir­
ing the equality of the cost functions (2) and (4) 
corresponding to the systems Sand S. It means 
J(x, 1/)=J(Vx, u) . 

Defi1lition 2. A control law l/(k)=fG(k) for S is con­
tractible to lI(k)=Kx(k) for S if the choice ~(k)=Vq,(k) 
implies Kx(k;q,(k),t/(k»)=K.i(k; Vq,(k),lI(k») for all k, 
any initial state q,(k) and any fixed input lI(k) of S. 

Suppose given a pair of matrices (U,v) . Then, the 
matrices A, d . .j, Ad, dAd' H, dB ' Q* and R* can be 
described as 

A=VAU+M, d,.j=VdAU, 
Ad=VAdU+Md, d .. 4d=VdAdU, 
H = VB+N, dB = VdB, 

(7) 

Q* = UT Q*U +MQ' , R* = R* +NR" 
where M, Md, N, MQ' and Nw are so called comple­
mentall' matrices. The complementary matrices play 
a fund'amental role in the context of the Inclusion 
Principle, because they allow to construct different 
expanded systems with desirable properties (Bakule et 
al. 2000a), (Bakule et al. 2000b), (Bakule et al. 2001). 

Definition I can be rewritten in terms of comple­
mentary matrices in an equivalent form which can 
be deduced by extending known results (Bakule et 
al. 2000a). The following proposition presents two 
important cases of sufficient conditions for S:JS using 
the complementary matrices. 

Proposition 3. Consider the systems Sand S as given 
in (I ) and (3), respectively. A system S:JS if 

a) MV=O, MdV=O, N=O or 
(8) b) UM=O, UMd=O, UN=O. 

Remark. If Md=O in (8), then a) and b) correspond to 
particular cases within the Inclusion Principle called 
restrictions and aggregatiolls, respectively, (Ikeda et 
al. 1981), (rkeda and Siljak 1986), (Siljak 1991). 

2.2 Guaranteed Cost Control 

To simplify, consider only the system (I ), (2). We deal 
with the control design problem of a state memory­
less feedback control law such that the corresponding 
closed-loop system is quadratically stable and guaran­
tees an upper bound of a quadratic cost function. 



Definition 4. Suppose the system (I) with the associ­
ated cost function (2). A state feedback control law 
lI(k)=Kx(k) is said to be a quadratic guaranteed cost 
control law if the resulting closed-loop system 

Se : x(k+ I) = [A +BK +~A +~8K]x(k) 

+(Ad .+ ~Ad)X(k - d) 
(9) 

is quadratically stable and the cost function (2) of the 
the closed-loop system satisfies 

~ 

J = ~>T (k) (Q* + KT R* K) x(k) ~ Jo (10) 
k=0 

for all admissible uncertainties (5) and any delay. Jo is 
some given constant. 

Now, introduce an another definition which is equiv­
alent to Definition 4, but it is better suitable for the 
control design using the LMI approach presented in 
the subsection 2.3. 

Definition 5. A control law u(k)=Kx(k) is said to be 
a quadratic guaranteed cost control with an associated 
cost matrix P>O for the system (I), (5) and the cost 
function (2) if there exists a semipositive-definite ma­
trix W such that 

(I I) 

where 

HI =[A+BK+~A+~8K]T P[A+BK+~A+~BKl 
-P+W+Q*+KTR*K, 

H2 = [Ad+~Ad]T P[A +BK +~A +~BK], 
HJ = [Ad +~Ad( P [Ad +~AJ - w. 

2.3 LMI Approach 

(12) 

There are available different approaches to compute 
quadratic guaranteed cost control laws such as the Ric­
cati equations approach or the LMI approach (Guan 
et at. 1999), (Jiang et al. 2000), (Xie and Soh 1993), 
(Yu 1997). A delay independent linear matrix inequal­
ity approach is selected to design a linear state mem­
oryless feedback controller guaranteeing that the sys­
tem is quadratically stable with a desired upper bound 
on the quadratic cost function. The following proposi­
tion gives sufficient conditions to get a guaranteed cost 
control law (Yu et at. 2000). To simplify, the result is 
presented only for the system (I ), (2), but it evidently 
holds also for the expanded system. 

