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Abstract.  Previous developments on zero-thickness interface elements for coupled Hydro-
Mechanics problems are briefly described, followed by some new geomechanical 
applications, particularly to hydraulic fracture in rock. The results are compared satisfactorily 
to approximate formulas and previously published numerical results. Once verified, the model 
is applied to new cases to show the capabilities of the approach.  

 
 
1 INTRODUCTION 

Zero-thickness joint/interface elements of the Goodman type [1], have been 
advantageously used to solve many problems in solid mechanics involving material interfaces 
or discontinuities. These elements are inserted in between standard elements to allow jumps in 
the solution field, their kinematic constitutive (“strain-type”) variables are relative 
displacements, and the corresponding static (“stress-type”) variables are stress tractions. In 
particular, the authors have used them for representing rock joints in the context of rock 
masses, contacts between soil and steel reinforcement in reinforced earth structures, or cracks 
in concrete or other quasi-brittle materials, etc. [2, 3]. Each application requires different 
constitutive laws, either frictional-type [4] or fracture-based with elasto-plastic structure [5]. 
Some years ago, the authors have also proposed a version of such element for flow/diffusion, 
either of geo-mechanical [6] or multi-physics type [7]. Some advantages are for instance that 
fluid pressure discontinuities and localized flow lines may be represented on the same FE 
mesh used for the mechanical problem, as well as the influence of fluid pressure on 
mechanical stresses or, conversely, of crack openings on the flow redistribution (“cubic law”). 
More recent developments include advanced “monolithic” implementation [6], return map 
algorithms and consistent tangent operator for the constitutive laws and other advanced 
strategies [8]. 

Zero-thickness interface elements with H-M coupling, formulation and applications in geo-
mechanics 	
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Numerical modeling of Hydraulic Fracture (HF), on the other hand,  poses some 
challenges due to discontinuous nature of fracture, and to the strong coupling between the 
equation that governs the movement (momentum balance) and the equation that controls the 
fluid pressure (fluid mass continuity). The coupling is due to the mutual influence between 
fluid and solid: on one side the fluid pressure causes solid deformations including fracture 
opening, and on the other the fracture opening has dramatic influence on the longitudinal 
transmissivity along the fracture.  

In this paper, hydraulic fracture is reproduced with zero-thickness interface elements along 
the line started by Segura [9]. In that preliminary study, a fully coupled hydro-mechanic 
formulation with interfaces was used to simulate a 2D fracture, although the interface 
behavior was assumed as linear elastic with low moduli. The overall results were in 
agreement with existing formulas and  numerical predictions, although the details of pressure 
fields showed some unrealistic values to compensate for the constitutive simplifications. In 
the current approach, zero-thickness interface elements are equipped with non-linear material 
laws, which leads to a more realist representation of all fields involved including fluid 
pressure.  

2 ZERO-THICKNESS INTERFACE ELEMENTS, CONSTITUTIVE LAWS. 
Zero-thickness joint or interface elements are finite elements introduced between adjacent 

continuum elements, with the special feature that they have one less dimension than the 
standard continuum elements, that is, they are lines in 2D, or surfaces in 3D. The integration 
of these elements is done through a local orthogonal coordinate system defined on the 
interface line or surface. 

The interface constitutive behavior is formulated in terms of the jump of the main variable 
across the mid-plane of the interface, and the corresponding force-type conjugate variable. In 
the standard mechanical problem, those variable are the normal and tangential components of 
the relative displacements, and their counterpart stress tractions (Figure 1, left).  

2.1 Elastoplastic constitutive law 
The standard interface constitutive model implemented in the code for rock mechanics 

purposes is a relatively general elastoplastic formulation, which is formulated in terms of 
normal and shear stress, and the corresponding normal and tangential relative displacements, 
and includes a hyperbolic failure surface, a range of hardening-softening and dilatancy laws, 
step-by-step numerical integration, etc [2]. However, a simplified version exists that, at the 
expense of some restrictive assumptions, becomes adequate for computationally efficient 
explicit integration [2]. The main simplifying assumptions are perfect plasticity, no dilatancy, 
and a linear elastic relationship between the normal stress and the normal relative 
displacement in compression (zero normal stress in tension). 

