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Abstract. In this paper, a computational framework based on the h-adaptive finite element 
strategy is presented for the solution of consolidation problems in geomechanics. The 
efficiency and performance of alternative error estimation techniques is demonstrated via the 
analysis of a slope stability problem.  
 
1 INTRODUCTION 

In the finite element analysis of geotechnical problems, displacements are often coupled 
with pore water pressures, resulting in a highly nonlinear system of equations, particularly in 
cases where the material response is nonlinear, drainage of excess poor pressures is rapid or 
where large changes in the geometry occur [11]. The solution of such problems by the finite 
element method requires discretisation of the domain into a finite number of elements. While 
the accuracy of the analysis is usually improved by increasing the number of elements, the 
efficiency of the analysis, in terms of computational time and required memory storage, 
significantly decreases as denser meshes are employed. However, in modelling consolidation, 
the behaviour of soil is influenced by drainage of excess pore pressures. As excess pore water 
gradients, and hence the rates of pore water dissipation may vary significantly between 
loading and their complete dissipation, the optimal finite element mesh at the start of the 
analysis will unlikely be economical for the final stages of the finite element computations. 

The adaptive finite element methods allow the discretisation of the physical domain to 
change based on a prescribed criterion and as they may modify and adapt the mesh during the 
course of an analysis, are suitable to deal with the time-dependent consolidation of soil. In the 
literature, the use of the r-adaptive method, such as the Arbitrary Lagrangian-Eulerian (ALE) 
strategy, has proved effective in solving large strain consolidation problems [8]. However, as 
the number of elements and the number of nodes do not change in the ALE method, the 
accuracy of the analysis strongly depends on the quality of initial mesh. Considering this fact, 
it seems that the h-adaptive finite element method, in which the topology may continuously 
change throughout the analysis, can be a more efficient strategy to deal with complex 
problems of consolidation in geomechanics. By using an h-adaptive technique, neither prior 
assumption nor judgment is required while discretising the region.   

The h-adaptive finite element method has been developed to increase the efficiency of 
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analysis by continuously subdividing elements into smaller areas in the regions of higher 
nonlinearity based on a measure of computational error.  In addition, a robust h-adaptive 
method can eliminate the issue of mesh distortion in problems involving relatively large 
deformations. Recently, the h-adaptive strategy has been widely used in problems of solid 
mechanics as well as in single-phase problems of geomechanics [5], [7], and [9]. However, 
the application of this robust technique in tackling the coupled analysis of consolidation has 
rarely been considered in the literature, mainly due to uncertainties in using an appropriate 
and efficient error estimator. El-Hamalawi and Bolton [4] introduced an error estimator for 
calculating the error in finite element domain. This error estimator was based on the 
maximum value of the L2 norm of displacements and the L2 norm of pore water pressures at 
nodal points.  

In this study, we present a general framework for the h-adaptive analysis of geotechnical 
problems, and consider three alternative error estimators based on the energy norm, Green-
Lagrange strain tensor, and the plastic dissipation. The efficiency as well as applicability of 
these error estimators is studied by analysing the long term stability of a vertical slope. 

2 H-ADAPTIVE FINITE ELEMENT METHOD 
In this paper, the h-adaptive method developed in [6] is extended to the consolidation 

analysis of geotechnical problems involving large deformation. The consolidation analysis by 
this method includes three main steps.  In the first step, the Updated Lagrangian (UL) method 
is employed to solve the global governing equations to achieve equilibrium.  Secondly, a new 
finite element mesh is generated based on the new sizes of the elements, usually obtained by 
an error estimator that determines which areas should be subdivided into smaller elements by 
measuring the error in each element.  In the third step, all state variables at integration points 
as well as nodal points are transformed from the old mesh to the new generated mesh.  These 
steps are briefly explained in the following. 

In analysis of coupled deformation and fluid flow for soils, the governing equations are 
usually derived from mechanical equilibrium of the soil skeleton and mass balance of the pore 
fluid [8]. The discretised governing equations can be written as  
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where Kep, H and L are the stiffness, flow and coupling matrices, respectively, U is the nodal 
displacement vector, P represents the nodal pore pressure vector, Q is the fluid supply vector, 
and Fext and Fint represent the external and the internal force vectors, respectively. 

After solving Equation (1), the coordinates of all nodal points are updated according to the 
incremental displacements. Then, an automatic mesh generation technique is employed which 
refines the mesh in the critical areas of discretisation based on the error   defined by 
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in which *
ele  is the error in each element, E represents the error in the finite element domain, 

and Nel is the total number of elements. If this error exceeds a prescribed accuracy ( ), a new 
element area, Anew, will be defined based on the old element area, Aold, and an equal 
distribution of the finite element error over the elements in the domain, according to   
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where p represents the polynomial order of displacement shape functions. 
 To estimate the error, three alternative error estimators are considered in this study. The 

first error estimator is based on the energy norm.  According to this estimator, the error in 
each element, *

ele , and the error in finite element domain, E,  are obtained by: 
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where Ngp and iw are the number of Gauss points and the standard Gauss quadrature weights, 
*  and *  represent the recovered stresses and incremental strains, respectively, and ̂  and 
̂  are the corresponding finite element approximations.  The second error estimator is based 

on the Green-Lagrange strain tensor [2], EG, and the errors in each element and the finite 
element are calculated by 
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where Vel is the volume of an element. The third error measurement is based on the plastic 
dissipation [10] and is defined by 
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in which p  is the plastic strain.  
After estimating the error and refining the mesh, all the history-dependent variables, 
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Coarse and impermeable boundary 

