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„“The Answer to the Great Question... Of Life, the
Universe and Everything... Is... Forty-two”, said
Deep Thought, with infinite majesty and calm.

“Forty-two!” yelled Loonquawl. “Is that all you’ve got
to show for seven and a half million years’ work?”

“I checked it very thoroughly,” said the computer,
“and that quite definitely is the answer. I think the
problem, to be quite honest with you, is that you’ve
never actually known what the question is.”

— Douglas Adams,
The Hitchhiker’s Guide to the Galaxy
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Abstract

Fluid flow, solute transport, and chemical reactions in porous media are highly relevant for
multiple applications and in several fields of knowledge. Aquifers are a typical example
of porous media, but many others exist, like for instance biological tissues or wastewater
treatment filters. Modeling and simulation of transport processes in porous media can be
done through Lagrangian methods, which have certain advantages with respect to clas-
sical Eulerian methods. Among these advantages, a key one is that the solution of the
advective transport term does not generate any numerical dispersion or instabilities, not
even in those cases that are strongly dominated by advection, as opposed to what hap-
pens with classical Eulerian methods. However, the incorporation of chemical reaccions in
the Lagrangian modeling context involves additional challenges and considerations with
respect to conservative transport modeling. In this thesis, which is presented as a com-
pendium of publications, new techniques are developed for modeling reactive transport
of solutes in porous media from a Lagrangian perspective. Throghout the thesis, two dif-
ferent types of numerical particles are studied: mass-particles and fluid-particles. In both
cases, continuum-scale dispersion (or at least part of it) is represented by random walks of
numerical particles. Also in both cases, reactive transport simulations require interaction
between nearby particles, either for directly computing reactions (when mass-particles are
used) or for exchanging solutes (in the fluid-particle case). For this reason, a large part
of this thesis revolves around the study of kernel functions, whose purpose is to math-
ematically represent the support volume of (and interaction between) particles. In this
thesis it is shown that these functions, optimized using statistical theories of Kernel Den-
sity Estimation (KDE), may be used to simulate all kinds of nonlinear reactions with the
mass-particle method known as Random Walk Particle Tracking (RWPT). Then, a new ap-
proach is developed for locally optimizing the particles’ support volume (represented by
the kernel bandwidth), such that it adapts its size and shape in time and space to minimize
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error. Thereafter, this technique is implemented in a hybrid manner in combination with
a spatial discretization (binning) to improve its computational efficiency and to allow the
incorporation of boundary conditions. Regarding fluid-particles, in this thesis it is shown
that two methods that exist in the Lagrangian modeling literature (Smoothed Particle Hy-
drodynamics or SPH, and Mass Transfer Particle Tracking) are mathematically equivalent,
and they only differ in the choice of kernel used for the solute exchange between particles,
which simulates dispersive transport. Finally, a novel Lagrangian fluid-particle method is
developed, with an algorithm based on Multi-Rate Interaction by Exchange with the Mean
(MRIEM), which enables to account for local-scale concentration fluctuation effects, as well
as their generation, transport and decay. The method is shown capable of reproducing ex-
perimental results of reactive transport in a porous medium with locally mixing-limited
conditions.
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Resumen

El flujo de fluidos, el transporte de solutos, y las reacciones químicas en medios porosos son
procesos de gran relevancia en multitud de aplicaciones y ámbitos. Los acuíferos son un
típico ejemplo de medios porosos, pero existen muchos más, como por ejemplo los tejidos
biológicos, o los filtros para tratamiento de aguas residuales. La modelación y simuación
de procesos de transporte de solutos en medios porosos puede ser llevada a cabo mediante
métodos Lagrangianos, que presentan ciertas ventajas respecto a los clásicos métodos Eule-
rianos. Entre esas ventajas, una de las principales es que la solución del término advectivo
del transporte no genera problemas de dispersión numérica o inestabilidades, ni siquiera
en esos casos fuertemente dominados por la advección, a diferencia de lo que sucede con
los métodos Eulerianos clásicos. Por otro lado, la incorporación de reacciones químicas
en el contexto Lagrangiano conlleva retos y consideraciones adicionales en relación a las
del transporte conservativo. En la presente tesis, presentada en formato de compendio
de publicaciones, se desarrollan nuevas técnicas para modelar el transporte reactivo de
solutos en medios porosos desde una perspectiva Lagrangiana. A lo largo de la tesis, se
estudian dos tipos distintos de partículas numéricas: partículas de masa y partículas de
fluido. En ambos casos, la dispersión a la escala de continuo (o almenos una parte de la
misma) es representada mediante desplazamientos aleatorios de las partículas numéricas.
También en ambos casos, las simulaciones de transporte reactivo requieren la interacción
entre partículas cercanas, ya sea para computar directamente las reacciones (cuando se
usan partículas de masa) o para intercanviar solutos (en el caso de partículas de fluido).
Por esa razón, gran parte de la tesis se desarrolla entorno al estudio de las funciones ker-
nel, las cuales tienen la finalidad de representar matemáticamente el volumen de soporte
de (e interacción entre) las partículas. En la presente tesis se demuestra que estas fun-
ciones, optimizadas utilizando teorías estadísticas de estimación de densidad por kernels,
pueden ser utilizadas para reproducir todo tipo de reacciones no lineales con el método
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basado en partículas de masa conocido como “Random Walk Particle Tracking”. A contin-
uación, se desarrolla una nieva forma de optimizar localmente el volumen de soporte de
las partículas (representado por el ancho de banda del kernel) de forma que se adapte en el
tiempo y en el espacio para reducir el error. Posteriormente, esta técnica es implementada
de manera híbrida en combinación con una discretización espacial para mejorar su eficien-
cia computacional y posibilitar la incorporación de condiciones de contorno. En cuanto al
caso de partículas de fluido, en esta tesis se demuestra que dos métodos existentes en la
literatura (“Smoothed Particle Hydrodynamics” o SPH, y “Mass Transfer Particle Tracking”)
son matemáticamente equivalentes, y que se diferencian exclusivamente por el kernel que
se usa en el intercanvio de solutos entre partículas, el cual simula el transporte dispersivo.
Finalmente, se desarrolla un nuevo método Lagrangiano de partículas de fluido, con un
algoritmo basado en la Interacción por Intercambio con la Media a Múltiples Velocidades
(MRIEM, por sus siglas en inglés), que permite reproducir el efecto de las fluctuaciones
de concentración a la escala local, así como la generación, transporte y destrucción de las
mismas. Se demuestra que el método es capaz de reproducir resultados experimentales de
transporte reactivo en un medio poroso en condiciones limitadas por la mezcla.
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Resum

El flux de fluids, el transport de soluts, i les reaccions químiques en medis porosos són
processos amb una gran rellevància en multitud d’aplicacions i àmbits. Els aqüífers són un
típic exemple de medi porós, però n’existeixen molts d’altres, com per exemple els teixits
biològics, o els filtres per tractament d’aigües residuals. La modelació i simulació de pro-
cessos de transport de soluts en medis porosos pot ser duta a terme mitjançant mètodes
Lagrangians, que presenten certs avantatges respecte als clàssics mètodes Eulerians. Entre
aquests avantatges, un dels principals és que la solució del terme advectiu del transport
no genera problemes de dispersió numèrica o inestabilitats, ni tan sols en aquells casos
fortament dominats per l’advecció, a diferència del que passa amb els mètodes clàssics Eu-
lerians. No obstant això, la incorporació de reaccions químiques en el context Lagrangià
comporta reptes i consideracions addicionals respecte de les del transport conservatiu. En
aquesta tesi, presentada en format de compendi de publicacions, es desenvolupen noves
tècniques per a modelar el transport reactiu de soluts en medis porosos des d’una perspec-
tiva Lagrangiana. Al llarg de la tesi, s’estudien dos tipus diferents de partícules numèriques:
partícules de massa i partícules de fluid. En ambdós casos, la dispersió a l’escala de
continuu (o almenys una part de la mateixa) és representada mitjançant desplaçaments
aleatoris de les partícules numèriques. També en ambdós casos, les simulacions de trans-
port reactiu requereixen la interacció entre partícules properes, ja sigui per a computar
directament les reaccions (quan s’usen partícules de massa) o per a intercanviar soluts (en
el cas de partícules de fluid). Per això, gran part de la tesi gira al voltant de l’estudi de
les funcions kernel, les quals tenen la finalitat de representar matemàticament el volum
de suport de (i interacció entre) les partícules. En aquesta tesi es demostra que aquestes
funcions, optimitzades fent servir teories estadístiques d’estimació de densitat per kernels,
poden ser utilitzades per a reproduir tot tipus de reaccions no lineals amb el mètode basat
en partícules de massa conegut com a “Random Walk Particle Tracking”. Seguidament, es
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desenvolupa una nova manera d’optimitzar localment el volum de suport de les partícules
(representat per l’ample de banda del kernel), de manera que s’adapti en el temps i l’espai
per reduir l’error. Posteriorment, aquesta tècnica és implementada de forma híbrida en
combinació amb una discretització espaial per a millorar-ne l’eficiència computacional i
possibilitar la incorporació de condicions de contorn. Pel que fa al cas de partícules de
fluid, en aquesta tesi es demostra que dos mètodes existents a la literatura (“Smoothed
Particle Hydrodynamics” o SPH, i “Mass Transfer Particle Tracking”) són matemàticament
equivalents, i que es diferencien únicament pel kernel que es fa servir en l’intercanvi de
soluts entre partícules, que simula el transport dispersiu. Finalment, es desenvolupa un
nou mètode Lagrangià de partícules de fluid, amb un algoritme basat en Interacció per
Intercanvi amb la Mitja a Múltiples Velocitats (MRIEM, per les seves sigles en anglès), que
permet reproduir l’efecte de les fluctuacions de concentració a l’escala local, així com la
seva generació, transport i destrucció. Es demostra que el mètode és capaç de reproduir
resultats experimentals de transport reactiu en un medi porós en condicions limitades per
la mescla local.
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1Introduction

1.1 Background, motivation and goals
Advances in numerical modeling are subject, inevitably, to the available hardware technol-
ogy. Because of this, modeling of flow and transport in porous media is a relatively young
discipline that has experienced a profound renovation every decade since the beginning
of the information age. The earliest hydrogeological models were based on low-resolution
Eulerian grids on which flow and transport were simulated in a medium with homoge-
nized (upscaled) properties (such as the early work of Pinder and Bredehoeft, 1968). Early
research was thus placed on finding the values of lumped parameters that best could rep-
resent the system at some medium-large scales (see, e.g., Gelhar and Axness, 1983; Dagan,
1989), initially based on some assumptions regarding transport processes, such as Fickian-
ity. It was soon established by the scientific community that the heterogeneous nature of
porous media at multiple scales of observation could not be faithfully represented by such
kind of approach. On the other hand, the need for fine discretizations in realistic models
involving millions of nodes challenged the capability of early computers. Models of flow
and transport in highly heterogeneous porous media started to gain importance, including
high-resolution models of media with randomly distributed properties (see, e.g., Ababou
et al., 1989; Tompson and Gelhar, 1990).

By dropping the assumption of macroscale Fickian behavior and replacing it with an ex-
plicit representation of the heterogeneous velocity field, transport models tend to become
more advection-dominated, since dispersivity values are known to depend on the observa-
tion scale (Bear and Cheng, 2010). In these conditions, Eulerian approaches suffer from
computational issues such as numerical dispersion and instabilities. These artifacts can
strongly undermine the accuracy of reactive transport models, especially in the occurrence
of strongly nonlinear reaction systems. The use of high-resolution schemes with a flux lim-
iter can certainly mitigate these problems, but only up to moderate values of the grid-Péclet
number (which quantifies the relative strength of advection with respect to diffusion within
a computational cell). Thus, oftentimes, the only way to reach adequate stability and ac-
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curacy with Eulerian methods is to use extremely fine grids, increasing the computational
demands up to challenging (or even unfeasible) levels (Sanchez-Vila and Fernàndez-Garcia,
2016). Besides these issues, the use of classical Eulerian approaches to reactive transport
modeling involves ignoring the inherent multiscale nature of porous media and their het-
erogeneities (Dentz et al., 2011). Below the working scale and all the way down to the pore
scale, irregular and complex flow patterns are found in natural porous media, producing
local incomplete mixing effects that classical approaches are unable to capture (Valocchi et
al., 2019). The characteristic manifestation of these effects is the segregation of reactants,
which tends to reduce effective reaction rates (Chiogna and Bellin, 2013). This is exem-
plified by the fact that observed reaction rates in the field are often lower than predicted
by controlled, well-mixed batch laboratory experiments (Raje and Kapoor, 2000; Gramling
et al., 2002; Kang et al., 2019).