The yield surface in the 𝜎𝜎 − 𝜏𝜏 plane, where 𝜏𝜏 = √𝜏𝜏1
2 + 𝜏𝜏2

2 is defined by: 
𝐹𝐹 = 𝜏𝜏2 − tan2ϕ (𝜎𝜎2 − 2𝑎𝑎𝑎𝑎) = 0 (1) 

Due to the expression of the yield surface and the elastic relationship between the normal 
stress and the normal relative displacement, once the normal stress is known, the ratio 
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between 𝜏𝜏1 and 𝜏𝜏2 is the only unknown in the integration of the constitutive law. The angle θ, 
which represents this ratio, can be obtained using the following equation: 

tan (𝛽𝛽 − 𝜃𝜃
2 ) = tan (𝛽𝛽 − 𝜃𝜃0

2 ) ( 𝜏𝜏 + √𝜏𝜏2 + 𝑎𝑎2tan2𝜙𝜙
𝜏𝜏0 + √𝜏𝜏0

2 + 𝑎𝑎2tan2𝜙𝜙
)

−𝐾𝐾𝑡𝑡
𝐾𝐾𝑛𝑛

Δ𝑣𝑣
Δ𝑢𝑢 tan𝜙𝜙

 

(2) 

Where β relates the imposed tangential relative displacements Δ𝑣𝑣1 and Δ𝑣𝑣2, 𝐾𝐾𝑛𝑛 and 𝐾𝐾𝑡𝑡 are 
the normal and shear stiffness moduli respectively and 𝜃𝜃0 is the previous ratio between 𝜏𝜏1 and 
𝜏𝜏2. More details of this simplified model can be found in [10] 

 
Figure 1: Constitutive model stress and displacement variables definition (left, center). Yield surface definition 

(right) 

3.1 Hydro-mechanical formulation for interface elements 
Darcy flow is assumed in the continuum elements, and a conceptually similar approach 

including longitudinal and transversal flow is used for the interface elements [5a]. The 
coupling is formulated via the influence of deformation on permeability and water content of 
both continuum and interfaces, in this case using a monolithic coupled approach, i.e. solving 
simultaneously the momentum balance eq.(3) and the fluid mass continuity eq.(4 ): 

∫ −𝑩𝑩𝑇𝑇𝝈𝝈𝑛𝑛+𝜃𝜃 𝑑𝑑Ω 
Ω

+  𝑸𝑸 𝒑̅𝒑𝑛𝑛+𝜃𝜃
𝑓𝑓  + 𝒇𝒇𝑛𝑛+𝜃𝜃

𝑢𝑢 = 𝟎𝟎 
(3) 

Δ𝑡𝑡𝑛𝑛+1 𝑯𝑯𝑛𝑛+𝜃𝜃 𝒑̅𝒑n+θ
𝑓𝑓 + 𝑸𝑸𝑇𝑇 Δu̅𝑛𝑛+1 + 𝑺𝑺Δ𝑝̅𝑝𝑛𝑛+1

𝑓𝑓 − Δ𝑡𝑡𝑛𝑛+1𝑓𝑓𝑛𝑛+𝜃𝜃
𝑝𝑝 = 0 (4) 

In the equations above, B is the classical strain-displacement matrix,  is the stress tensor, 
Q is the coupling matrix, t is time, H is the diffusion matrix, S is the storage matrix and f is the 
right-hand term of the equilibrium equations, for more details see [6]. 

Focusing on the interfaces, the diffusion matrix is composed of two terms (see Figure 2), 
one related to longitudinal flow and the other to transversal flow. The longitudinal fluid 
continuity equation is given by: 

𝜕𝜕𝑄𝑄𝑙𝑙
𝜕𝜕𝜕𝜕 + 1

𝑀𝑀
𝜕𝜕𝑝𝑝𝑚𝑚

𝜕𝜕𝜕𝜕 + 𝛼𝛼 𝜕𝜕𝐴𝐴𝑛𝑛
𝜕𝜕𝜕𝜕 = 0 

(5) 

where the total discharge is related to the gradient of pressure via a Darcy-like equation 

𝑄𝑄𝑙𝑙 =  −𝑇𝑇𝑙𝑙 ( 1
𝛾𝛾𝑓𝑓

𝜕𝜕𝑝𝑝𝑚𝑚
𝜕𝜕𝜕𝜕 + 𝜕𝜕𝑧𝑧𝑚𝑚

𝜕𝜕𝜕𝜕 ) 
(6) 
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and the longitudinal transmissivity is defined according to the cubic law: 

𝑇𝑇𝑙𝑙 =
𝑔𝑔
12𝜈𝜈 𝐴𝐴𝑛𝑛

3  (7) 

On the other hand, the transversal flow is assumed to depend on the pressure jump across 
the discontinuity, with transversal conductivity Kt 

𝑞𝑞𝑡𝑡 = 𝐾𝐾𝑡𝑡(𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑝𝑝𝑡𝑡𝑡𝑡𝑡𝑡) (8) 

 
Figure 2: Flow through the differential zero-thickness interface element [9]. 

