
XII International Conference on Computational Plasticity. Fundamentals and Applications 
COMPLAS XII 

E. Oñate, D.R.J. Owen, D. Peric and B. Suárez (Eds)

IMPLEMENTATION OF A LODE ANGLE SENSITIVE YIELD 
CRITERION FOR NUMERICAL MODELLING OF DUCTILE 

MATERIALS IN THE LARGE STRAIN RANGE 

T: COPPOLA*, L. CORTESE† AND F. CAMPANELLI†

* Centro Sviluppo Materiali, V. di Castel Romano 100, 00128 Rome, Italy 
e-mail: t.coppola@c-s-m.it, web page: http://www.c-s-m.it 

† Mechanical and Aerospace Engineering Department, Sapienza - Università di Roma, via Eudossiana, 
18, 00184 Rome, Italy 

Email: luca.cortese@uniroma1.it; flavia.campanelli@uniroma1.it- Web page: http://www.uniroma1.it 

Key words: Yield surface, Lode angle, Torsion, Steel, Large strain. 

Abstract. Ductile metallic materials are usually mechanically characterized in the large strain 
range by means of conventional laboratory tests, namely tensile and torsion test. The 
identification of the elastic-plastic equivalent stress-strain relation is made by using the 
widely accepted J2 hypothesis and isotropic behaviour, but results of dedicated tensile and 
torsion tests on different steel grades showed that it does not seem possible to identify a 
unique stress-strain curve, as expected on theoretical ground. Curves obtained from dissimilar 
tests, even though perfectly matching at small plastic strains, start differing significantly from 
medium strains. Starting from the experimental observations, a general yield surface has been 
developed based on a well established framework, including beside the J2 invariant also the 
J3 one. The new yield function has been coded inside a general purpose finite element code 
by means of dedicated user routines. Implications on the parameters identification and 
examples of the new yield surface application are discussed in the paper. 

1 INTRODUCTION 
To describe the evolution of the yield surface in ductile isotropic metals like steels, the 

most popular criterion is based on J2 plasticity. According to this, yielding and flow stress are 
governed by the second deviatoric stress invariant only.  
Limits of J2-plasticity are well-known since the works of Lode [1], Ros and Eichinger [2], 
Taylor and Quinney [3], who demonstrated that the model was not able to accurately 
reproduce all experimental evidences. Nevertheless, the correlation with experimental 
outcomes was found to be sufficiently good, in particular for the low-medium plastic range, 
so that the J2-plasticity, also thanks to its ease of calibration and implementation, has been 
widely employed for research purposes and industrial practice. The use of more 
comprehensive theories has been for a long time considered to add just more difficulties than 
benefits.  

Nowadays, cold forming of materials or increasing demand for strain based design require 
the modeling of material behavior in the high plastic strain regime and an accurate description 
of stress and strain distribution at critical points, originated from complex loading conditions. 

Implementation of a Lode angle sensitive yield criterion for numerical modelling of ductile materials 
in the large strain range 	
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Moreover, also ductile damage accumulation strongly depends on the state of stress, so that 
plasticity issues cannot be neglected for a good assessment of ultimate resistance of materials. 
It is then no coincidence that, in recent years, attempts to overcome J2-plasticity drawbacks 
have come from the ductile damage community. 

Several alternative plasticity models have been proposed. Starting from extensive 
experimental studies [5-7], Brunig [8] and Kuroda [9] have found out that a plasticity model 
involving the first stress invariant also allows a more accurate prediction of deformation, 
localization and fracture behaviors in pressure-sensitive materials. 

The contribution to yielding and flow stress of the third deviatoric stress invariant (J3) has 
also been investigated, and the opportunity of including it in the yield function has been 
discussed by the way of theoretical considerations, experimental tests and micromechanical 
analyses [10-12]. For many materials, the introduction of a J3 term in the yield function [13-
14] seems to accommodate a systematic discrepancy between the Von Mises (i.e. J2) criterion 
and the experimental results. Plasticity models involving three stress invariants are put forth 
and experimentally validated in [15-17]. A systematic review of not-J2 criteria, covering a 
wide range of different materials, is reported in [18]. 