Lagrangian methods, which have gained popularity in the recent years, can be a conve-
nient and efficient alternative to their Eulerian counterparts. By solving the transport using
numerical elements (particles) that move along with advection, one avoids the aforemen-
tioned problems associated with the Eulerian solution of the advection term. As a conse-
quence, Lagrangian approaches are virtually free of instabilities and numerical dispersion,
and particularly well-suited for solving advection-dominated problems such as the strong-
shear irregular flows that characterize heterogeneous porous media (Benson et al., 2017).
Two big families of Lagrangian methods for transport simulation may be distinguished:
mass-particle approaches, in which each individual particle represents some amount of
solute mass (e.g, LaBolle et al., 1996); and fluid-particle approaches, in which a parti-
cle represents some amount of fluid with associated solute concentrations (e.g, Herrera
et al., 2009). Each of these approaches has their own strengths and weaknesses: with
mass-particles, advection-dispersion can be entirely simulated by means of the family of
random walk methods, and no interaction between particles is required in the absence
of nonlinear chemical reactions. Another advantage of the mass-particle approach is that
different transport properties (for instance, different retardation or diffusion coefficients)
can be straightforwardly assigned to each particle, depending on the chemical species they
represent. For fluid-particles, on the other hand, simulating dispersion involves solute mass
exchange (i.e., interaction) between particles. This implies, for instance, that “empty” par-
ticles need to be placed in all locations where solute mass can potentially exist during the
simulation. On the other hand, a remarkable advantage of fluid-particle approaches is that,
since concentrations are defined on particles, the implementation of chemical reactions is
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trivial (Benson and Bolster, 2016). Random Walk Particle Tracking (RWPT) methods (Sala-
mon et al., 2006) belong to the mass-particle family of Lagrangian approaches. Although
the previously mentioned advantages have made RWPT highly – and increasingly – pop-
ular among scientists and modelers, most well-established implementations are restricted
to conservative (non-reactive) transport and linear reactions (e.g., Henri and Fernàndez-
Garcia, 2014). Since solute concentrations (which drive chemical reactions) are not readily
available in mass-particle methods, but come only from postprocessing of particle positions
(Fernàndez-Garcia and Sanchez-Vila, 2011), the incorporation of nonlinear chemical re-
actions is non-trivial, and it involves some form of interaction between nearby particles
(Benson and Meerschaert, 2008).

The purpose of this thesis is to improve our ability to model reactive transport of solutes
in porous media from a Lagrangian perspective. Before this thesis work, only linear and
bilinear reactions had been implemented in mass-particle (RWPT) transport models. More
complex reaction systems had been simulated in a fluid-particle framework (Engdahl et al.,
2017), an issue that is also explored within this thesis.

1.2 Layout
This doctoral thesis is presented as a compendium of publications, all of them being related
to Lagrangian modeling approaches. The compendium comprises the following four studies
which are published in journals that lie within the category Water Resources in JCR, all
being classified within the first quartile (Q1):

• Sole-Mari, G., Fernàndez-Garcia, D., Rodríguez-Escales, P., & Sanchez-Vila, X. (2017).
A KDE-based random walk method for modeling reactive transport with complex kinetics
in porous media. Water Resources Research, 53, 9019 9039.
DOI:10.1002/2017WR021064

• Sole-Mari, G., & Fernàndez-Garcia, D. (2018). Lagrangian modeling of reactive trans-
port in heterogeneous porous media with an automatic locally adaptive particle support
volume. Water Resources Research, 54, 8309 8331. DOI:10.1029/2018WR023033

• Sole-Mari, G., Bolster, D., Fernàndez-Garcia, D., & Sanchez-Vila, X. (2019a). Particle
density estimation with grid-projected and boundary-corrected adaptive kernels. Ad-
vances in Water Resources, 131, 103382. DOI:10.1016/j.advwatres.2019.103382
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• Sole-Mari, G., Schmidt, M. J., Pankavich, S. D., & Benson, D. A. (2019b). Numerical
equivalence between SPH and probabilistic mass transfer methods for Lagrangian simu-
lation of dispersion. Advances in Water Resources, 126, 108115.
DOI:10.1016/j.advwatres.2019.02.009

Additionally, a fifth research article is included as an Appendix. On the date of submission
of this thesis, this fifth manuscript is under review at Water Resources Research and acces-
sible with digital object identifier through the Earth and Space Science Open Archive:

• Sole-Mari, G., Fernàndez-Garcia, D., Sanchez-Vila, X., & Bolster, D. (2020). La-
grangian modeling of mixing-limited reactive transport in porous media. Water Re-
sources Research (Under Review). DOI:10.1002/essoar.10501517.1

In the following, the motivation, scope and contents of each of the papers is summarized,
and their contribution to the overall goal of this thesis is elucidated.

Since particle interaction is a key aspect of Lagrangian reactive transport simulation, a sig-
nificant part of this thesis is dedicated to the study of kernel functions, which are used to
model the aforementioned interactions. The first paper of the compendium (Sole-Mari et
al., 2017) shows that the RWPT formulation for the (bilinear kinetic) reaction probability
of a particle based on collocation probability is mathematically equivalent (notwithstand-
ing a substantially different connotation for the interaction bandwidth parameter) to the
Kernel Density Estimation (KDE) approach, in which each particle location is assigned a
probability density function (pdf), instead of a fixed deterministic position, to deal with
the problem of subsampling inherent to the numerical discretization. Then, the expression
for the probability of reaction is extended to arbitrarily complex kinetics, showing for the
first time that reactive random walks are not subjected to limitations for the reaction rate
laws.

The kernel function used in the cited work follows the classical principles of KDE, which
implies that the kernel size (bandwidth) is the same for all particles in the model. The accu-
racy of this approach may then be limited by the degree of spatial uniformity of the particle
plume. This could be a limitation for modeling reactive transport in strongly heteroge-
neous porous media, characterized by marked spatial and temporal variations in transport
behavior. Hence, in the second paper of the compendium (Sole-Mari and Fernàndez-Garcia,
2018), a novel approach is developed to incorporate spatial variations in the kernel size
and shape, which are optimized to minimize the local KDE error. As a result, the local

4 Chapter 1 Introduction



kernel functions adapt in space and time mimicking the current features of the nearby
concentration field.

In the follow-up paper, the third of this compendium (Sole-Mari et al., 2019a), a hybrid
implementation method is designed which allows the use of local kernels to reconstruct
the concentrations with high efficiency while satisfying the boundary conditions. While the
previous work (Sole-Mari and Fernàndez-Garcia, 2018) depended on some global optimal
kernel for the estimation of the concentration curvatures, in this work a fixed-point itera-
tion method is used, which means the previous size and shape of the kernel are the only
inputs for the next optimization step. The developments and findings described up to this
point allow the implementation of arbitrarily complex kinetic and equilibrium reactions
on mass-particles (RWPT), efficiently, fully considering the impact upon reactions of the
presence of boundaries of different types.

In order to explore alternatives, the use of fluid-particles is then investigated. In this case,
since concentrations are defined on particles, the implementation of reactions is straight-
forward, and the interaction between particles occurs as a mass exchange in the dispersion
step. In the fourth paper of this compendium (Sole-Mari et al., 2019b), two methods of the
fluid-particle class (SPH and probabilistic mass transfer methods) are analyzed, showing
that they are in fact numerically equivalent, the only difference (aside from the rationale
for their derivation) being the type of criterion for the selection of the kernel function size.
Motivated by this finding, a study of the influence of the kernel size on the simulation re-
sults (for a simple point diffusion problem), as well as the relation with particle density,
disorder and time step length, is conducted.

A key observation is that a sufficiently fine discretization (including a large number of
particles) always leads to the exact solution of the Advection Dispersion Equation (ADE).
In the past, the latter has been found unable to properly upscale reactive transport in
porous media with locally mixing-limited conditions. For this reason, in the Appendix and
as an ending to this thesis, a novel fluid-particle Lagrangian approach (Sole-Mari et al.,
2020) is developed to specifically account for the generation, transport and decay of local
concentration fluctuations (and their impact on chemical reactions).
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2Discussion and Conclusions

In this thesis, Lagrangian approaches have been shown to offer a valid alternative for mod-
eling reactive transport in porous media. It has been shown for the first time that stochastic
reactive random walks could be applied to any type of kinetic reaction rate laws, instead of
being limited to bimolecular reactions with second-order kinetics (Sole-Mari et al., 2017).
Thanks to the use of optimal kernel functions, one-dimensional reactive transport simula-
tions featuring complex kinetic reactions can converge to the exact solution for very small
particle numbers. On the other hand, the cited work also exemplifies that reaction kinetics
may not always be important, and that using previously existing Lagrangian techniques,
which involve the assumption of second-order kinetics, may be a good proxy when the
reaction process is mixing-limited.

The idea of extending the KDE approach to multidimensional heterogeneous aquifers mo-
tivated the development of a new optimal kernel methodology (Sole-Mari and Fernàndez-
Garcia, 2018), in which the particle support volume, represented by the multi-dimensional
kernel bandwidth, may locally modify its size and shape based on the neighboring particle
distribution, adapting itself to the features of the nearby concentration field. Results re-
vealed that simply allowing local adaptivity of the kernel size has a stronger impact on the
accuracy of the results than allowing for additional degrees of freedom corresponding to
the stretching and rotation of the local kernel. Most of the error reduction associated with
the use of a local kernel function occurs in areas of relative low particle density, because
the kernel is allowed to grow and reduce density estimation noise in those areas instead
of being controlled by the features of high density / high curvature areas, in which a large
kernel would cause over-smoothing. Tests exemplify how, for fixed initial and boundary
conditions of the flow and transport problem, the distributions of local kernel sizes and
elongations change when problem variables such as the Péclet number (through the disper-
sivity) or the log-conductivity variance are modified, mimicking the features of the solute
plume deformation under the competition between advective compression and solute dis-
persion. This results in a more computationally efficient use of the particle number, i.e.,
less numerical particles are required in order to achieve the same degree of accuracy.
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Despite the significant computational benefit of the adaptive kernel, large particle num-
bers may still result in long calculation times if the KDE algorithm needs to run on every
particle. While this may be solved by sampling the density on pilot points (Sole-Mari
and Fernàndez-Garcia, 2018), an even more efficient as well as mass-conserving strategy
consists in implementing the KDE method on a pilot binning (Sole-Mari et al., 2019a).
While unmodified KDE may produce unphysical artifacts near the domain boundaries, the
hybridization between KDE and binning enables the introduction of corrections near the
boundaries so that the relevant boundary conditions can be fulfilled. It has been shown
that the local kernel optimization problem may be solved by fixed-point iteration, an ap-
proach which displayed robustness to reach the correct solution regardless of the starting
value in an example implementation.

Lagrangian approaches other than RWPT have also been explored in this Thesis. The use
of fluid-particle approaches instead of mass-particle ones is attractive for reactive transport
simulations since no interpolation is required to access the solute concentration values,
which are instead defined directly on particles. On the other hand, dispersion processes
must involve solute-mass exchange between particles. An important finding included in
this thesis is the equivalence between two major fluid-particle methods for transport simu-
lation (Sole-Mari et al., 2019b), namely smoothed particle hydrodynamics (SPH) and prob-
abilistic mass transfer methods, also known as collocation methods. It has been shown that
besides the inherent differences in their derivation, these two approaches only differ in the
selection criterion for the kernel size in the mass exchange algorithm. Analyses reveal that,
in some cases, the classical principles of SPH kernel selection (which depends only on par-
ticle density) may apply. But for dense-enough particle populations, the collocation kernel
(which is independent of particle density and instead controlled by Δt) becomes the better
choice. This “sufficient” density value is significantly lower for random-walking particles
than for static, randomly-placed particles.

Some authors have explored before the combined use of random walks and mass exchange
between fluid-particles to emulate reactant segregation effects such as those characterizing
transport in heterogeneous porous media. However, such approaches rely on the segrega-
tion effects associated to low particle numbers, that is, they converge towards a fully-mixed
behavior as the particle number is increased. In this thesis, it has been shown that by using
a more sophisticated mass exchange algorithm, denoted as Multi-Rate Interaction by Ex-
change with the Mean (MRIEM), one can simulate solute transport with incomplete mixing
effects reproducing the main features of locally mixing-limited transport in actual porous

8 Chapter 2 Discussion and Conclusions



media (Sole-Mari et al., 2020). The proposed approach constitutes a general mathematical
modeling approach, in which features such as the particle number, smoothing operator, or
time-step length are just numerical discretization aspects. The Eulerian description of the
concentration fluctuations (local covariance) includes a source term, according to which
the action of hydrodynamic dispersion on concentration gradients generates concentration
covariance. On the other hand, covariance is destroyed at an effectively time-varying rate
controlled by the MRIEM sub-model, which represents the local-scale diffusive mixing pro-
cess. At the same time, the local covariance is transported at the coarse scale by advection-
dispersion according to the same upscaled velocity and dispersion values experienced by
the concentrations. A first implementation of the model has been successfully applied to re-
produce data from laboratory experiments of mixing-limited reactive transport. It is found
that the model’s local-scale asymptotic mixing length matches the estimated typical pore
size of the physical experiment, suggesting that the model parameter value is physically
meaningful.

Overall, this thesis is a significant step forward in the applicability of Lagrangian methods
to overcome some of the limitations that have been described in the literature for their ap-
plication in the simulation of nonlinear reactive transport in complex heterogeneous media.
With the new capabilities for solving complex reactions in an efficient manner, Lagrangian
methods become a valid alternative over Eulerian methods to solve intricate problems, es-
pecially when considering their potential for improvement in terms of parallelization of the
codes, and as computational capabilities of computers keep growing.
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Abstract In recent years, a large body of the literature has been devoted to study reactive transport of 
solutes in porous media based on pure Lagrangian formulations. Such approaches have also been extended 
to accommodate second-order bimolecular reactions, in which the reaction rate is proportional to the con- 
centrations of the reactants. Rather, in some cases, chemical reactions involving two reactants follow more 
complicated rate laws. Some examples are (1) reaction rate laws written in terms of powers of concentra- 
tions, (2) redox reactions incorporating a limiting term (e.g., Michaelis-Menten), or (3) any reaction where 
the activity coefficients vary with the concentration of the reactants, just to name a few. We provide a meth- 
odology to account for complex kinetic bimolecular reactions in a fully Lagrangian framework where each 
particle represents a fraction of the total mass of a specific solute. The method, built as an extension to the 
second-order case, is based on the concept of optimal Kernel Density Estimator, which allows the concen- 
trations to be written in terms of particle locations, hence transferring the concept of reaction rate to that of 
particle location distribution. By doing so, we can update the probability of particles reacting without the 
need to fully reconstruct the concentration maps. The performance and convergence of the method is 
tested for several illustrative examples that simulate the Advection-Dispersion-Reaction Equation in a 1-D 
homogeneous column. Finally, a 2-D application example is presented evaluating the need of fully describ- 
ing non-bilinear chemical kinetics in a randomly heterogeneous porous medium. 