Proposition 6. Suppose the system (I) with its cor­
responding cost function (2). If there exist symmet­
ric positive definite matrices X, T a matrix Y and a 
constant e>O such that the following linear matrix 
inequality 
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( 

-X+£DDT AX+BY AdX 0 
XAT+yT8 T -X+T 0 XET+yTET 

I 2 

XA~ 0 -T XEJ 
o E1X+E2 Y E~ -El 

o X 0 0 
o Y 0 0 

o 0) X yT 

~ ~ <0 
_(Q') - I 0 

o -(R·)-I 

(13) 
holds, then lI(k)=Kx(k)=YX- lx(k) is a guaranteed 
cost controller of system (I) and the corresponding 
closed-loop value of the cost function satisfies J~o' 
where 

-I 

Jo =XT(O)AIX(O) + L ql(k)AI TAlcp(k). (14) 
k=-d 

Remark. The relation X=p-I , T=P- I Wp-I holds. It 
relates the matrices X, T in Proposition 6 and P, W in 
Definition 5. 

2.4 The Problem 

Suppose given a state-delayed discrete-time uncertain 
system by S (I), (5) with an associated cost function 
J by (2). Consider an expanded system S by (3), (5) 
with an associated cost function Jby (4). Suppose that 
S:)S holds by Definition I. The specific goals are as 
follows: 

• Derive conditions under which the relation Se :::>Se 
holds. 

• Derive conditions under which the relations Se :::>Se 
and J=J hold simultaneously. Use the concept of 
quadratic guaranteed cost control. 

• Specialize the global system results into decentral­
ized control design setting. 

• Supply these results with a numerical example. 

Derive all the above results in terms of complementary 
matrices. Use the delay independent LMI approach to 
compute the required gain matrices. 

3. MAIN CONTRIBUTION 

3.1 Controllers and Closed-Loop Systems 

The Inclusion Principle has be applied for the analysis 
and control design of different classes of dynamic sys­
tems following various objectives. The control design 
is usually performed for a larger expanded system S so 
that this step is followed by the consequent contraction 
and implementation of the control law into the smaller 
system S. This approach is effective mainly when con­
sidering decentralized controller design. 

Definition 2 presents the conditions under which a 
control law designed in the expanded system Scan 
be contracted and implemented into the initial system 



S. However, these requirements do not guarantee that 
the closed-loop system Se includes the closed-loop 
system Se in the sense of the Inclusion Principle, 

i.e. Se :::>Sc Therefore, the conditions guaranteeing 
this requirement must be given. They are presented 
using the complementary matrices by the following 
proposition. 

Proposition 7. Consider the systems (I) and (3) such 
that 8:::>S. Suppose that lI(k)=Ki(k) is a contractible 
control law designed for S. If MV=O, N=O and 

MclV=O, then Se:::>Sc 

Proof Suppose S:::>S and consid:r lI(k)=K.i(k) a con­
tractible control law designed in S. The corresponding 
state matrix of the uncertain closed-loop expanded 
system Se is given by 

i(k+ 1)= [A+~A+(R+~B)k]i(k)+(Ad+.1,j)i(k-d) 
= A("i(k) + (Ad+.1,j)x(k-d). (15) 

Similar expression can be obtained for the closed­
loop system Se Consider the relation between the 

state matrices of the closed-loop systems Se and Se' 
The relation Ac=VAcU,!,Mc implies Mc=M + NK + 
VBK-VBKvU+V~BK(I-VU), where Mc isacom­

plementary matrix to be determined. Since Se :::>Se is 
desired, the conditions U ~ V =0, i= I ,2, ... ,n, must 
be satisfied. Imposing these requirements and using 
equations (7), we can prove that MY=O, N=O is a 
sufficient condition so that the relation UM~V=O holds 
for all i=I , 2, .. · ,n. On the other hand, if Md in (7) 
veri ties Md V =0, then the general conditions of the In­
clusion Principle uM!,V=O holds for all i=1 ,2,··· ,/i. 
Finally, by Definition 2 the contracted gain matrix K 
is given by K=KV. 0 

Remark. By using the conditions MV=O, N=O and 
MclV=O, any control law tI(k) designed in S is a~ways 
contractible to S (Ikeda et af. 1981), (Ikeda and Siljak 
1986), (Siljak 1991). 

3.2 Cost Functions 

Consider the systems (I), (3) with associated cost 
functions (2), (4), respectively. Now, impose the as­
sumption on the equality of the cost functions J and 
1. A sufficient condition for this requirement presents 
the following proposition. 