Soil and rock materials have been systematically described [19-21] including the Lode 
stress parameter into the constitutive laws. For this purpose, a very general and robust 
formulation for the yield function has been proposed by Bigoni and Piccolroaz for 
geomaterials [21]. Such formulation has been customized in the present work to provide a 
method of differentiating between the Tresca and the Von Mises yield criteria. The new 
formulation has been applied to the plasticity modeling in the high strain regime of steels. 

2 MATERIALS AND MECHANICAL TESTING  
Three steels have been selected for mechanical testing: EN 10083 33MnB5, commonly 

used in automotive applications and API 5L grade 52 and 65, for pipeline construction. All 
steels are supplied in form of seamless pipes, with dimensions, overall mechanical properties 
and delivery state reported in table 1.   

Table 1: Mechanical properties of investigated steels 
Pipe dimension [mm]

Delivery state diameter thickness

Yield 
Stress 
[MPa] 

Ultimate 
Stress 
[MPa] 

Elongation at 
break 
[%] 

Grade 65 quenched and 
relieved 

406 20 440 530 18 

Grade 52 quenched and 
relieved 

168 5 395 565 33 

33MnB5 annealed 65 8 455 615 15 

The three steels can be regarded as fully isotropic due to the fact that all of them are 
supplied after the final high temperature heat treatment, which reset any deformation induced 
anisotropy due to the manufacturing process. Proof of  isotropic behavior is also verified from 
tensile properties in longitudinal and tangential direction [22].  
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All tensile and torsion specimens were extracted in the pipe longitudinal direction, at mid 
thickness position. The dimensions have been defined according to the available thickness. 
Round section tensile test specimens have a gage diameter and length of 6x40 mm for steels 
Grade 65 and 33MnB5 and 3x18mm for steel Grade 52. Torsion specimens have a gage 
diameter and length of 8x17mm for steel Grade 65, 5x10mm for steel 33MnB5 and 
3.5x10mm for steel Grade 52. 

Tension tests have been executed on a 100 kN servo-hydraulic MTS machine while torsion 
tests have been performed on a custom-made tension-torsion biaxial frame [23]. Continuous 
registration of axial displacement and force by an extensometer and a load cell during tensile 
tests allowed to obtain the true stress-true strain curves up to necking. The extended true 
stress-true strain curve beyond necking was characterized by means of an inverse calibration 
procedure [24-25], under the assumptions of J2-plasticity. Torque and rotation angle data, 
registered continuously during the torsion tests, have been used to determine true stress-true 
strain curves too: in this case, a direct calibration procedure is available [26] and  J2-plasticity 
was assumed as well. 

All tests were performed with at least two repetitions. In the following, the mean value is 
reported. Under the J2 hypothesis, the two curves coming out from tensile and torsion tests 
should be coincident, while a large difference was obtained, as can be observed in Figures 1-
3. It can be noticed that, except for steel Grade 52, the tensile and torsion curves are nearly 
coincident up to a plastic strain of about 0.15 which is equal or greater than the necking strain. 
After that point, the difference is becoming large, with torsion curves systematically lower 
than tension ones. It is so excluded any systematic error in the inverse calibration procedure 
used to determine the true stress-true strain curve after necking from tensile test. Moreover, if 
the extended curves were wrong, numerical simulation of tensile test using curves from 
torsion would match experimental results, while it was verified  that this does not happen. For 
the sake of brevity outcomes of such verification are not reported here. 
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Figure 1: Grade 65: True stress-true strain curves from tension and torsion tests 
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Figure 2: Grade 52: True stress-true strain curves from tension and torsion tests 
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Figure 3: 33MnB5: True stress-true strain curves from tension and torsion tests 

In order to account for this discrepancy, the hypothesis is that, at least at large strains, 
subsequent yielding is governed not only by the second deviatoric invariant stress (J2) but 
also by the Lode parameter, related to the third deviatoric invariant stress (J3). In other words, 
the section of the yielding surface in the deviatoric plane of the stress space is not a circle 
(von Mises criterion) but may be a generalized symmetric polygon. 
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3 A LODE ANGLE SENSITIVE YIELD CRITERION 
The proposed criterion is valid under the assumptions of material homogeneity and 

isotropy, plastic incompressibility, isotropic hardening behavior, pressure insensitivity (i.e., 
no yielding occurs under hydrostatic tension or compression). 