 

 
 

1. Introduction 

Random Walk Particle Tracking Methods (RWPTMs) offer a convenient Lagrangian numerical approach to 
simulate solute transport in porous media. RWPTMs have been demonstrated to be particularly efficient in 
dealing with aquifer heterogeneities and nonreactive transport involving a large variety of complex pro- 
cesses such as non-Fickian transport and multiple porosity systems (Benson & Meerschaert, 2009; Berkowitz 
et al., 2006; Cvetkovic & Haggerty, 2002; Delay & Bodin, 2001; Dentz & Castro, 2009; Henri & Fern'andez- 
Garcia, 2014, 2015; Huang et al., 2003; LaBolle et al., 1996; Riva et al., 2008; Salamon et al., 2006a, 2006b; 
S'anchez-Vila & Sol'ıs-Delf'ın, 1999; Tsang & Tsang, 2001; Wen & Go'mez-Hern'andez, 1996; Willmann et al., 
2013; Zhang & Benson, 2008). This family of methods essentially consists of discretizing the solute mass 
(existing initially or injected through the boundaries with time) into a finite number of particles, each repre- 
senting a fraction of the total mass, and then moving such particles according to simple relationships that 
represent the transport mechanisms considered (e.g., advection, dispersion or diffusion into stagnant 
zones). RWPTMs are mass conservative by construction, and avoid some of the inherent numerical difficul- 
ties associated with Eulerian approaches, i.e., numerical dispersion and oscillations (Benson et al., 2017; Sala- 
mon et al., 2006a). 

 
 

 

  
ATTENTION¡¡ 

Pages 18 to 38 of the thesis are available at the editor’s web 
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR021064 

 
  1 

PUBLICATIONS 

mailto:guillem.sole.mari@upc.edu
https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017WR021064


 
 
 

 
 

Water  Resources Research  
 

RESEARCH ARTICLE 
10.1029/2018WR023033 

 
Key Points: 
• We present a locally adaptive kernel 

density estimator for computation of 
chemical reactions in random walk 
models of solute transport 

• The support volume adapts to the 
nearby particle distribution, 
adjusting its size and stretching 
along the direction of minimum 
curvature 

• The local approach outperforms the 
existing methods when estimating 
concentrations and reaction rates in 
a heterogeneous porous medium 

 
 
 

Correspondence to: 
G. Sole-Mari, 
guillem.sole.mari@upc.edu 

 
 

Citation: 
Sole-Mari, G., & Fernàndez-Garcia, D. 
(2018). Lagrangian modeling of reactive 
transport in heterogeneous porous 
media with an automatic locally 
adaptive particle support volume. Water 
Resources Research, 54. https://doi.org/ 
10.1029/2018WR023033 

 
Received 28 MAR 2018 
Accepted 15 SEP 2018 
Accepted article online 1 OCT 2018 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

©2018. American Geophysical Union. 
All Rights Reserved. 

Lagrangian Modeling of Reactive Transport in Heterogeneous 
Porous Media With an Automatic Locally Adaptive Particle 
Support Volume 
Guillem Sole-Mari1,2  and Daniel Fernàndez-Garcia1,2  
1Department of Civil and Environmental Engineering (DECA), Universitat Politècnica de Catalunya, Barcelona, Spain, 
2Hydrogeology Group, UPC-CSIC, Barcelona, Spain 

 

Abstract The particle support volume is crucial for simulating reactive transport with Lagrangian methods 
as it dictates the interaction among particles. Assuming that it is constant in space, the particle support 
volume can be selected by means of kernel density estimation theory, an approach that has been shown to 
provide accurate estimates in simple setups. However, the particle support volume should intuitively vary 
with the particle position and evolve with time so as to mimic the local behavior of the solute plume. In this 
paper, we present a new approach to select a locally optimal particle support volume in reactive transport 
simulations. We consider that each particle has a different support volume that can locally adapt its shape and 
size with time based on the nearby particle distribution. By introducing a new optimality criterion, 
closed-form expressions of the particle support volume are presented under certain assumptions. In 
advection-dominated transport, we propose to orient the support volume along the local velocities. 
Numerical simulations of solute transport in a randomly heterogeneous porous medium demonstrate that the 
new approach can substantially increase accuracy with a more rapid convergence to the true solution with 
the number of particles. The error reduction seen in local approaches is particularly important in regions with 
extreme (high and low) density of particles. The method is shown to be computationally efficient, displaying 
better results than traditional histogram or global kernel methods for the same computational effort. 

 
 

 
1. Introduction 
Numerical models that deal with multiple species and chemical reactions are typically based on Eulerian 
approaches (e.g., Lichtner et al., 2015; Saaltink et al., 2004; Xu et al., 2014; Yeh et al., 2004). However, the 
incorporation of physical and biochemical heterogeneities into grid-based Eulerian codes that solve the 
multicomponent advection-dispersion equation coupled with reactions suffers from numerical problems 
stemming from the need to fulfill a small grid-Peclet number Δx/a to properly simulate reactions, being a 
the dispersivity and Δx the size of the numerical spatial discretization. Knowing that in porous media many 
chemical reactions are driven by mixing (De Simoni et al., 2005, 2007; Dentz et al., 2011; Gramling et al., 
2002; Martinez-Landa et al., 2012) and controlled by very small values of transverse dispersivities (Cirpka 
et al., 1999, 2015), these numbers are seldom achieved in practical applications, and numerical simulations tend 
to overpredict the total amount of reaction produced (Benson et al., 2017; Sanchez-Vila & Fernàndez-Garcia, 
2016). This renders reactive transport modeling a major challenge in hydrogeology nowadays. 
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a b s t r a c t 
 

The reconstruction of smooth density fields from scattered data points is a procedure that has multiple applications 
in a variety of disciplines, including Lagrangian (particle-based) models of solute transport in fluids. In random 
walk particle tracking (RWPT) simulations, particle density is directly linked to solute concentrations, which is 
normally the main variable of interest, not just for visualization and post-processing of the results, but also for 
the computation of non-linear processes, such as chemical reactions. Previous works have shown the improved 
nature of kernel density estimation (KDE) over other methods such as binning, in terms of its ability to accurately 
estimate the “true” particle density relying on a limited amount of information. Here, we develop a grid-projected 
KDE methodology to determine particle densities by applying kernel smoothing on a pilot binning; this may be 
seen as a “hybrid” approach between binning and KDE. The kernel bandwidth is optimized locally. Through 
simple implementation examples, we elucidate several appealing aspects of the proposed approach, including its 
computational efficiency and the possibility to account for typical boundary conditions, which would otherwise 
be cumbersome in conventional KDE. 

 
 

 

1. Introduction 

Random Walk Particle Tracking (RWPT) methods are a family of 
methods commonly used in the hydrologic sciences to simulate trans- 
port. They are appealing as they can accurately emulate many dif- 
ferent physical processes that occur in natural media such as diffu- 
sion, hydrodynamic dispersion, mass transfer across multiple poros-  
ity systems and linear sorption (Salamon et al., 2006a; 2006b). They 
are also conducive to simulating anomalous non-Fickian transport that 
arises due to medium heterogeneities below the scale of resolution (e.g., 
Berkowitz et al., 2006). With RWPTs, the solute mass is discretized into 
a large number of discrete particles that move across the medium fol- 
lowing deterministic and probabilistic rules, which account for the pro- 
cesses of advection, dispersion, matrix diffusion, etc. Lagrangian meth- 
ods for simulating scalar transport, among which RWPTs are some of the 
most common, have been shown to be particularly useful when model- 
ing transport in advection-dominated systems, where Eulerian methods 
can suffer from numerical dispersion and instabilities (Salamon et al., 
2006a; Benson et al., 2017). 

However, the main shortcoming of RWPT methods is that, without 
modification, they may result in very noisy concentration fields due to 
subsampling effects associated with the finite number of particles in  
the system. This can be particularly troublesome when simulating so- 
lute transport in systems where processes are governed by nonlineari- 
ties or tight coupling and interactions between different solute concen- 
trations, of which nonlinear chemical reactions are a prime example. 
Linear processes such as simple degradation, slow sorption or chain re- 
actions can efficiently be incorporated to RWPT algorithms by means of 
additional probabilistic rules with little additional computational cost. 
On the other hand, nonlinear reactions involve interactions between 
neighboring particles, which adds complexity to the problemsince parti- 
cles need to know both their location and the other particles’ locations, 
which can result in an (�2) numerical cost in naive implementations. 
Even with more optimized approaches that use better search algorithms 
(e.g., Engdahl et al., 2019), the additional numerical cost can become 
significant for high particle numbers. 

A problem that clearly highlights these issues and has received con- 
siderable recent attention in the literature is the simulation of bimolecu- 
lar reactions of the type A + B → C via RWPT (Benson and Meerschaert, 
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a b s t r a c t 
 

Several Lagrangian methodologies have been  proposed  in  recent  years  to  simulate  advection-dispersion  of  so- 
lutes in fluids as a mass exchange between numerical particles carrying the fluid. In this paper, we unify these 
methodologies, showing that mass transfer particle tracking (MTPT) algorithms can be framed within the context          
of smoothed particle hydrodynamics (SPH), provided the choice  of  a  Gaussian  smoothing  kernel  whose  band- 
width depends on the dispersion and the time discretization. Numerical simulations are performed for a simple 
dispersion problem, and they are compared to an analytical solution. Based on the results, we advocate for the use of a 
kernel bandwidth of the size of the characteristic dispersion length � =    2�Δ�, at least given a “dense enough” 
distribution of particles, for in this case the mass transfer operation is not just an approximation, but in          fact the 
exact solution, of the solute’s displacement by dispersion in a time step. 

 
 

 

1. Introduction 

In recent years, a number of Lagrangian numerical schemes have 
been proposed to simulate advection-dispersion processes in fluids. 
Some of these approaches rely exclusively on traditional random walks 
to simulate dispersion (Benson and Meerschaert, 20008; Benson et al., 
2017; Bolster et al., 2016a; Bolster et al., 2016b; Ding et al., 2012; 
Ding and Benson, 2015; Ding et al., 2017; Paster et al., 2013; Paster   
et al., 2014; Schmidt et al., 2017; Sole-Mari et al., 2017, Sole-Mari  
and Fernàndez-Garcia, 2018), whereas a second class represents disper- 
sion through mass transfer between particles that carry a given amount 
of fluid (Herrera et al., 2009,Herrera and Beckie,Benson and Bolster, 
2016; Schmidt et al., 2018a). Other authors have hybridized random 
walks with mass transfer (Engdahl et al., 2017; Herrera et al.) in an 
approach that allows partitioning of total dispersion between mixing 
(simulated by mass transfer) and non-mixed spreading (simulated via 
random walks). Mass-transfer algorithms can be further subdivided into 
two groups. The first group (Herrera et al., 2009,Herrera and Beckie) 
derives the mass exchange rates from the well-established smoothed 
particle hydrodynamics (SPH) method (Gingold and Monaghan, 1977), 
which, besides solute transport, has been used in a variety of 

applications (Monaghan, 2012) such as astrophysics, fluid dynamics, 
and solid mechanics. A second group of approaches, often referred to 
as mass transfer particle tracking (MTPT) algorithms (Benson and Bol- 
ster, 2016; Schmidt et al., 2018a), derive the mass-exchange rate from 
stochastic rules governing the co-location probability of particles mov- 
ing via dispersion. To date, a relationship between these two method- 
ologies for mass transfer has not been established. In this paper we 
analytically derive the connection between the SPH and MTPT con- 
ventions and show that, for specific kernel choices and provided that 
equivalent normalization and averaging conventions are used, the SPH 
and MTPT approaches are numerically equivalent. Additionally, for the 
fixed choice of a Gaussian kernel, we investigate the effect of differ- 
ing bandwidth choices on deviations from the analytical, well-mixed 
solution. 

2. The link between SPH and MTPT 

The SPH approach to approximating dispersion  can be  summarized 
by following (Herrera et al., 2009, Herrera and Beckie). Therein, the 
following equation describes the time evolution of the  concentration, 
Ci(t), carried by a numerical particle labeled � = 1, .., �, assuming that 
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Abstract
The presence of solute concentration fluctuations at spatial scales much below the working scale is a

major challenge for modeling reactive transport in porous media. Overlooking small-scale fluctua-

tions, which is the usual procedure, often results in strong disagreements between field observations

and model predictions, including, but not limited to, the overestimation of effective reaction rates.

Existing innovative approaches that account for local reactant segregation do not provide a general

mathematical formulation for the generation, transport and decay of these fluctuations and their

impact on chemical reactions. We propose a Lagrangian formulation based on the random motion

of fluid particles whose departure from the local mean concentration is relaxed through multi-rate

interaction by exchange with the mean (MRIEM). We derive and analyze the macroscopic description

of the local concentration covariance that emerges from the model and show that mixing-limited

processes can be properly simulated. The action of hydrodynamic dispersion on coarse-scale con-

centration gradients is responsible for the production of local concentration covariance, whereas

covariance destruction stems from the local mixing process represented by the MRIEM formulation.