Assumptions (5) to (8) lead to an element-level coupled system for the interface elements 
similar to (3-4), and therefore can then be treated in the code in the same way as the similar 
equations for continuum elements [6,8]. 

 

3 SINGLE 2D HYDRAULIC FRACTURE STUDY 
The above formulation has been implemented in an in-house developed general-purpose FE 
code, and applied to the study of H-M coupled problems. The first example presented in this 
paper is the analysis of a single hydraulic fracture in 2D. For the purpose of verification, the 
geometry and parameters have been taken from the work of Boone and Ingraffea [11], who 
combined 2D Finite Elements for the mechanical behavior, with 1-D Finite Differences for 
the flow along the crack channel. 

A semicircle domain of radius 80 m representing a transversal cross-section of the 
borehole and fracture, as depicted in Figure 3a, is discretized with the standard linear 
triangular finite element mesh of Figure 3b. The fracture is inserted along the abscissa axis 
with double node linear interface elements, as shown in Figure 3c. 
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a) b) c) 
Figure 3: Model description: a) scheme of the hydraulic fracture test; b) FE rmesh, and b) detail of discretization 

at injection point. 

The boundary and load conditions are applied in two steps (see Figure 4):  

1. A distributed load of 1.0MPa is applied over the outer boundary in order to simulate 
the in-situ initial stress. Initial pore pressure is assumed with constant null value at the 
boundary and flow analysis for this initial stress calculation is run as steady state, with 
a resulting zero pressure in the entire domain. 

2. A fluid is injected at the fracture mouth with constant Q = 0.0001 m3/s. The remaining 
boundary conditions defined in step 1 are maintained. This step is run under transient 
conditions with increasing time steps until a total duration of 25 seconds. 

The continuum elements are assumed linear elastic and isotropic. With regard to flow, two 
scenarios are considered, one without leak-off (impervious case), and another one with low 
leak-off (pervious case). All parameters are displayed in Table 1. 

The interface elements are assumed to behave according to the elasto-plastic model 
described above. Normal and shear elastic stiffness are set to very high values, which can be 
understood as penalty coefficients in order to minimize elastic deformations including 
interpenetration. As the result, practically all the relative displacement will correspond to 
plastic deformations representing opening/sliding of the interface. Parameters of the loading 
surface (assumed fixed in this analysis, perfect plasticity) represent a lower bound scenario of 
the interface strength, in particular tensile strength is assumed zero as in [11].  

The hydraulic behavior of the interface is assumed to follow “cubic law” (7). Except for 
those parameters related to the elasto-plastic model, Table 2 shows the parameters used for 
this study. 
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Figure 4: Boundary conditions for mechanical (upper diagrams) and flow (lower diagrams), for each of the two 

steps of the analysis (vertical columns). 

Table 1: Material properties of continuum 

 Impervious Pervious  
E (Young mudulus) 14400.0 MPa 
 (Poisson ratio) 0.2 - 
K (hydraulic conductivity) 1x10-25 210-7 m/s 
Ks (skeleton compressibility) 36000.0 MPa 
 Biot 0.0  

 

Table 2: Material properties of interfaces 

Kn (Normal stiffness) 1000000.0 MPa/m 
t (Tangential stiffness) 1000000.0 MPa/m 
tan (friction angle) 0.577 - 
a (apex) 0.0 MPa 
c (cohesion) 0.0 MPa 
Tl0 (initial longitudinal transmissivity) 0.0 m2/s 
Kt (Transversal conductivity) 1.0 1/s 
 Biot 1  
M Biot 10000000000.0  
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3.1 Impervious case (no leak-off), and comparisons to existing literature. 
The problem stated is sufficiently simple to allow us to obtain a closed-form analytical 

solution. Spence [12] and GDK [13, 14] obtain the following expressions for the fracture 
length, crack mouth opening displacement CMOD) and pressure at the crack mouth: 