The yield function is a specialization of the unified yield function by Bigoni and Piccolroaz 
[21], which, in its formulation for pressure-insensitive materials, is reduced to: 

k
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(1)

where 23Jq =  is the equivalent Von Mises stress; g(X) is a function of the Lode parameter 

defined as 3
3

2
27

q

J
X =  and [ 1;1 ]X ∈ − : 

( )
1

arccos
3
1

6
cos)(

−















 −= XXg γπβ (2)

Through the function g(X) it is possible to model the shape of the yield surface deviatoric 
section [21]. Three material parameters are needed:
- k, which characterizes the isotropic hardening effect and depends on the accumulated 

plastic strain; 
- ]2;0[∈β which governs the so-called strength-differential phenomenon; 
- )1;0[∈γ which rules the polygonal shape to the yield surface and its corners rounding. 

Function (1) reduces to classical yielding function for specific values of β and γ : Von 
Mises criterion is obtained for β=1  and γ=0 ; Tresca criterion is obtained for β=1  and γ →1.
The modified plasticity model proposed is derived from (1), under the following 
developments. As first, the material constant k is obtained from (1) by imposing the condition 
for the uniaxial state of stress. In this case X=1, Yq σ=  and we obtain: 

)1( =
=

Xg
k Yσ (3)

Next, according to the observed experimental behavior, the material is assumed to obey the 
Von Mises criterion for low plastic deformations; beyond the threshold value (εth), subsequent 
yield surface is distorted in the deviatoric plane. Such a distortion is governed by the 
accumulation of plastic strain, so that the new yield surface can be described by: 
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The function (2) satisfies the convexity requirements also for variable parameters ,β γ
provided that functions (5) and (6) always satisfy the limits ]2;0[∈β and )1;0[∈γ . 
Note that for X=1 (as in tensile stress state), eq. (4) reduces to the Von Mises criterion 
independently from the level of plastic deformation: this is consistent with the assumption 
that led to (3). Since γ  is initially zero and must go towards 1, the yield surface section 
evolves to a polygonal shape with corners (Figure 4a). It will be shown in the next sections 
that the curves in Figures 1-3 diverge too much for the effect being caught by a variation of 
the yield function produced by the γ parameter alone. Concerning β, it follows that it should 
increase towards 2 to capture the experimental evidences; as a consequence of this parameter 
variation, the yield surface tends to lose its symmetry as shown (Figure 4b). 
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Figure 4: Yield surface, section with 03 =σ : (a) variation of γ at fix ed β ;  (b) variation of β at fixed γ

For the functions (5) and (6) simple exponential laws are chosen to describe variation of β
and γ  with equivalent plastic strain: 
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The parameters to be identified are so thε , a , b. Besides the yield function, a proper flow 
rule has to be postulated. Here, an associated flow rule is assumed:  
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where pdε  is the equivalent plastic strain increment and 
ijd

dF

σ
 are the derivatives of eq. (1) 

with respect to tensor stress components. As stated in [14], as far as pressure-sensitive 
materials concern, the flow rule is associative in the deviatoric plane only, in order to fulfill 
plastic incompressibility. 

4 IMPLEMENTATION IN FINITE ELEMENT CODE 
The implementation of the yield criterion in a Finite Element code requires the coding of 

the function F inequation (1) together with its derivatives in equation (9). The Finite Element 
code used is Msc.Marc which, through two specific user routines [28], allows this separately. 