The temporal evolution of integrated mixing metrics in two simple scenarios shows the trends that

characterize fully-resolved physical systems, such as a late-time power-law decay of the relative

importance of incomplete mixing with respect to the total mixing. Experimental observations of

mixing-limited reactive transport are successfully reproduced by the model.

1 Introduction

The inherent difficulty of properly representing the interaction of reactive chemicals occurring

over multiple spatio-temporal scales in complex hydrodynamic settings renders reactive transport

modeling in porous media a major challenge in subsurface hydrology [Dentz et al., 2011; Sanchez-
Vila and Fernàndez-Garcia, 2016; Benson et al., 2017; Valocchi et al., 2019]. With the exception

of highly idealized settings or incredibly small samples, generally in porous media it is unfeasible to

obtain a completely resolved flow field within real porous media geometries based on the complete

microscopic equations (e.g. Navier-Stokes). This in turn limits the resolution at which a transport

model can be applied. Instead one typically describes the system with macroscopic equations in

an equivalent continuum [Icardi et al., 2019, and references therein]. By doing so, one essentially

ignores detailed resolution of local velocity and concentration fluctuations occurring at the pore-scale,

below the scale of the equivalent continuum. The system is represented by macroscopic variables and

properties, which aim to represent subscale fluctuations in an effective manner, obtained for instance

by volume averaging [Quintard and Whitaker, 1994; Whitaker, 1999; Wood et al., 2003]. However,

these effective parameters really only aim to capture mean behaviors and processes that depend

nonlinearly on subscale fluctuations may often not be well described. Similarly, since macroscopic

properties such as the hydraulic conductivity can vary substantially in space within real aquifers, one

may further upscale flow and transport in heterogeneous media with a new set of effective parameters

[Dagan, 1989; Gelhar, 1993; Rubin, 2003]. This step further reduces the apparent complexity of the

system, but again does not contain potentially important information below the scale of the effective

model.

Among available macroscopic models, the upscaled advection-dispersion-reaction equation

(ADRE) is the most widely used for modeling reactive transport at all practical spatial scales. It

is embedded as the standard in most popular reactive transport codes [e.g., Cederberg et al., 1985;

Mangold and Tsang, 1991; Yeh and Tripathi, 1991; Steefel and Lasaga, 1994; Walter et al., 1994;

Saaltink et al., 2004; De Simoni et al., 2005; Bea et al., 2009; Steefel et al., 2015, and references

therein]. However, field and laboratory observations, numerical simulations and theoretical develop-

ments have demonstrated time and time again that the upscaled ADRE fails to adequately represent

mixing and chemical reactions at all scales [Rashidi et al., 1996; Cao and Kitanidis, 1998; Gramling
et al., 2002; Palanichamy et al., 2009; Tartakovsky et al., 2008; Fernàndez-Garcia et al., 2008;

Edery et al., 2009; Sanchez-Vila et al., 2010; de Anna et al., 2014a,b; Porta et al., 2016], because

of its disregard for the local concentration fluctuations and the use of scale-averaged concentrations

to compute reactions. In fact, the main reason why reaction rates observed in the field tend to be
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much lower than those measured in laboratory experiments is the presence of anti-correlated local

fluctuations of reactant concentrations [Chiogna and Bellin, 2013; Ding et al., 2017].

Hence, in order to obtain better predictions, effective transport models should somehow incor-

porate the sub-scale mixing limitation effects. Several such approaches have been proposed in recent

years, both from the Eulerian and from the Lagrangian perspective (see Porta et al. [2016] and refer-

ences therein). The Eulerian approaches are typically restricted to very specific initial and boundary

conditions, corresponding to the mixing of two reactants moving across a column-shaped porous

medium, forming a sharp interface at 𝑡 = 0, as in the famous laboratory experiments of Gramling
et al. [2002]. As such, existing effective solutions typically contain a time-decaying term control-

ling either an apparent kinetic reaction rate [Sanchez-Vila et al., 2010], a pre-defined concentration

covariance function [Chiogna and Bellin, 2013], or a mobile-mobile mass exchange rate coefficient

[Ginn, 2018]. Hochstetler and Kitanidis [2013] consider a constant, Damkohler-dependent efficiency

term multiplying the reaction rate, which accounts for the effect of reactant segregation. While all the

above-mentioned approaches provide interesting simplified interpretations of the physical process,

they do not provide general differential equations governing the transport of local concentration fluc-

tuations, and hence they might not be applicable to broader sets of initial and boundary conditions.

On the other hand, Lagrangian approaches that have been proposed to reproduce mixing-limited

reactive transport [Edery et al., 2009; Ding et al., 2013; Benson et al., 2019a] rely on finite particle

number effects to emulate the segregation of reactants. While such approaches are equivalent to

assuming a noisy initial condition [Paster et al., 2013, 2014], it is difficult to formalize and generalize

them in a rigorous manner [Bolster et al., 2016].

Here we present a novel Lagrangian approach to simultaneously account for (𝑖) coarse-scale

advective-dispersive behavior as well as (𝑖𝑖) the generation, transport and decay of local concentra-

tion fluctuations. The model aims to offer not just a solution specific to one setting, but rather a

mathematical framework to potentially represent a broad array of settings and transport problems.

Unlike the aforementioned Lagrangian approaches, the proposed model does not rely on low particle

numbers to represent reactant segregation, but in fact converges to the desired solution with sufficient

particles (i.e., the particle number is only a numerical discretization). In fact, Eulerian implementa-

tions of the proposed model are possible, but Lagrangian implementation is currently more natural

and straightforward.

The paper is structured as follows. In §2 we develop the conceptual and mathematical model

leading to the differential equation describing the local concentration fluctuations perceived by a

random-walking Lagrangian particle. In §3 we derive the resulting Eulerian differential equation

describing the transport, generation and decay of concentration point-covariance; we also provide the

temporal evolution of the spatial integral of the former (or mixing state) in two simple cases of initial

and boundary conditions with pseudo-analytical solution. In §4 we implement the proposed model

to reproduce the reaction product concentration data corresponding to the laboratory experiments of

Gramling et al. [2002]. Finally, in §5 we summarize our main conclusions.

2 Conceptual and mathematical model

2.1 Conservative transport and mixing

By definition, all continuum-scale models of transport in porous media assume or solve a flow

field with some degree of coarse-graining; that is, the velocity variability below some threshold

resolution is removed and replaced by an upscaled dispersion tensor. We distinguish two spatial

scales, above and below this aforementioned threshold, which hereafter we refer to as coarse scale
and local scale, respectively. Coarse-scale concentrations of species A at position x and time 𝑡,
𝑐A (x, 𝑡), are often assumed to obey the upscaled advection-dispersion equation,

𝜕𝑐A

𝜕𝑡
= L(𝑐A; v,D), L(𝑢; v,D) � ∇ · (−v𝑢 + D∇𝑢) (1)

where v is the coarse-scale velocity, and D is the dispersion tensor, which represents the combined

effect of velocity fluctuations at the local scale (around v) and molecular diffusion. (1) assumes that
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Figure 1. Local concentration variability within a true physical system and its conceptual representation in

the proposed Lagrangian model, in which the coarse-scale concentrations are defined on the Eulerian space

whereas the local concentrations are defined on the Lagrangian particles. Particles are represented by dark dots,

and the colored circles around them show the corresponding local concentrations.

the porosity (volume of fluid per unit volume of medium) is constant. Hereafter, we also assume

that v and D are spatially and temporally constant. These assumptions simplify the presentation and

analysis of the model, but generalization should be readily possible.

One manner for solving equation (1) is via Random Walk Particle Tracking (RWPT) [e.g.,

Salamon et al., 2006], a Lagrangian approach in which particles 𝑝 = 1, . . . , 𝑁 carry solute mass of

one or several chemical species, and their trajectory over small time intervals [𝑡, 𝑡 + Δ𝑡] is defined

as a combination of deterministic advective displacements and a Wiener random process emulating

dispersion,

X𝑝 (𝑡 + Δ𝑡) = X𝑝 (𝑡) + vΔ𝑡 + B𝛏
√
Δ𝑡, (2)

where X𝑝 is the position of particle 𝑝, B is a matrix such that BBT = D, and 𝛏 is a vector of random

numbers drawn independently from a standard normal distribution. Here, similar to Benson and
Bolster [2016a] and Engdahl et al. [2017], each particle 𝑝 is assigned a static mass of solvent, 𝑚𝑝 ,

and a variable concentration of solute A, 𝐶A, 𝑝; therefore the mass of A carried by 𝑝 is 𝑚𝑝𝐶A, 𝑝 .

Given any particle attribute 𝛹𝑝 , one may define its interpolation onto the Eulerian space

[Monaghan, 2005], here referred to as local average (since the interpolation removes any localized
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Figure 2. Spreading and mixing within a true physical system and their conceptual representation in the

proposed Lagrangian model, in which the coarse-scale transport is simulated by the random motion of particles

(2), and the local concentration is updated through multi-rate interaction by exchange with the mean (9). Particles

are represented by dark dots, and the colored circles around them show the corresponding local concentrations

or fluctuations.

variability), at any point x in model domain Ω𝑑 , where 𝑑 is the number of spatial dimensions,

〈𝛹 〉(x) �
∑
𝑝

𝑚𝑝

𝜌(X𝑝)
𝛹𝑝𝛿(x − X𝑝), (3)

𝜌(x) �
∑
𝑝

𝑚𝑝𝛿(x − X𝑝), (4)

where summation is implied over all particles 𝑝 = 1, . . . , 𝑁 , and 𝛿(x) is the 𝑑-dimensional Dirac

delta function. Expression (3) is simply a weighted average of𝛹𝑝 over particles 𝑝 located at X𝑝 = x;

however, this interpretation of the interpolated concentrations is not smooth, other than in the limit

of 𝑁 → ∞, and in practice it must be replaced by some form of small-volume average, for instance

by replacing 𝛿 in (3) by a kernel function 𝑊 with nonzero support volume. More details are given in

Appendix A. For

𝑐A (x, 𝑡) � 〈𝐶A (𝑡)〉(x), (5)

given particle motion equation (2) and in the limit 𝑁 → ∞, Δ𝑡 → 0, the averaged concentrations
𝑐A (x, 𝑡) converge to being governed by the Fokker-Planck equation [Risken, 1989], which is equiva-

lent to the ADE (1) when D is spatially constant; otherwise a correction can be applied to the drift

term, see LaBolle et al. [1996].
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To summarize, in the proposed Lagrangian model, each numerical particle represents a dis-

crete amount of a chemical solution traveling through a porous medium, moving by displacements

representing the scale-averaged advection (deterministic) and upscaled dispersion (normal random).

Consequently, at the coarse scale, the concentration field obeys the advection-dispersion equation

(ADE). This type of Lagrangian model is widely used by researchers and practitioners in hydrology

to simulate nonreactive transport of solutes.

While coarse-scale concentrations of non-reactive chemicals may agree reasonably well with

the ADE under certain conditions [Dagan, 1984], concentration fluctuations may still occur at

the local scale. These local-scale fluctuations, which are not explicitly accounted for in classical

formulations, may drive the outcome of nonlinear processes, such as chemical reactions, far from

what would be predicted by the ADE [Kang et al., 2019]. Note that by using equation (2) (or similar

stochastic formulations), where each particle follows its own unique random path, it is implied

that at any given time each particle is only sampling a portion of the local-scale fluid velocity

field. Analogously, in the proposed model, particle concentrations 𝐶A, 𝑝 (𝑡) are assumed to represent

the local-scale concentrations, and may therefore be at disequilibrium with the averaged 𝑐A (x, 𝑡).
Hence, hereafter we refer to 𝐶A, 𝑝 (𝑡) as local concentrations. Figure 1 is a schematic representation

that illustrates our proposed conceptual model. The local-scale structured spatial variability of

concentrations in the physical system is emulated by the stochastic variability of local concentrations

experienced by overlapping Lagrangian particles in the model. Because it is defined by interpolation

(see Appendix A), the coarse-scale concentration is a smooth function in the Eulerian space,

whereas local departures from the well-mixed equilibrium or local fluctuations are only defined on

the Lagrangian particles. In order to represent the evolution of these local fluctuations we need to

define a mixing model.