Proposition 8. Consider the systems (I) and (3) such 
that S:::>S. Suppose that u(k)=ki(k) is a contractible 
control law designed in S. If VTMQ"V=O and Nw=O, 
thenJ=] 

Proof Consider the cost functions J and j given 
in (2) and (4), respectively. Consider u(k)=KVx(k) 
a contracted control law. Substitute Q*=UT Q*U + 
M Q", R*=-R* + N R' in (4) and compare the obtained 
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cost function with the cost function given in (2). It it 
straightforward to prove that VTMQ"V=O, NR'=-O is a 
sufficient condition so that J=] 0 

Theorem 9. Consider the systems (I) and (3) with 
their corresponding cost functions (2) and (4), respec­
tively. Suppose thatMV=O, N=O, MdV=O, VTMQ' v=o 
and NR'=O hold. Then, u(k)=K.i(k) is a quadra­
tic guaranteed cost controller with an associated 
cost matrix P>O for the system S if and only if 
u(k)=Kx(k)=KVx(k) is the contracted quadratic guar­
anteed cost controller with an associated cost matrix 
P>O forS andJo=~ ' The matrices P and W in (12), if 
they exist, are related by p=VT PV , W=VTWV. 

Proof Consider u(k)=Ki(k) a contractible control 
law for the expanded system S. By Definition 5, sup­
pose there exists a semipositive-definite matrix W 
such that 

( 16) 

where 

HI = [A+BK+~.4+.1BK] T P [A+BK+~A+~BK] 
- P+ W +Q* +KTR*K, 

H2 = [Ad +~Adr P [A + RK +.1,j + ~BK] , 
H3= [Ad+~,jdr P[AcI+.1.-iJ-w 

( 17) 
and P>O is an associated cost matrix for the system S. 
It is easy to prove using (7) and assuming MY =0, N=O, 
MdV=O, VT MQ" V=O and NR'=O that the inequality 
matrix (16) is equivalent to (11). Thus, u(k)=Ki(k) 
is a quadratic guaranteed cost controller for S if and 
only if u(k)=Kx(k)=Kvx(k) is a quadratic guaranteed 
cost controller for S. Obviously, P=V T Pv is a sym­
metric definite-positive matrix if P is also a symmet­
ric definite-positive matrix. The same way of reason­
ing holds for the semidefinite-positive matrix W. The 
equality Jo=~ follows from (14) taking into account 
that X-I =P. Thus, 

-I 
JO=XT(O)X-IX(O) + I, cj>T(k)X-ITX-Icj>(k) 

k=-d 
-I 

=xT (O)VT PVx(O) + I,cj>T (k)V T PVTVT PV CP(k) 
k= -d 

-I 

=.i T (0)P.t(0) + I, iV (k)Pt P$(k) = ~. 0 
k=-d 

3.3 Decentralized Control 

Let us specialize the above results on the decentralized 
control design . Suppose that the closed-loop system is 
designed under the presence of information structure 
constraints on feedback control. Consider the basic il­
lustrative structures with two overlapping subsystems 



for the matrices A, ~A, Ad, ~Ad and 8, ~B, respectively. 
They have the following foms: 

(18) 

This structure has been extensively adopted as a pro­
totype structure (Ikeda and Siljak 1986), (Ikeda et 
al. 1981), (Siljak 1991). Consider the above overlap­
ping structure of subsystems in the original system. A 
standard particular choice of the transformation matrix 
V is given by 

(19) 

This particular selection of V is chosen to lead in 
a simple natural way to an expanded system. The 
component X2 of the vector xT =(xf ,xi, xf) appears 
doubled in iT. The dimensions of the components 
(xf,xf,xD are nI, n2, n3 satisfying nl+n2+n3=n, re­
spectively. The partition of uT =(uf, un has two com­
ponents of dimensions ml, m2 such that ml+m2=m. 
It means that the decentralized controller designed in 
the expanded state space is a block diagonal matrix 
with two subblocks of dimensions ml x (nl + n2) and 
m2 x (112 + n3) of the gain matrix . It has the following 
form: 

KD = (-!~ -~~j-i)--i:) . (20) 

The corresponding contracted gain matrix is given by 

KD = {f?}..I __ ~2_:_~_) . (21) 
\ 0 : f?2) f?24 

Following this standard way of reasoning, it is suitable 
to introduce an another definition. Consider only the 
system (I), (2) with K = KD in (12). 

Definition 10. Suppose the system (I) with cost func­
tion (2). A state feedback control law u(k)=KDx(k), 
with KD as given in (21), is said to be a quadratic guar­
anteed cost controller with associated cost matrix P>O 
for the system (I), (5) if there exists a semi positive­
definite matrix S such that (I 1)-(12) are satisfied. 