The function F doesn’t require special mention. About derivatives (9), two schemes have 
been adopted: to write directly the (9) expanded starting from (1) or use a numerical scheme. 

For the first case, it is easier to expand first  the derivative of F respect to q and g: 
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Next we can expand the derivatives of q and g respect to stress components: 
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Special care is to be taken in correspondence of corners ( 1=γ ; 1±=X ),  as the normal to 
the yield surface has an undetermined direction.  

For the second case, a simple discretization scheme is used, according to the following: 
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The advantage of this scheme is that it is of general validity, being applicable to any yield 
surface F formulation. 
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5 MODEL CALIBRATION AND VERIFICATION 

The model (4) together with the functions (5) and (6) needs the three parameters  thε , a , b
to be identified from experimental data. The threshold strain is obtained directly from the 
plots in Figure 1-3. The parameters a and b can be easily determined as well from the same by 
plotting the ratio of the torsion to tension curve as function of the true plastic strain and by 
using an error minimization technique to find the optimum values. So the identification of the 
three parameters can be obtained directly from fitting of experimental data. By using this 
procedure for the steels under study, the following parameter values are obtained (Table 1). 

Table 1: parameters for the yielding surface model 

εεεεth a b 

Grade 65 0.16 4.2 0.15 
Grade 52 0.0 15 0.25 
33MnB5 0.025 5 0.45 

The ratio R of torsion to tension curve may be written in terms of (4) by putting in the 
function g(X) the value X=1 for tension and X=0 for torsion, obtaining: 

( )
( )

0
1)

g Xg0
R

g1 g X

=
= =

=
(10)

The yield surface model (4) response in terms of ratio R, fitted by the parameters value of 
Table 1, is represented in Figures 5-7 for the three steels. It can be seen that the simple 
exponential formulation proposed is able to reproduce with good accuracy the evolution of the 
ratio R. It is to be noted that the above parameters describe the distortion of the yield surface 
section in the deviatoric plane, which evolves from the initial von Mises round section toward 
a polygonal section. This may suggest a possible link with the strain fracture limits which 
depend on the J3 invariant too [27]. 
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Figure 6: 33MnB5, comparison between experimental tests and model fitting 

The tensile and torsion tests have been next modeled by means of Finite Elements. The 
commercial general purpose code Msc.Marc, release 2010, has been used together with 
dedicated user routines for the yield surface and its derivatives calculation. The experimental 
tests have been modeled by using an axisymmetric scheme.  

For tensile tests modeling, standard four nodes, full integration axisymmetric elements 
have been used, while for torsion test modeling a special axisymmetric element available in 
the Msc.Marc library has been used [28] which includes an extra degree of freedom at nodes 
for twist and is also suitable for large displacement and finite plasticity options. Each test has 
been modeled and the Finite Element response has been extracted and plotted in terms of 
remote global quantities, such as load vs. clip gauge displacement for tensile tests and torque 
vs. rotation for torsion tests. The comparison between the experimental curves and the 
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calculated ones is shown in Figures 7-9. It can be observed a very good match in all cases, 
that would be impossible by using the standard von Mises criterion.  
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Figure 7: Grade 65, global response comparison between tensile (left) and torsion (right) experimental tests and 
finite element model incorporating the new yield criterion 
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Figure 9: 33MnB5, global response comparison between tensile (left) and torsion (right) experimental tests and 
finite element model incorporating the new yield criterion 

6 CONCLUSIONS 
Starting from a set of conventional experimental tests on steels, namely tensile and torsion 

tests up to fracture, a general yield function has been developed based on a well established 
framework, including beside the J2 invariant also the J3 one. The proposed yield function has 
been embedded into a general purpose Finite Element code and tested against experimental 
results to verify the function accuracy. The distortion of the yield surface section in the 
deviatoric plane, which evolves from the initial von Mises round section toward a polygonal 
section, may suggest a possible link with the strain fracture limits which depend on the J3
invariant too. 
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