A simple representation of the local mixing as seen by a particle 𝑝 could be to assume a

Fickian process driven by a local diffusion 𝐷𝜇 within a fluctuation structure of dimension 𝑑𝜇 and

characteristic mixing length ℓ𝜇,

d𝐶A, 𝑝

d𝑡
= − 𝜒

2
[𝐶A, 𝑝 (𝑡) − 𝑐A (X𝑝 (𝑡), 𝑡)], (6)

where

𝜒 � 2𝑑𝜇𝐷𝜇/ℓ2
𝜇 (7)

is the mixing rate, which is equal to the inverse time scale for which a typical diffusive displacement

matches the characteristic mixing length ℓ𝜇. The notation d/d𝑡 in (6) indicates a Lagrangian time-

derivative, defined as the temporal variation experienced by a moving fluid particle. This definition

is similar to the classical concept of material derivative, with the difference that here particles follow

stochastic paths instead of pure deterministic advection. The simple model embedded in (6) was

originally suggested for mixing in turbulent flows, and it is known as Interaction by Exchange with
the Mean (IEM) [Villermaux, 1972; Pope, 2000]. Its practical numerical implementation requires

some careful consideration, related to features such as mass conservation. Implementation aspects,

including small-volume approximations of the averaging operator, are discussed in Appendix A. An

appealing advantage of this kind of mixing model is that a local value’s variation in time depends

only on its current degree of departure from the mean, potentially avoiding direct particle-particle

interaction. Importantly in our context, the process is Markovian, i.e., the time-derivative (6)

depends only on the current state. We note, however, that equation (6) is overly simplistic. Previous

attempts to apply the IEM model (from an Eulerian perspective) to laminar flow and transport in

heterogeneous porous media have concluded that, at the beginning of new contact between solutions

with different chemical composition, one should account for a growing stage of ℓ𝜇 before it reaches

a stable asymptotic value [Kapoor and Kitanidis, 1998; de Dreuzy et al., 2012]. That is, a single

constant value of 𝜒 cannot reproduce the distinct stages of the mixing process, and one should

consider not only a slow linear mixing, but also a fast stretching-enhanced mixing stage. Moreover,

fluctuations may occur across multiple overlapping length scales. As acknowledged by Villermaux
[1983] in the context of IEM applied to turbulent mixing, “several stages for mixing, each with

their own time constants should be considered, possibly in series or in parallel”. Here, we propose

a parallel multi-rate interaction by exchange with the mean (MRIEM), based on representing the
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mixing process as occurring within different virtual mixing zones 𝑖 = 1, . . . , 𝑁Z, each being sampled

by a fraction 𝜂𝑖 of the particle (
∑

𝑖 𝜂𝑖 = 1). Within each mixing zone 𝑖, each particle 𝑝 sees a local

concentration 𝐶A, 𝑝,𝑖 (𝑡) of each species A, possibly at disequilibrium with 𝑐A (X𝑝 (𝑡), 𝑡), such that

𝐶A, 𝑝 (𝑡) =
∑
𝑖

𝜂𝑖𝐶A, 𝑝,𝑖 (𝑡), (8)

and
d𝐶A, 𝑝,𝑖

𝑡
= − 𝜒𝑖

2
[𝐶A, 𝑝,𝑖 (𝑡) − 𝑐A (X𝑝 (𝑡), 𝑡)] . (9)

d

The values of 𝜂𝑖 and 𝜒𝑖 are assumed to depend on local-scale flow and transport conditions. The

zone-concentration values 𝐶A, 𝑝,𝑖 (𝑡) do not necessarily have a physical meaning individually, but

are instead intended to emulate the complex transient nature of the mixing process. In principle,

parameter sets 𝜂𝑖 and 𝜒𝑖 can be different for each species to account, for instance, for different values

of the local-scale diffusion coefficient.

Given any Lagrangian-defined attribute𝛹𝑝 and its average across the particle space 〈𝛹 〉, it can
be shown (see Appendix B) that, if particles move according to (2), the following relation holds
between the Eulerian and the Lagrangian time-derivatives of𝛹 :

𝜕〈𝛹 〉
𝜕𝑡

= L (〈𝛹 〉; v,D) + 〈d𝛹

d𝑡

〉
. (10)

Then, by combining (10) with (8) and (9) we see that

𝜕𝑐A

𝜕𝑡
≡ 𝜕〈𝐶A〉

𝜕𝑡
= L (𝑐A; v,D) . (11)

That is, the local mixing process described by (9) does not modify the coarse-scale description of

non-reactive transport, driven by the particle displacements in (2).

One of the simplest implementations would comprise only two zones, one of them with an

instantaneous mixing rate (i.e., very fast in relation to the time scale of interest),

1 − 𝜂1 = 𝜂2 ≡ 𝜂, 𝜒1 ≈ ∞, 𝜒2 ≡ 𝜒. (12)

Hereafter, we refer to this particular case as dual-rate, to 𝜂 as the slow mixing fraction, and to 𝜒 as

the slow mixing rate. In this case the local concentration in zone 1 is always at equilibrium with the

coarse-scale concentration. Combining equations (8), (9) and (12) we may write:

d𝐶A, 𝑝

d𝑡
= (1 − 𝜂) d𝑐A, 𝑝

d𝑡
− 𝜒

2
[𝐶A, 𝑝 (𝑡) − 𝑐A (X𝑝 (𝑡), 𝑡)], (13)

where for conciseness from here on, inside the derivative we use the notation 𝑐A, 𝑝 (𝑡) ≡ 𝑐A (X𝑝 (𝑡), 𝑡).
In the dual-rate model (12), equation (13) can be interpreted as such: While following its random

path described by (2), fluid-particle 𝑝 may experience variations in the perceived coarse-scale

concentration of A. Conceptually, these changes correspond to the particle seeing itself involved

in new mixing events, that is, in the formation of new fluctuation structures. Only a portion 1 − 𝜂
of these variations, corresponding to the pre-asymptotic or deformation-related mixing fraction,

equilibrates instantaneously with the new coarse-scale concentration. Hence, a local disequilibrium

of the opposite sign corresponding to the remaining unmixed fraction 𝜂 is generated, and it will

decay over time following a stationary Fickian mixing process at rate 𝜒.

Figure 2 illustrates the conceptual decoupling of transport as a combination of spreading and

mixing, in the true physical system as well as in the proposed Lagrangian model in one coarse-scale

dimension. In the physical system, spreading represents the growth of the width (variance) of a solute

plume due to velocity variability, which, alone, does not generate new contact between otherwise

segregated solute molecules. Mixing, on the other hand, is precisely the generation of new contact

between formerly segregated solutes, and is the result of local dispersion applied to the structure

generated by spreading (see upper-right part of Figure 2). This decoupled picture is a simplification,

because there is a continuous interplay between the two processes. The rate of spreading is influenced
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non-linearly by local dispersion [e.g., van Milligen and Bons, 2012]. Similarly, mixing is influenced

by the growth of contact surfaces, which is controlled by local advection [e.g., Villermaux, 2012]. In

the proposed Lagrangian model, spreading is represented by particle motion (2), which controls the

coarse-scale behavior of concentrations; mixing is represented by the relaxation equation (9), which

mitigates local departures from equilibrium experienced by individual particles, arising due to the

aforementioned random motion.

2.2 Reactive transport

The proposed Lagrangian model can be extended to reactive transport applications by following

the premise that chemical reactions occur at the local scale and thus are controlled exclusively by local

concentrations defined on Lagrangian particles. We provide a brief summary on the incorporation

of kinetic transformation (§2.2.1) and equilibrium speciation (§2.2.2). Naturally, the two may be

integrated together, such as in Molins et al. [2004].

2.2.1 Kinetic reactions

Consider multiple kinetic reactions labeled 𝑘 = 1, . . . , 𝑁R, with reaction rate laws that model

reactions as a function of solute concentrations, 𝑟𝑘 (C), where C ≡ [𝐶A, 𝐶B, . . . ]T; and stoichiometric

coefficients 𝜈A,𝑘 , 𝜈B,𝑘 , . . . , which indicate the generation/consumption of concentration per unit

extent of reaction. Equation (9) is then extended to:

d𝐶A, 𝑝,𝑖

d𝑡
= − 𝜒𝑖

2
[𝐶A, 𝑝,𝑖 (𝑡) − 𝑐A (X𝑝 (𝑡), 𝑡)] + RA (C𝑝 (𝑡)) (14)

where

RA (C) �
∑
𝑘

𝜈A,𝑘𝑟𝑘 (𝐶A, 𝐶B, . . . ). (15)

By combining (14) with (10) we obtain the coarse-scale Eulerian description

𝜕𝑐A

𝜕𝑡
= L(𝑐A; v,D) + 〈RA (C)〉. (16)

Equation (16) elucidates that, for nonlinear reaction systems, i.e., 〈RA (C)〉 ≠ RA (c), the Eulerian

description of reactive transport does not obey the classical form of the advection-dispersion-reaction

equation (ADRE) where reactions are computed directly from averaged concentrations. This is

in contrast with the conservative transport case, where as shown by equation (11), coarse-scale

concentrations do follow the classical ADE.

2.2.2 Equilibrium reactions

In the case of equilibrium reactions, a common approach is to compute the transport of

chemically conservative components [e.g., Saaltink et al., 1998; Molins et al., 2004; De Simoni et al.,
2005], and then speciation is provided by solving equilibrium system,

𝐶A, 𝑝 (𝑡) = EA (U𝑝 (𝑡)). (17)

whereEA (U) combines the law of mass action and the different stoichiometries to find the equilibrium

concentrations, from components U ≡ {𝑈A,𝑈B, . . . }. In (17), U𝑝 follow the conservative transport

and mixing model presented in §2.1. By taking the particle average on both sides of (17), we obtain

the coarse-scale description of the equilibrium reaction system

𝑐A = 〈EA (U)〉. (18)

We note from (18) that, similar to the kinetic reaction example, 𝑐A ≠ EA (u), as opposed to classical

well-mixed reactive transport approaches.
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3 Covariance of fluctuations

Here we study the behavior of the local concentration fluctuations, in terms of the local

concentration co-variance of two chemically conservative compounds A and B (where the particular

single-compound case is implicitly included as A ≡ B). First, in §3.1, we derive the partial

differential equation describing covariance generation, transport and destruction. Then, in §3.2, we

study integrated mixing metrics for two specific cases with closed form solutions.

3.1 Governing equation

By defining the local fluctuation as the departure from well-mixed equilibrium on particles,

𝐶 ′
A, 𝑝 (𝑡) � 𝐶A, 𝑝 (𝑡) − 𝑐A (X𝑝 (𝑡), 𝑡) =

∑
𝑖

𝜂𝑖𝐶
′
A, 𝑝,𝑖 (𝑡), (19)

𝐶 ′
A, 𝑝,𝑖 (𝑡) � 𝐶A, 𝑝,𝑖 (𝑡) − 𝑐A (X𝑝 (𝑡), 𝑡), (20)

one may rewrite equation (9) as

d𝐶 ′
A, 𝑝,𝑖

d𝑡
= −d𝑐A, 𝑝

d𝑡
− 𝜒𝑖

2
𝐶 ′

A, 𝑝,𝑖 (𝑡). (21)

By definition, 〈𝐶 ′
A
〉(x, 𝑡) = 0. We study the concentration covariance of species A and B, which we

denote as 𝛴AB (x, 𝑡),

𝛴AB � 〈𝐶 ′
A𝐶

′
B〉 =

∑
𝑖, 𝑗

𝜂𝑖 𝑗 〈𝐶 ′
A,𝑖𝐶

′
B, 𝑗〉 ≡

∑
𝑖, 𝑗

𝜂𝑖 𝑗𝛴AB,𝑖 𝑗 , 𝜂𝑖 𝑗 � 𝜂𝑖𝜂 𝑗 . (22)

As noted in §2.1, the assumption that the mixing dynamics of A and B can be described by the same

sets of parameters {𝜂1, . . . , 𝜂𝑁Z
}, {𝜒1, . . . , 𝜒𝑁Z

}, is made here only for the sake of simplicity, and

this assumption could be relaxed.

For a particle 𝑝, following a first-order integration of equation (21) over a small time step

[𝑡, 𝑡 + Δ𝑡], we have

𝐶 ′
A, 𝑝,𝑖 (𝑡 + Δ𝑡) 𝐶 ′

B, 𝑝, 𝑗 (𝑡 + Δ𝑡) =
(
𝐶 ′

A, 𝑝,𝑖 (𝑡) −
[
𝑐A, 𝑝 (𝑡 + Δ𝑡) − 𝑐A, 𝑝 (𝑡)

] − 𝜒𝑖
2

Δ𝑡 𝐶 ′
A, 𝑝,𝑖 (𝑡)

)
×

(
𝐶 ′

B, 𝑝, 𝑗 (𝑡) −
[
𝑐B, 𝑝 (𝑡 + Δ𝑡) − 𝑐B, 𝑝 (𝑡)

] − 𝜒 𝑗

2
Δ𝑡 𝐶 ′

B, 𝑝, 𝑗 (𝑡)
)
.

(23)

For 𝜒Δ𝑡 � 1, this can be rewritten as

Δ (𝐶 ′
A, 𝑝,𝑖𝐶

′
B, 𝑝, 𝑗 ) = Δ𝑐A, 𝑝Δ𝑐B, 𝑝 − 𝜒̂𝑖 𝑗Δ𝑡𝐶 ′

A, 𝑝,𝑖𝐶
′
B, 𝑝, 𝑗 −

(
𝐶 ′

A, 𝑝,𝑖Δ𝑐B, 𝑝 + 𝐶 ′
B, 𝑝, 𝑗Δ𝑐A, 𝑝

)
, (24)

with Δ𝑈 denoting the variaton of 𝑈 in time step Δ𝑡, and

𝜒̂𝑖 𝑗 �
𝜒𝑖 + 𝜒 𝑗

2
. (25)

The first-order Taylor expansion of Δ𝑐A, 𝑝 is

Δ𝑐A, 𝑝 ≈ ΔXT
𝑝∇𝑐A + Δ𝑡

𝜕𝑐A

𝜕𝑡
=
√

2Δ𝑡 𝛏TBT∇𝑐A + Δ𝑡 [vT∇𝑐A + L(𝑐A; v,D)]
=
√

2Δ𝑡 𝛏TBT∇𝑐A + Δ𝑡 ∇ · (D∇𝑐A) ≈
√

2Δ𝑡 𝛏TBT∇𝑐A.