Theorem 11. Consider the systems (1) and (3) with 
their corresponding cost functions (2) and (4), re­
spectively. Consider the subsystem structure (18) and 
the transformation matrix (19). Suppose that MV=O, 
N=O, MdV=O, VTMQ'V=O and Nw=O hold. Then, 
u(k)=KDi(k) is a quadratic guaranteed ~ost controller 
with a cost matrix 1'>0 for the system S if and only if 
u(k)=KDx(k) is a quadratic guaranteed cost controller 
with a cost matrix P>O for Sand Jo =~ . 

Proof It is straightforward because this theorem is a 
particular case of Theorem 9. 0 

The results are presented only for the structure with 
two overlapping subsystems. However, they can be 
directly generalized for any number of interconnected 
overlapping subsystems. 

4. EXAMPLE 

4.1 Problem Statement 

Consider the system (I) and the cost function (2) as 
follows: 
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A = (: g J), 8 = (b ?), 
o I I I 0 

(
0. 1 0 0) 

Ad=D=EI =Ed= 0 0. 1 0 , o 0 0.1 

E,=(Ool 8), . Q*=diag{I,2,1} , 
- 0 0.1 

(22) 

R* = diag{l, I}, x(o)=(8) , x( -1)=(D, 

d = I. 

Find the overlapping quadratic guaranteed cost con­
troller for the above system, where two overlapping 
subsystems are supposed with the dimensions n I = 
112 = n3 = I by (18). Compare these results with the 
case of the centralized control design serving as a 
reference. Use the delay independent LMI approach 
for the control design. 

4.2 Results 

Decentralized controller. Consider the expansion of 
the system S with the transformation V given in (19), 
as follows: 

V = (g r g). 
001 

(23) 

Suppose that the complementary matrix M has the 
following structure: 

(

0 ml2 -!n12 0) 
o "'22 -'"22 0 

M = 00 "')2 -m)2 0 ' 
"'42 -"'42 ° 

(24) 

where mi2, i=I, ' " ,4, are free parameters. The struc­
ture of the matrix M allow to construct different ex­
panded systems but all with the same cost (Bak~le 
et al. 2000a), (Bakule et al. 2000b). The rematn­
ing complementary matrices are selected ~s Md=?, 
N=O, M Q' =0, Nw =0. Therefore, the weighttng matn­
ces Q-=I and R*=R*=I. Such choice ensures that ~he 
results presented in Section 3 are satisfied. Denote XD , 

t and Y block diagonal matrices and consider them 
a~ the m:trices X, T and Y appearing in Proposi~ion 6. 
To obtain the structure (20) for the gain matrix KD , we 
must impose some conditions on the structure of the 
matrices XD , and YD ' They are as follows: 

(

XII XI2 ~ ~) iT _ (.I 11 )' 12 0 0) X
D 
= XOll -'0-'2 I. 

x)) .\ 34 ' D - ° 0 .1'2) .1'24 • 
o 0 x)4 -'44 

(25) 



By applying the LMI design by (13) on this expanded 
system S. we get the gain matrix 

k = (-0.3515 -O.37H2 0 0) 
n 0 0 -03912 0.2086· (26) 

The corresponding contracted gain matrix has the 
following form 

K = (-0.3515 -0.3782 0 ) . (27) 
n 0 -0.3972 020Rb 

The associated boundon the cost equals toJ~Jo =20.94. 
Centrali:ed controllel: The direct computation on the 
original system and cost results in the following con­
troller: 

K 
__ (-0.5315 -0.3135 -0.3105) 

(28) 
-0.2753 -0.6925 0.2700 

with the bound on the cost equal to J~J()=9.03. 

The centralized control design case serves only as 
a reference to compare the bounds on costs in both 
cases. The upper bound Jo is greater than in the cen­
tralized case because of given structural constraints 
as expected. All computations have been perfon11ed 
using Matlab LMI Control Toolbox (Gahinet et al. 
1995). 

5. CONCLUSION 

The paper presents the expansion-contraction rela­
tions within the framework of the quadratic guaran­
teed cost control problem when considering a class 
of nonlinear but nominally linear uncertain state­
delayed discrete-time systems. Unknown arbitrarily 
time-varying norm bounded uncertainties with known 
bounds are considered. It contributes by the condi­
tions under which these relations hold for the c1osed­
loop systems including the requirement on the equal­
ity of bounds on the costs. The controller design is 
perfon11ed for the expanded system using the delay 
independent linear matrix inequality (LMI) method. 
The results are specialized on the overlapping feed­
back control design under decentralized information 
structure constraints. A numerical illustrative example 
is supplied. 
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