𝐿𝐿 = 𝐴𝐴( 𝐺𝐺𝑄𝑄3

𝜇𝜇(1 − ))
1/6

𝑡𝑡2/3 
(9) 

CMOD = 𝐵𝐵 (𝜇𝜇
(1 − )𝑄𝑄3

𝐺𝐺 )
1/6

𝑡𝑡1/3 
(10) 

𝑃𝑃𝑐𝑐𝑐𝑐 = 𝐶𝐶 ( 𝐺𝐺3𝑄𝑄𝑄𝑄
(1 − )3𝐿𝐿2)

1/4
+ 𝑆𝑆 

(11) 

In those formulae,  A, B and C take the values 0.65, 2.14 and 1.97 for Spence’s model, and 
0.68, 1.87 and 1.38 for the GDK model. 

The results obtained in our calculations, together with those two formulae, and the 
numerical results by Boone & Ingraffea [11] for the first 24 seconds of injection, are shown in 
Figure 5. The tree curves exhibit a relatively good coincidence which seems quite reassuring. 

 

a) b) 

c) 

 

Figure 5: Comparison up to 24 sec. of: a) crack mouth oppening displacement (CMOD) evolution with time; b) 
crack mouth pressure evolution; and c) crack length. 
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Figure 6 represents the pressure profile along the fracture at the final stage of 24 sec, both for 
the present calculation and for the B&I paper. The match is quite good except near the crack 
tip, which seems possible given the different approaches for the modeling of flow continuity. 
Figure 7 shows the pressure profiles obtained with the model for various intermediate times 
(which were not given in B&I). Note in Figure 6 and Figure 7, the negative pressure near the 
crack tip known as “fluid lag”, which i has been obtained in the proposed model as the result 
of the delay between opening of the crack and filling with fluid, which in an impermeable 
medium can only reach the crack tip along the fracture itself. 

 

 
Figure 6: Comparison of pressure profile with results from Boone&Ingraffea at 24 sec, note fluid lag predicted. 

 
Figure 7: Calculated crack pressure profiles up to 25 sec. injection times, including fluid lag phenomenon. 

Once verified satisfactorily for 24 sec, the calculations have been run for longer times, 
some results are shown in Figure 8. 
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a) b) 
Figure 8: Evolution vs. time, up to 100 sec. of: a) crack mouth opening (CMOD); and b) crack mouth pressure 

(CMP). 

Note that for impermeable rock, the CMOD rate seems to evolve towards a limit constant 
value, similarly to the rate of crack extension, which corresponds naturally to the fact that all 
the fluid injected at constant rates has to be stored in the crack volume. 

 

3.2 Pervious case (with leak-off) 
The only changes with regard to the previous section are the consideration of permeable 

rock, and the in-situ stress, with similar values to the ones used in Boone and Ingraffea [11], 
in particular: 

 Continuum permeability K = 2·10-7 m/s. 
 Initial in-situ stress 1.2 MPa (total = effective in this case) 

Note that in this case, no analytical formula exists and the only comparison can be done 
with the results published in that reference. As a novelty, the amount of fluid being leaked 
into the rock continuum can also be evaluated. The original reference only gives results for 
the first 10 seconds and so initial comparisons (Figure 9) are made for that time.  
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a) b) 

c) d) 
Figure 9: Evolution with time up to 10 sec. of: a) crack mouth opening; b) crack mouth pressure;c) crack length; 

and d) fluid volume being leaked into the rock medium. All results compared with Boone & Ingraffea [11]. 

As in the previous case, once the model compares satisfactorily, the calculations are 
carried for longer times leading to the following results: 

a) b) 
Figure 10: Evolution of CMOD (a) and CMP (b) with time, up to 100 s. 
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Note that for those longer times the crack opening and crack length slow down 
considerably, which seems to suggest that for sufficiently long time a steady state solution 
could be reached. In this steady-state solution, the rate of fluid injected in the crack would 
equal the leakage rate from crack to medium.  

 

4 CONCLUDING REMARKS  
The modeling approach based finite elements with on zero-thickness interface elements 

including both solid mechanics, fluid flow and coupling aspects via cubic law, formulated in a 
monolithic fashion, seems well suited to represent the phenomenon of hydraulic fracturing. In 
the single fracture case presented, the results obtained exhibit a good match to classical 
formulae and existing literature, and extends the prediction consistently to longer injection 
times. Ongoing developments aim at extending the model presented to 3D, multiple 
interacting fractures and other challenging situations. 
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