(26)

Note that in the last step of (26) we keep the lower-order term only. Considering the analogous

expression for Δ𝑐B, 𝑝 , we may rewrite (24) as

Δ (𝐶 ′
A, 𝑝,𝑖𝐶

′
B, 𝑝, 𝑗 ) = 2Δ𝑡∇𝑐T

AB𝛏𝛏TBT∇𝑐B − 𝜒̂𝑖 𝑗Δ𝑡𝐶 ′
A, 𝑝,𝑖𝐶

′
B, 𝑝, 𝑗 −

(
𝐶 ′

A, 𝑝,𝑖Δ𝑐B, 𝑝 + 𝐶 ′
B, 𝑝, 𝑗Δ𝑐A, 𝑝

)
.

(27)
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Dividing both sides of (27) by Δ𝑡, taking the limit of Δ𝑡 → 0, and taking the expected value, we

obtain: 〈d(𝐶 ′
A,𝑖𝐶

′
B, 𝑗 )

d𝑡

〉
= 2∇𝑐T

AD∇𝑐B − 𝜒̂𝑖 𝑗 〈𝐶 ′
A,𝑖𝐶

′
B, 𝑗〉. (28)

Finally, substituting into equation (10),

𝜕𝛴AB,𝑖 𝑗

𝜕𝑡
= 2∇𝑐T

AD∇𝑐B − 𝜒̂𝑖 𝑗𝛴AB,𝑖 𝑗 + L(𝛴AB,𝑖 𝑗 ; v,D). (29)

We have obtained the partial differential equation describing the spatio-temporal evolution of the

“𝑖 𝑗” entry of the local concentration covariance of A and B in the absence of reactions. The total

local concentration covariance can be then obtained as the sum of all entries, as indicated by (22).

Let us consider, once again, the specific case represented by (12). Then, one may write:

𝜕𝛴AB

𝜕𝑡
= 2𝜂2∇𝑐T

AD∇𝑐B − 𝜒𝛴AB + L(𝛴AB; v,D). (30)

It is worth remarking that, for B = A, expression (30) is mathematically equivalent to the concentra-
tion variance conservation equation introduced by Kapoor and Gelhar [1994, equation 56], provided

a scalar proportionality in their proposed dual-dispersivity system such that 𝜂 fulfills A = 𝜂2 (𝛂+A),
where 𝛂 and A are the microdispersivity and macrodispersivity tensors, respectively. Hence, the

two conceptual models have clear similarities since in our case 𝜂 is the fraction of non-instantaneous

mixing, and in Kapoor and Gelhar [1994], by analogy, it is the square root of the fraction of total

dispersivity that is attributed to the macrodispersivity, i.e., to the non-mixed spreading. Nevertheless,

there are important nuances that distinguish the models, as will be discussed in §4.2.

In any case, determining concentration variance/covariance is not the main, or at least not the

only, purpose of our model. As outlined in §2.2, the distribution of local concentrations represented

by the particles affects local processes such as chemical reactions. Nevertheless, the concentration

covariance is a powerful tool to assess contact between solutions, and therefore a good proxy for the

potential magnitude of incomplete mixing effects on chemical reactions.

3.2 Mixing state evolution

This section focuses on the dual-rate (fast/slow) local mixing parametrization (12). The results

are elementary building blocks for other more complex cases. The differential equation (30) is linked

with the solution of (1) through the source term

𝑆(x, 𝑡) � 2𝜂2∇𝑐T
AD∇𝑐B. (31)

The other terms are exponential decay, advection, and dispersion. Therefore, if 𝑆(x, 𝑡) is known,

𝛴AB (x, 0) = 0, and the domain is unbounded, the solution for the point-covariance evolution can be

obtained through the space-time convolution of the Greens function with the source term, i.e.:

𝛴AB (x, 𝑡) =
∫ 𝑡

0

∫
R𝑑

𝐺 (x − 𝛋, 𝑡 − 𝜏) 𝑆 (𝛋, 𝜏) 𝑑𝛋d𝜏, (32)

with

𝐺 (x, 𝑡) �
(
[2𝜋]𝑑2|D|𝑡

)− 1
2

exp

(
− [x − v𝑡]TD−1 [x − v𝑡]

4𝑡
− 𝜒𝑡

)
, (33)

where the operator | | applied to a tensor is its determinant. A metric that is commonly used to

characterize spatial fluctuations of solute concentrations is the so-called mixing state [Bolster et al.,
2011; de Dreuzy et al., 2012], which is defined as the spatial integral of the squared concentrations.

Here we extend this definition, for any two solutes, A and B, as the spatial integral of the product of

the two concentrations. In the present two-scale context, this may be written as

𝑀AB (𝑡) �
∫
Ω𝑑

〈𝐶A𝐶B〉 dx = 𝑀c
AB (𝑡) + 𝑀Σ

AB (𝑡), (34)
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where Ω𝑑 is the model domain, 𝑀AB is the mixing state, 𝑀c
AB

is the ideal mixing when sub-scale

fluctuations are not considered, and 𝑀Σ
AB

is the contribution of the local fluctuations to the mixing

state (which may be either positive or negative):

𝑀c
AB (𝑡) �

∫
Ω𝑑

𝑐A (x, 𝑡)𝑐B (x, 𝑡) dx, 𝑀Σ
AB (𝑡) �

∫
Ω𝑑

𝛴AB (x, 𝑡) dx. (35)

In the particular case A = B one recovers the classical definition. Additionally, we also quantify the

relative deviation from the ideal well-mixed behavior:

𝛾AB (𝑡) �
𝑀AB − 𝑀c

AB

𝑀c
AB

=
𝑀Σ

AB

𝑀c
AB

. (36)

Here, quantity 𝛾AB (𝑡) is analogous to the 𝛾(𝑡) from de Dreuzy et al. [2012] for a single species.

In some cases with simple boundary and initial conditions, closed-form solutions exist for the

integrals in (35). Below, we provide and discuss two such simple but representative cases.

3.2.1 Continuous injection

Consider a mean-uniform stationary flow in an infinitely long domain, which at the coarse

scale can be considered as one-dimensional. At 𝑡 = 0, the concentrations of two solutes A and B are

represented by Heaviside-step functions, forming a sharp interface at 𝑥 = 0:

𝑐A (𝑥, 0) = 𝑐oH(−𝑥), 𝑐B (𝑥, 0) = 𝑐oH(𝑥), (37)

where H(𝑥) is the Heaviside step function. Additionally, 𝛴AB (𝑥, 0) = 0.

The solution of the ADE (1) in this case is

𝑐A (𝑥, 𝑡) = 𝑐o − 𝑐B (𝑥, 𝑡) = 𝑐o

2
erfc

(
𝑥 − 𝑣𝑡

2
√
𝐷𝑡

)
. (38)

Then, the ideal mixing term is

𝑀c
AB (𝑡) =

∫ ∞

−∞
𝑐A (𝑥, 𝑡)𝑐B (𝑥, 𝑡) d𝑥 = 𝜋−

1
2 𝑐2

o

√
2𝐷𝑡 ≡ 𝜋−

1
2 𝑐2

oℓ
√
𝜒𝑡, (39)

with the characteristic coarse-scale mixing length ℓ, defined as

ℓ �
√

2𝐷/𝜒, (40)

which is the typical distance traveled by the solute by dispersion within one characteristic mixing

time.

For this case, the source term of the covariance (eq. (31)) is:

𝑆(𝑥, 𝑡) = −𝜂2𝑐2
o e−

(𝑥−𝑣𝑡 )2
2𝐷𝑡

2𝜋𝑡
, (41)

and then the covariance, obtained through equation (32), is

𝛴AB (𝑥, 𝑡) = −𝜂2𝑐2
o

2𝜋

∫ 𝑡

0

[𝜏(2𝑡 − 𝜏)]− 1
2 exp

(
− (𝑥 − 𝑣𝑡)2

2𝐷 (2𝑡 − 𝜏) − 𝜒(𝑡 − 𝜏)
)

d𝜏. (42)

To our knowledge, the resulting time-integral in (42) does not have an exact analytical solution.

Nevertheless, a (pseudo-)closed form does exist for its integral in space (i.e., the local mixing term):

𝑀Σ
AB (𝑡) =

∫ ∞

−∞
𝛴AB (𝑥, 𝑡) d𝑥 = −𝜋− 1

2 𝜂2𝑐2
o

√
2𝐷

𝜒
𝐹

(√
𝜒𝑡

) ≡ −𝜋− 1
2 𝜂2𝑐2

oℓ 𝐹
(√

𝜒𝑡
)
, (43)
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Figure 3. Temporal evolution of various mixing metrics for the dual-rate model (12), according to the solution

of equations (1) and (30), for two solutes A and B initially forming a sharp interface perpendicular to the flow

direction, shown in (a) linear and (b) logarithmic scale.

where 𝐹 (𝑢) is the Dawson integral:

𝐹 (𝑢) � e−𝑢
2

∫ 𝑢

0

e𝑟
2

d𝑟 ≈
{
𝑢, for 𝑢 � 1,
1
2
𝑢−1, for 𝑢 � 1.

(44)

From (43) and (44), we see that there is an early-time regime where concentration covariance

generation dominates (𝑀Σ
AB

∝ 𝑡1/2) followed by a late-time regime where concentration covariance

destruction dominates (𝑀Σ
AB

∝ 𝑡−1/2). 𝑀Σ
AB

is negative meaning that the local covariance reduces the

contact between A and B with respect to the ideal value 𝑀c
AB

. The maximum negative magnitude of

𝑀Σ
AB

(𝑡) is achieved for 𝑡 = 0.854𝜒−1.

We study the relative deviation from ideal “well-mixed” behavior through 𝛾AB (eq. (36)).

From (39) and (43)

𝛾AB (𝑡) = 𝜂2𝛾∗AB (𝜒𝑡), (45)

𝛾∗AB (𝑡∗) � − 1√
𝑡∗
𝐹

(√
𝑡∗

)
, (46)

where 𝑡∗ � 𝜒𝑡 is a dimensionless time.

Figure 3 shows the evolution in time of the mixing metrics. Higher values of the slow-mixing

fraction 𝜂 in the dual-rate model accentuate the departure of the actual mixing state (continuous lines)

from the ideal well-mixed case (dotted line). The relative difference between these two quantities,

quantified by 𝛾AB = 𝜂2𝛾∗
AB

, is highest at the beginning, and decays for 𝜒𝑡 � 1 as 𝑡−1, as can be

observed on the log-log scale plot. The actual mixing scales with 𝑡1/2 for 𝜒𝑡 � 1. Taking the

modeled mixing state 𝑀AB, depicted in Figure 3(b), as a proxy for the amount of reaction, we see that

it does reproduce trends observed in mixing-limited systems such as simple Poiseuille flows [e.g.,

Perez et al., 2019, Figure 7].

As outlined at the beginning of §3.2, the summation in (22) allows us generalize the solution

for any choice of mixing parameters as a summation of elementary solutions given by (46):

𝛾AB (𝑡) =
∑
𝑖, 𝑗

𝜂𝑖 𝑗𝛾
∗
AB ( 𝜒̂𝑖 𝑗 𝑡). (47)
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3.2.2 Pulse injection

Now let us consider the same simple uniform flow in an infinite-length medium, but with a

different initial condition. In this case, there is only one solute A, of which a mass (per cross-

section unit area) 𝑚o is injected over a small region around the origin with a Gaussian distribution

characterized by a length 𝜆o:

𝑐A (𝑥, 0) = 𝑚o√
2𝜋𝜆o

e
− 𝑥2

2𝜆2
o . (48)

Here we study the mixing state of A, 𝑀AA (𝑡). Note that it has the opposite intuitive meaning than the

𝑀AB (𝑡) analyzed in §3.2.1: A more advanced mixing process will be characterized by lower values

of 𝑀AA (𝑡), and viceversa. Once again, we assume that the initial condition for the fluctuations is

𝛴AA (𝑥, 0) = 0.

The resulting time-dependent mean-concentration profile is also a Gaussian:

𝑐A (𝑥, 𝑡) = 𝑚o

2
√
𝜋𝐷 (𝑡 + 𝑡o)

e
− (𝑥−𝑣𝑡 )2

4𝐷 (𝑡+𝑡o ) , (49)

with 𝑡o � 𝜆2
o/2𝐷. Then, the ideal mixing term is

𝑀c
AA (𝑡) =

∫ ∞

−∞
𝑐2

A (𝑥, 𝑡) d𝑥 =
𝑚2

o√
8𝜋𝐷 (𝑡 + 𝑡o)

≡ 𝑚2
o

2ℓ
√
𝜋𝜒(𝑡 + 𝑡o)

. (50)

Here, the source term of the variance (eq. (31) with B = A) is:

𝑆(𝑥, 𝑡) = 2𝜂2𝐷

(
𝜕𝑐A

𝜕𝑥

)2

=
𝜂2𝑚2

o (𝑥 − 𝑣𝑡)2

8𝜋𝐷2 (𝑡 + 𝑡o)3
e
− (𝑥−𝑣𝑡 )2

2𝐷 (𝑡+𝑡o ) , (51)

and expression (32) gives the evolution of the variance:

𝛴AA (𝑥, 𝑡) =
𝜂2𝑚2

o

8𝜋𝐷2

∫ 𝑡

0

2𝐷 (𝑡 − 𝜏) (2𝑡 − 𝜏 + 𝑡o) + (𝑥 − 𝑣𝑡)2 (𝜏 + 𝑡o)
(2𝑡 − 𝜏 + 𝑡o)2.5 (𝜏 + 𝑡o)1.5

× exp

(
− (𝑥 − 𝑣𝑡)2

2𝐷 (2𝑡 − 𝜏 + 𝑡o)
− 𝜒(𝑡 − 𝜏)

)
d𝜏.