6H 

Figure 1: A vertical slope 
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displacements, and pore water pressures need to be transferred from the previous mesh to the 
new mesh. This process, which is known as remapping, must guarantee the plasticity 
consistency as well as the equilibrium in the new mesh. The nodal variables such as 
displacements can be remapped by a direct interpolation. However, for the values defined in 
Gauss points the Supper Convergent Patch (SPR) technique is used. For more details refer to 
[6] and [8]. 

3 NUMERICAL EXAMPLE 
The h-adaptive finite element method described in the previous section is implemented into 

SNAC, the in-house finite element code developed by the Geotechnical research group at the 
University of Newcastle, Australia [1].  SNAC was used to analyse the numerical example in 

this section.  To study the performance of the three error estimator techniques as well as the 
efficiency of the h-adaptive technique presented here we study the long term stability of a 5m 
high vertical slope.  The material properties describing the soil behaviour are shown in Table 
1. Also, the problem domain, its dimensions, and boundary conditions are shown in Figure 1.   

Table 1: The material properties describing the soil behaviour 
Property Value 

drained Young’s modulus, E  1000 kPa 
drained Poisson’s ratio, '  0.3 

drained cohesion, c  20 kPa 
drained friction angle,    o20  

dilation angle,    o0  
coefficients of permeability in x and y directions, x yk k  410 m/day 

unit weight of water,w 10 kN/m3 

Based on Culmann’s method of slope stability analysis, the critical height of a vertical 
slope for which the failure occurs, Hcr, is obtained by [3]  
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where  is the unit weight of soil.  To investigate the stability of a slope by the finite element 
method, a common practice is to gradually increase the unit weight of soil until failure occurs.  
Assuming Hcr = 5 m, the unit weight of the soil at failure, according to Equation (7), is 22.85 
kN/m3.  In order to investigate this value by the finite element method, the soil is assumed to 
be weightless at the beginning of the analysis.  Then, the unit weight of the soil is increased 
during a long period of time to ensure that any excess pore pressure dissipates, viz., the total 
analysis time exceeds 107 years.  
 In all analyses, 6-noded quadratic triangular elements with 6 integration points were used. 
The area of elements in the initial finite element mesh is assumed to be ~0.04H2, and the 
minimum area of elements during refinement is limited to 0.0004H2.  The finite element mesh 

at the beginning of the analysis includes 589 elements and 1264 nodal points as shown in 
Figure 2.  The soil is modelled as a Mohr-Coulomb material with a non-associated flow rule. 
The unit weight of soil at the failure, estimated by the error estimators considered in this 
study, and assuming small strain as well as large strain conditions, are summarised in Table 2. 

 Table 2: Finite element results for the unit weight of soil at failure 

Error estimator 
technique 

Small strain analysis Large strain analysis 

w (kN/m3) Error in w  (%) w (kN/m3) Error in w  (%) 

Energy norm 20.7 9.41 21.03 7.96 

Green-Lagrange strain  26.76 17.11 24.84 8.71 

Plastic dissipation 21.12 7.57 21.24 7.05 

According to Table 2, the error estimator based on the plastic dissipation outperforms the 
error estimators based on the Green-Lagrange strain tensor and the energy norm.  In addition, 
the results predicted by the large deformation analyses are more realistic than the results 
obtained by assumption of small strains.  As a typical visualisation, the finite element mesh at 
the end of analysis obtained by the plastic dissipation error estimator is depicted in Figure 3, 
which includes 3672 elements and 7489 nodal points.   

  
Figure 2: The initial finite element mesh of slope 
including 589 elements and 1264 nodal points 

Figure 3: Finite element mesh at the end of analysis 
based on the plastic dissipation error estimator and 
small strain assumption 
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4 CONCLUSIONS 
An h-adaptive finite element procedure for modelling consolidation problems, in which the 
displacements are coupled with pore fluid pressure, was presented.  Three alternative error 
estimators for controlling the refinement of the finite element mesh, based upon the energy 
norm, Green-Lagrange strain tensor, and plastic dissipation respectively, were considered.  
The performance and accuracy of the error estimators was studied by analysing long term 
stability of a vertical slope, assuming small strain as well as large deformation conditions.  
For the problem considered in this study, the numerical results indicated that the error 
estimator based on the plastic dissipation is more accurate that the other error estimators.  
Nonetheless, the performance and efficiency of these error estimators for coupled analysis of 
geomechanics problems require further investigation through solving a wider range of 
applications such as analysis of short term as well as long term bearing capacity of soil under 
a footing, consolidation settlement of soil under embankments, and analysis of short term 
stability of slopes.  
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