(52)

Like in the continuous injection case (42), we could not find a closed-form solution to the time-

integral in (52). But again, its spatial integral (the local mixing term) can be expressed in terms of

the Dawson function (or more precisely, its derivative):

𝑀Σ
AA (𝑡) =

∫ ∞

−∞
𝛴AA (𝑥, 𝑡) d𝑥 =

𝜂2𝑚2
o√

8𝜋𝐷 (𝑡 + 𝑡o)
[
𝑓

(√
𝜒𝑡o

) (√
1 + 𝑡/𝑡o

)
e−𝜒𝑡 − 𝑓

(√
𝜒(𝑡 + 𝑡o)

)]

≡ 𝜂2𝑚2
o

2ℓ
√
𝜋𝜒(𝑡 + 𝑡o)

[
𝑓

(√
𝜒𝑡o

) (√
1 + 𝑡/𝑡o

)
e−𝜒𝑡 − 𝑓

(√
𝜒(𝑡 + 𝑡o)

)]
,

(53)

with 𝑓 (𝑢) defined as the derivative of 𝐹 (𝑢),

𝑓 (𝑢) � d𝐹

d𝑢
= 1 − 2𝑢 𝐹 (𝑢) ≈

{
1, for 𝑢 � 1,

− 1
2
𝑢−2, for 𝑢 � 1.

(54)

Once again, we characterize the relative deviation from the well-mixed behavior:

𝛾AA (𝑡) �
𝑀Σ

AA

𝑀c
AA

= 𝜂2𝛾∗AA (𝜒𝑡; 𝜒𝑡o), (55)

𝛾∗AA (𝑡∗; 𝑡∗o) � 𝑓
(√

𝑡∗o
) (√

1 + 𝑡∗/𝑡∗o
)

e−𝑡
∗ − 𝑓

(√
𝑡∗ + 𝑡∗o

)
, (56)

with 𝑡∗o � 𝜒𝑡o.
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Figure 4. Temporal evolution of various mixing metrics for the dual-rate model (12), according to the solution

of equations (1) and (30), for one solute A initially placed as a Gaussian pulse of longitudinal standard deviation

0.26ℓ, shown in (a) linear and (b) logarithmic scale.

Figure 4 depicts the evolution of the mixing metrics in dimensionless time, for a small value of

initial pulse size, with 𝑡o = (15𝜒)−1. Similar to the case in §3.2.1, higher values of 𝜂 result in reduced

mixing, as exhibited here by higher values of the actual mixing state (continuous lines) compared to

the ideal mixing state (dotted line). The ratio between these two quantities, 𝛾AA = 𝜂2𝛾∗
AA

, is zero at

𝑡 = 0, since there is no incomplete mixing, and it starts to grow as the spreading process generates

local concentration fluctuations. This increasing trend peaks at 𝜒𝑡 ≈ 0.785 (for the specific value

of 𝜒𝑡o = 1/15). After that, fluctuation destruction dominates and 𝛾AA decreases as 𝑡−1 for 𝜒𝑡 � 1.

At these long times, the actual mixing tends to approach the ∝ 𝑡−1/2 trend of ideal mixing. These

features agree with semi-analytical [Bolster et al., 2011] and numerical [de Dreuzy et al., 2012]

calculations of the mixing state evolution in fully-resolved porous media flows for a pulse injection

of solute.

As in §3.2.1, elementary solution (56) is a building block for generalizing (55) to more complex

mixing parametrizations than the dual-rate form:

𝛾AA (𝑡) =
∑
𝑖, 𝑗

𝜂𝑖 𝑗𝛾
∗
AA ( 𝜒̂𝑖 𝑗 𝑡; 𝜒̂𝑖 𝑗 𝑡o). (57)

4 Reproducing results of a reactive transport experiment

4.1 Experimental setup and background

In this Section we use the proposed model to reproduce results from the now well known

experiments of Gramling et al. [2002]. In these experiments, performed in a column with a saturated

granular material, a solution of EDTA4−, initially occupying all the pore space with concentration 𝑐o,

was displaced longitudinally by an invading solution of CuSO4 with the same molar concentration

𝑐o. As these two solutes moved through the porous medium, the combination of hydrodynamic

dispersion and molecular diffusion allowed them to mix and react forming CuEDTA2−, among other

reaction products. Hereafter, for simplicity and consistency with the original work, we refer to the

three cited compounds as A, B, and AB, respectively. The reaction can be expressed as

A + B� AB, (58)
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with equilibrium equation,

𝑘eq �
𝑐A𝑐B

𝑐AB

� 1, (59)

and a reaction rate that can be assumed instantaneous given the time scales of the experiment. Because

equilibrium constant 𝑘eq is very small (practically zero), 𝑐A and 𝑐B will always be instantaneously

consumed when in contact, until one of them is exhausted locally (i.e., they cannot coexist). Hence,

if we define the following conservative components,

𝑢A � 𝑐A + 𝑐AB, 𝑢B � 𝑐B + 𝑐AB, (60)

then the reaction product concentration will be given by

𝑐AB = EAB (𝑢A, 𝑢B) = min (𝑢A, 𝑢B) . (61)

The fully-resolved (pore-scale) transport of 𝑢A and 𝑢B follows the conservative form of the advection-

diffusion equation,
𝜕𝑢A

𝜕𝑡
= L(𝑢A; v𝜇, 𝐷𝜇), (62)

with operator L defined as in (1), v𝜇 being the heterogeneous velocity field within the saturated

pore geometry, and 𝐷𝜇 being the molecular diffusion coefficient. The analogous of (62) applies to

𝑢B; however, in this particular case, because of the initial condition, 𝑢A (x, 𝑡) + 𝑢B (x, 𝑡) = 𝑐o, hence

we have that 𝑢B (x, 𝑡) = 𝑐o − 𝑢A (x, 𝑡) and the transport is fully described by just one of the two

equilibrium components.

However, in practice, a simple and complete solution is rarely obtainable, because of (𝑖) the

lack of detailed information on the pore geometry and (𝑖𝑖) high computational demands, which is why

this problem requires an upscaled approach. As an approximation, we ignore the boundary effect

at the inlet, i.e., we assume an infinite medium. Then, the upscaled one-dimensional description of

the transport of 𝑢A and 𝑢B, under the assumption of Fickian hydrodynamic dispersion, is identical to

(38),

𝑢A (𝑥, 𝑡) = 𝑐o − 𝑢B (𝑥, 𝑡) = 𝑐o

2
erfc

(
𝑥 − 𝑣𝑡

2
√
𝐷𝑡

)
, (63)

where the constants 𝑣 and 𝐷 are the cross-section averaged vertical velocity and the upscaled

longitudinal hydrodynamic dispersion coefficient, respectively. These constants were quantified by

the authors of the cited experiment as 𝑣 = 1.21 × 10−2 cm/s and 𝐷 = 1.75 × 10−3 cm2/s. In the

classical well-mixed upscaled ADRE approach, in which coarse-scale concentrations govern the

chemical reactions, the combination of (63) with (61) would lead to the following equation for the

concentration of AB:

𝑐AB (𝑥, 𝑡) = 𝑐o

2
erfc

( |𝑥 − 𝑣𝑡 |
2
√
𝐷𝑡

)
. (64)

However, the experimental observations of Gramling et al. [2002] do not agree with (64). Instead, the

latter tends to overestimate the amount of reaction product generation, because of the incorrectness

of the underlying assumption of full local mixing.

4.2 Model implementation and results

The proposed Lagrangian model is implemented as follows. Particles carry local concentrations

of just one of the two conservative components, 𝑈A, 𝑝 (𝑡), because the other is defined by 𝑈B, 𝑝 (𝑡) =
1−𝑈A, 𝑝 (𝑡). Equal volumes (weights) are assigned to 𝑁 = 106 particles, which are initially distributed

in space uniformly over an interval [−𝐿/2, 𝐿/2], with 𝐿 = 15 cm, and

𝑈A, 𝑝 (0) = H(−𝑋𝑝 (0)). (65)

As detailed in §2.1, transport and mixing of 𝑈A, 𝑝 (𝑡) are decoupled and reproduced by equations

(2) and (9), respectively. In the latter, the local averaging operator is implemented through binning
(see Appendix A), with a bin size 𝐿/300. We use a simple dual-rate mixing model like (12),
parameterized by a slow mixing fraction 𝜂 and a slow mixing rate 𝜒. Note that one does not need to
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Figure 5. (a) Comparison of various models’ predictions of reaction product coarse-scale concentration,

𝑐AB, to the experimental observations of Gramling et al. [2002], at four different times, and (b) corresponding

point-covariance of 𝑈A and 𝑈B, 𝛴AB. The local mixing model is given by (9) and (12), with 𝜂 = 0.5 and

𝜒 = 10−3 s−1. The curves labeled as Lagrangian correspond to small-volume average (66) performed on

particles in a Lagrangian simulation, whereas the curves labeled as Eulerian are drawn using equations (42),

(63) and (67). The curves labeled as Well-mixed correspond to equation (64).

explicitly simulate the evolution of the local concentration fraction corresponding to the fast mixing

zone, 𝑈A, 𝑝,1 (𝑡), which is always in equilibrium with the average at 𝑋𝑝 (𝑡). The coarse-scale reaction

product concentration is given by the combination of (61) and (18),

𝑐AB (𝑥, 𝑡) = 〈min(𝑈A (𝑡),𝑈B (𝑡))〉(𝑥) = 𝑐o

2
+ 〈 ���𝑐o

2
−𝑈A (𝑡)

��� 〉(𝑥). (66)

The code implementing this is written in Matlab (version 2016b) and the simulation runs in less than

5 minutes on a conventional laptop computer (Intel® Core™ i7-6700HQ, 2.60GHz).

An alternative approach to implement the proposed model is also tested, which we refer to as

the Eulerian approach since it does not require to explicitly simulate the Lagrangian particles. In

this specific case, we have an analytical solution for 𝑢A (𝑥, 𝑡) = 1− 𝑢B (𝑥, 𝑡), given by (63), as well as

a semi-analytical solution for 𝛴AB (𝑥, 𝑡) = −𝛴AA (𝑥, 𝑡) = −𝛴BB (𝑥, 𝑡), given by (42). These quantities

are, in fact, entries of the mean and the covariance matrix of a bivariate distribution (i.e., probability

density function) of local concentrations of components A and B at any (coarse-scale) position and

time, F (𝑈A,𝑈B, 𝑥, 𝑡). By assuming that F is multiGaussian, it is then fully defined by its mean and

covariance matrix, and the local average (66) becomes

𝑐AB (𝑥, 𝑡) =
∫ 𝑐o

0

∫ 𝑐o

0

min(𝑈A,𝑈B)F (𝑈A,𝑈B, 𝑥, 𝑡)d𝑈Ad𝑈B

=
𝑐o

2
−

√
2𝛴AA

𝜋
exp

(
− (𝑐o/2 − 𝑢A)2

2𝛴AA

)
− (𝑐o/2 − 𝑢A) erf

(
𝑐o/2 − 𝑢A√

2𝛴AA

)
,

(67)

where we use equation (63) for 𝑢A and the numerical time-integration of (42) for 𝛴AA = −𝛴AB. Note

that the multiGaussianity assumption may introduce inaccuracies, including the fact that a portion

of F may fall outside the physically meaningful interval [0, 𝑐o].
Similar to Sanchez-Vila et al. [2010], the dispersion coefficient is set to 𝐷 = 1.3× 10−3 cm2/s,

slightly lower than the value of 𝐷 = 1.75× 10−3 cm2/s estimated by Gramling et al. [2002] from the

results of non-reactive experiments. The results of the Lagrangian approach display close agreement
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with the experimental observations, as shown in Figure 5(a), for manually-adjusted values 𝜂 = 0.5
and 𝜒 = 10−3 s−1. A possible interpretation is that in the pore-scale flow and transport conditions

of the experiment, pre-asymptotic fast mixing controlled about half of the mixing process, whereas

diffusive mixing across stable fluctuation structures was responsible for the other half. Assuming that

the latter is essentially two-dimensional (dominated by transverse diffusion between concentration

filaments), and approximating both reactants’ bulk diffusion coefficients as the value for AB reported

by the authors of the experiment, 𝐷𝜇 = 7.02 × 10−7 cm/s, then according to (7),

ℓ𝜇 =
√

4𝐷𝜇/𝜒 = 0.53 cm ≈ 0.4𝑏, (68)

where 𝑏 = 0.13 cm is the mean grain size of the granular medium. That is, ℓ𝜇 is approximately

the typical size of a pore, considering the reported porosity of 0.36. This suggests that the slow

mixing process captured by the model corresponds indeed to the diffusive relaxation of pore-scale

concentration fluctuations. The inferred value of 𝜂 = 0.5 shows that a single-rate local mixing model

(i.e, 𝜂 = 1) would not be able to reproduce the experimental results. Neither would the high value of

𝜂 =
√

1 − 𝐷𝜇/𝐷 ≈ 1 that would render our model’s local covariance behavior equivalent to Kapoor
and Gelhar [1994] (see discussion below equation (30)). This is consistent with previous studies on

mixing in porous media, both at pore and Darcy scales [e.g., Kapoor and Kitanidis, 1998; de Anna
et al., 2014b; Le Borgne et al., 2013, 2015], which show that, after first encounter between two

solutions with different composition, the mixing rate is higher at the beginning and decreases with

time. In other words, the dynamics of mixing are subjected to aging, a feature which is effectively

reproduced in our model by a parallel multi-rate process (9), without introducing any time-dependent

parameters. Although the dual-rate simplification appears to capture the general behavior for this

case-study, allowing us to reproduce the experimental results, more complicated forms may be needed

depending on the characteristics of the flow field, especially for highly heterogeneous porous media.

This should be the subject of future research and as future experimental datasets in such settings

become available.

Looking closely at Figure 5, the main discrepancy between the data and the well-mixed solution

(64) is the notable decrease in the peak of reaction product concentrations at the coarse-scale mixing

interface. In the Lagrangian simulation, this reduction is caused by the anti-correlated fluctuations

of 𝑈A, 𝑝 and 𝑈B, 𝑝 on particles with respect to the local average, which is also reflected by the

negative values of 𝛴AB, depicted in Figure 5(b). As expected, the spatiotemporal description of the

covariance in the Eulerian and in the Lagrangian approach are identical, which ratifies the validity

of the expressions given in §3.1. However, the reaction product concentration prediction is slightly

different, because of the multiGaussian approximation used in the Eulerian approach.

5 Summary and conclusions

We have proposed a Lagrangian mathematical model to represent the transport and mixing of

solutes in a dual-scale (coarse/local) framework. Local concentrations carried by individual particles

evolve by relaxation towards the coarse-scale concentration values that they perceive along their

random path (described by (2)). This relaxation or mixing process is characterized by (9) as a parallel

multi-rate interaction by exchange with the mean (MRIEM). We derived the differential equation

describing the corresponding evolution of the (Eulerian) concentration point-covariance (29), and

found solutions corresponding to the mixing state evolution for two simple generic cases. Finally, the

proposed model (in its dual-rate form) was successfully implemented to reproduce reaction product

concentration data from a well-known laboratory experiment that displays incomplete mixing effects.

Below, we enumerate additional findings and conclusions:

1. The partial differential equation describing the behavior of the local concentration covariance

becomes nearly equivalent to the concentration variance conservation equation suggested

by Kapoor and Gelhar [1994], given a dual-rate (fast/slow) parametrization of the mixing

process.

2. The temporal evolution of the mixing state for a pulse injection shows similar trends to those

observed in previous studies of mixing in porous media within fully-resolved systems [Bolster
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et al., 2011; de Dreuzy et al., 2012], suggesting that the model may be able to accurately

upscale local mixing limitations. Both for a pulse and for a continuous injection, the ratio

between the mixing state components corresponding to the fluctuating and the averaged

concentration terms decays at late times as the inverse of time.

3. The Gramling et al. [2002] results would not be explicable, from our model’s perspective,

through a single-rate local mixing process. This agrees with previous knowledge on the

complexity of mixing dynamics in porous media [de Anna et al., 2014b; Le Borgne et al.,
2013], which establish the need to somehow include a temporal decrease of the mixing rate

from the time of first coarse-scale contact between reactants.

4. Along the same vein, the 𝜂 = 0.5 value for the dual-rate model that fits the cited experi-

mental results does not agree with Kapoor and Gelhar’s model, that is, with the restriction

𝜂2 = 1 − 𝐷𝜇/𝐷 ≈ 0.9995, if 𝐷𝜇 is assumed to be the molecular diffusion. This discrepancy

can be attributed to the pre-asymptotic stage where mixing is enhanced by fluid deformation

dynamics, as noted by Kapoor and Kitanidis [1998].

5. Considering the characteristic local mixing distance ℓ𝜇 =
√

4𝐷𝜇/𝜒, the fitted value of

𝜒 = 10−3 s−1 yields ℓ𝜇 ≈ 0.05 cm, which is approximately equal to the typical pore size.

This consistency of scale suggests that the model is properly capturing the physics underlying

the mixing process.

Several future avenues for research arise due to this work, including (𝑖) identifying methods

to readily estimate parameter values in (8) and (9) to upscale mixing within different local-scale

heterogeneity patterns of velocity and dispersion, thus making the model scalable and translatable

to the diverse range of hydrogeologic settings out there (𝑖𝑖) exploring the use of motion equations

other than (2) [e.g. Berkowitz et al., 2006; Le Borgne et al., 2008], which are well-known to better

describe coarse-scale transport in complex heterogeneous settings (𝑖𝑖𝑖) extending the model to incor-

porate heterogeneous reactions, and (𝑖𝑣) using the model to study the effects of local concentration

fluctuations on realistic complex geochemical reaction systems.

A: Aspects of numerical implementation

A.1 Smooth local average

As outlined in §2.1, the numerical implementation of (9), as well as the reactive extensions

described in §2.2, entails the definition of a smooth small-volume approximation for the local average

operator 〈 〉(x) (equation (3)), which is used to compute the averaged concentrations 𝑐A (x, 𝑡) from

overlapping local concentrations defined on particles. Here we discuss two possible approaches, and

their respective advantages and disadvantages.

A.1.1 Binning

A straightforward approach to compute the averaged concentrations is to discretize the spatial

domain into a set of bins. The Dirac Delta 𝛿(x − X𝑝) in (3) and (4) is then replaced by an indicator

function 𝐼 (x,X𝑝) that has a value of 1 when x and X𝑝 belong to the same bin, and a value of 0

otherwise. Compared to other smoothing techniques, this approach has very low computational

demands. Another advantage is that it does not present any mass conservation issues. This is

because the sum of all differences with respect to the mean within each individual bin is zero by

definition, and therefore so is the sum of all exchanges with the mean given by (9). The main potential

disadvantage of binning is that, compared to other smoothing techniques, it tends to require higher

particle numbers (here, a finer Lagrangian discretization of the fluid mass) in order to converge

to a smooth solution [Fernàndez-Garcia and Sanchez-Vila, 2011]. This approach is used in the

Lagrangian implementation described in §4.2.
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A.1.2 Kernel smoothing

An alternative to binning is to use kernel smoothing on particles, that is, to replace the

Dirac Delta 𝛿(x − X𝑝) in (3) and (4) with a radially symmetric kernel 𝑊 (x − X𝑝; ℎ), where ℎ
is the smoothing bandwidth. This interpolation method is commonly used in smoothed particle

hydrodynamics [Monaghan, 2005]. This approach may offer better convergence rates with particle

number than binning. On the other hand, in this case, exact mass conservation for (9) is not guaranteed

by default, and a correction strategy is required. One mass-conserving approach can be obtained by

considering symmetric pair-wise particle interactions. Let us first define a smooth interpolator to

approximate (3) that is pair-wise symmetric

〈𝛹 〉(x) �
∑
𝑝

𝑚𝑝

𝜌̃(x,X𝑝)
𝛹𝑝𝑊 (x − X𝑝). (A.1)

Here, 𝜌̃(x,X𝑝) is some average of 𝜌(x) and 𝜌(X𝑝). We redefine (9) by inserting 𝐶A, 𝑝,𝑖 inside the

local average operator

d𝐶A, 𝑝,𝑖

d𝑡
= − 𝜒𝑖

2
〈𝐶A, 𝑝,𝑖 − 𝐶A,𝑖〉(X𝑝) = − 𝜒𝑖

2

∑
𝑞

𝑚𝑞

𝜌̃(X𝑞 ,X𝑝)
[𝐶A, 𝑝,𝑖 − 𝐶A,𝑞,𝑖]𝑊 (X𝑞 − X𝑝). (A.2)

The right-hand side of (A.2) clearly shows that a symmetric and therefore consistent mass exchange

between each pair of particles 𝑝, 𝑞, is imposed [Herrera et al., 2009; Sole-Mari et al., 2019]. This

expression may also be rewritten as

d𝐶A, 𝑝,𝑖

d𝑡
= − 𝜒𝑖

2
[𝐶A, 𝑝,𝑖 〈1〉(X𝑝) − 𝑐A (X𝑝)], (A.3)

which elucidates that mass conservation can be achieved in the kernel-based MRIEM through

multiplication of 𝐶A, 𝑝,𝑖 by a correcting factor 〈1〉(X𝑝), which converges to 1 as 𝑁 → ∞ and ℎ → 0.

However, this approach does come at higher computational cost than binning.

A.2 Numerical dispersion and relation with other formulations

Smoothing tends to artificially spread out particle masses, which may generate some numerical

dispersion in the Lagrangian numerical implementation. This can be straightforwardly quantified by

comparing the right-hand side of (A.2) to the SPH formulation used to simulate a diffusion 𝐷SPH

with a multiGaussian 𝑊 [Sole-Mari et al., 2019, eq. 8]. Both expressions become equivalent by

setting

𝐷SPH =
1

4
𝜒𝑖ℎ

2. (A.4)

That is, the identity (A.4) quantifies the numerical diffusion involved in the numerical simulation of

a MRIEM mixing with rate 𝜒𝑖 using a Gaussian smoothing kernel with bandwidth ℎ for computing

the averaged concentrations. The same quadratic scaling should be expected for the bin size when

binning is the chosen smoothing approach. Fortunately, as explained in §4.2, the high or virtually

instantaneous fraction of mixing rates in the MRIEM formulation do not need to be explicitly

simulated, and therefore only the small values of 𝜒𝑖 may produce numerical dispersion, which can

be controlled by choosing a small-enough smoothing bandwidth ℎ, or by slightly reducing the value

of 𝐷 used in the particle motion such that the added total dispersion has the correct value. The latter

strategy, in fact, is tightly related to previous works [Benson and Bolster, 2016b; Herrera et al., 2017;

Sole-Mari et al., 2019; Engdahl et al., 2019; Benson et al., 2019a,b] in which the total dispersion

results from the sum of (𝑖) random walks and (𝑖𝑖) some form of exchange between particles. In

particular, if we look at the approach suggested by Benson and Bolster [2016b, eq. 7], with mass

transfers based on probabilities of collision between particles, we see that it is equivalent to the kernel

form of the MRIEM as given by (A.2) for the specific case of a single mixing zone 𝑖 = 1 with mixing

rate 𝜒1 = 1/d𝑡, and a multiGaussian 𝑊 with bandwidth ℎ2 = 4𝐷MTd𝑡. That is, the mass transfer

approach by Benson and Bolster [2016b] is equivalent to a Gaussian kernel-based single-rate IEM

with instantaneous full mixing and “numerical” dispersion (see (A.4)) 𝐷SPH = 𝐷MT.
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B: Relation between local averages of Eulerian and Lagrangian derivatives

In this Appendix we provide the derivation for expression (10) given in §2.1. We start from

the definition of local average (3). Note that, for incompressible flow, the fluid density 𝜌(X𝑝) is

proportional to the porosity – amount of fluid per unit volume of medium. Hence, maintaining the

assumption of constant porosity, the particle estimate of fluid density given by (4) must converge to

a constant value 𝜌 as 𝑁 → ∞, 𝑁 being the number of particles. The time-derivative of expression

(3) is then

𝜕〈𝛹 〉
𝜕𝑡

=
∑
𝑝

𝑚𝑝

𝜌
𝛹𝑝

d𝛿(x − X𝑝)
d𝑡

+
∑
𝑝

𝑚𝑝

𝜌

d𝛹𝑝

d𝑡
𝛿(x−X𝑝) =

∑
𝑝

𝑚𝑝

𝜌
𝛹𝑝

Δ𝛿(x − X𝑝)
Δ𝑡

+ 〈d𝛹

d𝑡

〉
. (B.1)

where the time-derivative of the Dirac delta function has been written as the variation Δ𝛿(x − X𝑝)
over Δ𝑡, where Δ𝑡 → 0. A second-order Taylor expansion over the corresponding small particle

displacement ΔX𝑝 writes:

Δ𝛿(x − X𝑝) ≈ ΔXT
𝑝𝛿

′(x − X𝑝) + 1

2
ΔXT

𝑝𝛿
′′(x − X𝑝)ΔX𝑝 , (B.2)

where 𝛿′ and 𝛿′′ are, respectively, the gradient and the Hessian matrix of 𝛿. Then, using expression

(B.2), knowing that the weighted summation is equivalent (in the limit 𝑁 → ∞) to an integral over

the particle space, and given the evaluation properties of the Dirac delta distributional derivatives,

we may rewrite the summation in (B.1) as

∑
𝑝

𝑚𝑝

𝜌
𝛹𝑝

Δ𝛿(x − X𝑝)
Δ𝑡

≈
∑
𝑝

𝑚𝑝

𝜌

[
−∇ ·

(
𝛹𝑝

ΔX𝑝

Δ𝑡

)
+ 1

2
∇∇ :

(
𝛹𝑝

ΔXT
𝑝ΔX𝑝

Δ𝑡

)]
𝛿(x − X𝑝)

= −∇ · 〈𝛹𝑝
ΔX𝑝

Δ𝑡
〉 + 1

2
∇∇ : 〈𝛹𝑝

ΔXT
𝑝ΔX𝑝

Δ𝑡
〉

= −v∇ · 〈𝛹𝑝〉 + D∇∇ : 〈𝛹𝑝〉 = L (〈𝛹 〉; v,D) ,

(B.3)

where we applied well-known identities associated to (2) [Risken, 1989; Salamon et al., 2006],

〈ΔX𝑝〉 = vΔ𝑡 and 〈ΔXT
𝑝ΔX𝑝〉 = 2DΔ𝑡 (for Δ𝑡 → 0), and assumed that v and D are spatially

constant. Finally, introducing the result from (B.3) in (B.1), we obtain the expression given by (10),

𝜕〈𝛹 〉
𝜕𝑡

= L (〈𝛹 〉; v,D) + 〈d𝛹

d𝑡

〉
, (B.4)

which states that the Eulerian temporal variation of 〈𝛹 〉 comprises a contribution from the flux of

particles (Fokker-Planck) plus a local contribution from variations on particles.
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